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Abstract

We consider a three-dimensional vector field with a Shilnikov homoclinic
orbit that converges to a saddle-focus equilibrium in both forward and backward
time. The one-parameter unfolding of this gloal bifurcation depends on the
sign of the saddle quantity. When it is negative, breaking the homoclinic orbit
produces a single stable periodic orbit; this is known as the simple Shilnikov
bifurcation. However, when the saddle quantity is positive, the mere existence
of a Shilnikov homoclinic orbit induces complicated dynamics, and one speaks of
the chaotic Shilnikov bifurcation; in particular, one finds suspended horseshoes
and countably many periodic orbits of saddle type. These well-known and
celebrated results on the Shilnikov homoclinic bifurcation have been obtained by
the classical approach of reducing a Poincaré return map to a one-dimensional
map.

In this paper, we study the implications of the transition through a Shilnikov
bifurcation for the overall organisation of the three-dimensional phase space of
the vector field. To this end, we focus on the role of the two-dimensional global
stable manifold of the equilibrium, as well as those of bifurcating saddle periodic
orbits. We compute the respective two-dimensional global manifolds, and their
intersection curves with a suitable sphere, as families of orbit segments with a
two-point boundary-value-problem setup. This allows us to determine how the
arrangement of global manifolds changes through the bifurcation and how this
influences the topological organisation of phase space. For the simple Shilnikov
bifurcation, we show how the stable manifold of the saddle focus forms the basin
boundary of the bifurcating stable periodic orbit. For the chaotic Shilnikov
bifurcation, we find that the stable manifold of the equilibrium is an accessible
set of the stable manifold of a chaotic saddle that contains countably many
periodic orbits of saddle type. In intersection with a suitably chosen sphere we
find that this stable manifold is an indecomposable continuum consisiting of
infinitely many closed curves that are locally a Cantor bundle of arcs.
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1 Introduction

The problem of describing the organization of phase space of a dynamical system,
given by the flow of a vector field or the iteration of a map, has been the subject
of innumerable studies. With many examples arising from real-world phenomena,
the desire to understand the underlying behavior of vector fields and maps in such
applications has led to a healthy symbiosis between theoretical and practical aspects
of the subject; see, for example, [4, 27, 39, 40, 44, 62] as entry points into the
extensive literature.

We consider here dynamics with continuous time, described by a vector field. For
this type of dynamical system the analysis of local phenomena is well understood
via normal forms and desingularization techniques [27, 40, 62]. However, the study
of global features of the dynamics remains much more challenging. Homoclinic and
heteroclinic connections, between saddle equilibria and/or periodic orbits, are ex-
amples of global bifurcations arising in many applied systems [2, 28, 44, 49, 57, 58].
A small perturbation of a system parameter typically breaks such connections, and
their presence can have a dramatic effect on the overall dynamics — creating (or de-
stroying) basins of attraction and, generally, changing the topology of phase space.
A particular case is a homoclinic orbit of Shilnikov type that approaches a saddle-
focus equilibrium in a spiraling fashion. Perhaps the most celebrated and intriguing
feature of a Shilnikov homoclinic bifurcation is the fact that it constitutes the sim-
plest global phenomenon that can induce chaotic dynamics, known as Shilnikov
chaos [40, 52, 53, 54, 62]. The Shilnikov homoclinic bifurcation occurs already in
vector fields of dimension three — the lowest possible phase-space dimension — and
it is of codimension one, meaning that it is unfolded by a single parameter.

1.1 Mathematical setting

The Shilnikov homoclinic bifurcation is our main object of study and, hence, we
consider a vector field of the form

ẋ = f(x, η), (1)

where x ∈ R3, η ∈ R is a parameter, and f : R3×R → R3 is sufficiently smooth. The
vector field (1) induces a flow φt on R3 that determines the dynamics. We assume
that there is a hyperbolic saddle-focus equilibrium p = (px, py, pz); more precisely,
the Jacobian matrix Df(p) has one unstable real eigenvalue λu > 0 and a pair of
stable complex conjugate eigenvalues λs

1,2 with Re(λs
1,2) < 0 (the other case of a

hyperbolic saddle-focus equilibrium can be obtained simply by reversing time). We
denote the associated stable and unstable linear eigenspaces by Es(p) and Eu(p),
respectively.

The local stable and unstable manifolds of p are then defined by

W s
loc(p) =

{
x ∈ U | φt(x) → p as t → ∞ , and φt(x) ∈ U ∀t ≥ 0

}
,

W u
loc(p) =

{
x ∈ U | φt(x) → p as t → −∞, and φt(x) ∈ U ∀t ≤ 0

}
,
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where U ⊂ R3 is a neighborhood of p. Their respective extensions to the rest of the
phase space are the global (un)stable manifolds defined by

W s(p) =
{
x ∈ R3 | φt(x) → p as t → ∞

}
,

W u(p) =
{
x ∈ R3 | φt(x) → p as t → −∞

}
.

According to the Stable Manifold Theorem [27, 40, 62], the sets W s(p) and W u(p)
are, respectively, two-dimensional and one-dimensional (immersed) manifolds that
are as smooth as f and tangent at p to Es(p) and Eu(p).

The vector field f can also have attracting equilibria and periodic orbits. Any
such attracting invariant object, say A, has a neighborhood U that satisfies

φt(U) ⊂ U ∀t ≥ 0 and
∩
t>0

φt(U) = A. (2)

The basin of attraction B(A) of A is the set of points in phase space that converge
to it, that is,

B(A) =
∪
t≤0

φt(U),

where U ⊂ R3 is any open neighborhood of A satisfying (2).

1.2 The two cases of the Shilnikov bifurcation

Suppose that there is a homoclinic orbit Γ0 of (1) for η = η∗, which connects the
equilibrium p back to itself. Geometrically, the connecting orbit is formed by one
branch of the unstable manifold W u(p), which lies entirely in the surface W s(p) and,
hence, returns to p in a spiraling fashion. Under suitable genericity conditions [27,
40, 54], this homoclinic bifurcation is of codimension one, meaning that it happens
at an isolated value η∗ when the single parameter η ∈ R is changed. There are two
possible unfoldings of this bifurcation depending on the sign of the saddle quantity

σ = λu +Re(λs
1,2). (3)

For σ < 0 a unique and stable periodic orbit bifurcates when Γ0 is broken [40, 54];
this is completely analogous to the case of a homoclinic bifurcation of a planar
vector field, and one speaks of a simple Shilnikov bifurcation. Panels (a1), (a2)
and (a3) of Fig. 1 show the topological changes of the one-dimensional unstable
manifold W u(p) (red curve) during a simple Shilnikov bifurcation at ω = ω∗

s (in the
example vector field (4) introduced below in Section 2). The situation before the
bifurcation in panel (a1), for ω > ω∗

s , shows how W u(p) first makes an excursion
and subsequently misses the equilibrium as it converges to an attracting equilibrium
q. At the bifurcation, at ω = ω∗

s , the global manifold W u(p) converges to p in both
directions of time, forming the homoclinic loop Γ0 illustrated in Fig. 1(a2). Finally,
in panel (a3) for ω < ω∗

s , a single stable periodic orbit Γ (green curve) bifurcates and
becomes the α-limit set of the upper branch of W u(p). Note that, near p, the linear
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stable eigenspace Es(p) (gray disk) is an approximation of the separatrix W s(p). In
all cases, the other branch of W u(p) always converges to q. The bifurcating periodic
orbit Γ only exists for ω < ω∗

s . This is illustrated in the bifurcation diagram in
panel (b1), which shows the period T of Γ as it grows to infinity when ω is increased
towards ω∗

s . At the limit for ω = ω∗
s , the periodic orbit becomes the homoclinic

orbit Γ0 and it no longer exists for ω > ω∗
s .

The unfolding for σ > 0 in panels (c1)–(c3) of Fig. 1, on the other hand, is not
as straightforward. While the behavior of W u(p) before and at the Shilnikov bifur-
cation, as shown in Fig. 1 (c1) and (c2), is similar to that for the simple case, the
situation after the bifurcation is not immediately clear. In Fig. 1(c3) the manifold
W u(p) makes two excursions before converging to q, but this is just an example
of what may happen. More complicated behavior is expected to occur for ω near
the bifurcation value ω = ω∗

c . Indeed, the Poincaré map constructed near Γ0 con-
tains countably many Smale horseshoes in its dynamics, whose suspensions form a
compact hyperbolic invariant chaotic set S, which is also referred to as a chaotic
saddle [27, 40, 52, 53, 54, 62]. Moreover, the chaotic saddle S contains countably
many periodic orbits {Γk}k∈Z of saddle type of many possible periods in any suffi-
ciently small neighborhood of Γ0 [27, 40, 62]. For system (4), S is of saddle type and,
consequently, in the three-dimensional phase space one expects to see orbits visiting
S in long chaotic transients before they ‘settle down’ to the attracting equilibrium q
or to possible attracting periodic orbits [27]. Furthermore, the existence of a chaotic
saddle S is a robust property, meaning that chaotic dynamics persists on both sides
of the bifurcation when the homoclinic orbit is broken [40].

Further global phenomena are expected to happen near the initial Shilnikov ho-
moclinic bifurcation, as ω is decreased from ω∗

c . Namely, the unstable manifold
W u(p) may form a new connection to the saddle-focus after one or more close en-
counters with p, as is suggested by panel (c3) in Fig. 1. One speaks of subsidiary n-
homoclinic orbits if the connection back to p occurs only after n−1 close passes near
it; see [24, 58, 62] for details. Moreover, for each of these subsidiary n-homoclinic
bifurcations, we have the corresponding scenario with countably many horseshoes
as for the primary Shilnikov bifurcation.

Figure 1(b2) shows the (local) bifurcation diagram of the main branch of periodic
orbits, bifurcating from the homoclinic orbit at ω = ω∗

c . In a way, the bifurcation
analysis of this ‘basic’ branch is well known, including how the branch of periodic
orbits approaches homoclinicity; see [23, 24, 62] for details. The bifurcation curve
in panel (b2) oscillates around ω = ω∗

c (compare with the simple case in panel (b1))
with an amplitude that decreases rapidly as the homoclinic limit is approached when
ω tends to ω∗

c . At each of the infinitely many folds of the curve a pair of periodic
orbits is created via a saddle-node bifurcation of limit cycles; the periodic orbits ΓA

(green dot), ΓB (cyan dot) and ΓC (magenta dot) labeled in Fig. 1(b2) are coexisting
examples from this branch for fixed ω = −0.83. Some of the periodic orbits, such as
ΓB, undergo period-doubling bifurcations (in the case of ΓB, this occurs at the points
PD1 and PD2) changing their stability along the bifurcation curve. Nevertheless, in
a sufficiently small neighborhood of ω = ωc these periodic orbits have two Floquet
multipliers of magnitudes less and greater than 1, respectively, and hence, they are all
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Figure 1: Illustration of the simple and the chaotic Shilnikov bifurcation in sys-
tem (4). Panels (a1)–(a3) show the one-dimensional unstable manifold W u(p)
(red curve) before, at and after the simple Shilnikov bifurcation for k = 0.45 and
ω = −0.91, ω = ω∗

s ≈ −0.936533 and ω = −0.9419, respectively; also shown in
panel (a3) is the bifurcating periodic orbit Γ in green. Panel (b1) shows the asso-
ciated bifurcation diagram, where the period T of Γ is plotted as a function of ω.
Panel (b2) shows the corresponding bifurcation diagram for the chaotic Shilnikov
bifurcation; three simultaneously existing periodic orbits ΓA (green dot), ΓB (cyan
dot) and ΓC (magenta dot) are highlighted. Panels (c1)–(c3) show W u(p) be-
fore, at and after the chaotic Shilnikov bifurcation for k = 0.7 and ω = −0.81,
ω = ω∗

c ≈ −0.820455 and ω = −0.83, respectively.

hyperbolic periodic orbits of saddle type. The Floquet mulipliers may either be both
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positive or both negative, and then the associated periodic orbit has either orientable
or non-orientable two-dimensional stable and unstable manifolds. The sign of the
Floquet mulipliers, and hence the orientability of the associated manifolds, actually
alternates between consecutive periodic orbits if ω is close enough to the value ωc

where the homoclinic bifurcation takes place. For instance, near ω = ωc, ΓA and ΓC

have positive Floquet multipliers and ΓB has negative Floquet multipliers; see [47]
for details. Notice further that, as ω is varied from ωc, the manifold W u(p) may
intersect the stable manifold W s(Γk) of any periodic orbit Γk to form codimension-
one heteroclinic connections (also known as EtoP connections [38]).

1.3 The role of two-dimensional invariant manifolds

Figure 1 shows the Shilnikov bifurcations on the level of the reorganization of the one-
dimensional manifolds involved; this is what one can typically find in literature [23,
24, 52, 53, 54, 62]. The presence of Shilnikov chaos has been determined by means
of defining a Poincaré map on suitable cross-sections near the homoclinic orbit Γ0,
which is then further reduced to a one-dimensional map [52, 53, 62]. This approach
is perfect for proving statements about the dynamics near the Shilnikov bifurcation.
On the other hand, it is less clear how the dynamics that is found in this way
manifest itself throughout phase space.

In this paper we focus on the role of the two-dimensional manifolds as organizers
of the overall dynamics. Historically, the two-dimensional invariant manifolds asso-
ciated with homoclinic phenomena have been considered locally near the equilibrium
or in a tubular neighborhood of the connecting orbit Γ0, mainly via intersections
with a local section or in the form of topological sketches [40, 54, 62]. We know,
for instance, that the closure of the stable manifold of the saddle-focus is locally
disconnected at the Shilnikov bifurcation [48]. However, the question that remains
open for both cases of Shilnikov bifurcation is how the associated stable manifolds
rearrange themselves during the homoclinic bifurcation. More specifically, our aim
is to answer the following questions:

• How does the topological change due to the Shilnikov bifurcation manifest
itself in terms of the global geometry of W s(p)?

• How do the basins of the attracting objects change in the simple Shilnikov
case?

• What are the roles of W s(p) and W s(Γk) in the organization of phase space
in the presence of the chaotic saddle S?

These questions are of special interest, because Shilnikov bifurcations have been
found as important ingredients of the dynamics in many concrete applications; ex-
amples include laser models [39, 59, 58]; nerve impulse propagation in neurons and
axons [31]; travelling waves in the FitzHugh-Nagumo model with slow-fast dynam-
ics [28]; models for chaos-based communication systems [57]; electrochemical re-
actions [4] and oxidation processes [44]; electrodynamic convection in liquid crys-
tals [49]; food chain models in predator-prey systems [56]; nonlinear convection in
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magnetic fields [50]; and the Rössler equations [3]. In these applications, knowing
the stable manifold of the saddle-focus is especially relevant, because it acts as a
threshold for excitability: a small perturbation above W s(p) leads to an excursion
following the unstable manifold W u(p) before converging to a nearby attractor (q in
Fig. 1, which is for the laser model (4) that we shall introduce in Section 2). The
effect is a pulse-like response in relevant state variables. Multipulse behavior is also
possible, meaning that several pulses or responses may be generated from a single
perturbation above the threshold [39, 60, 58, 62].

Although there is no normal form for homoclinic bifurcations (or any other global
bifurcations for that matter), the applications mentioned above (and many others)
provide a rich set of model vector fields from which one can select a concrete example
showing both the simple and the chaotic Shilnikov cases. We consider here the model
for a laser with optical injection from [59] as a convenient system in which to analyze
the roles of the two-dimensional stable manifolds involved in the organization of its
three-dimensional phase space. This study is possible thanks to the emergence of
advanced numerical methods for the accurate computation of two-dimensional global
invariant manifolds. We follow the approach from [36] and obtain the respective
two-dimensional manifolds by continuing a one-parameter family of orbit segments,
which can be found as solutions of a suitable two-point boundary value problem, for
example, with the package Auto [18]. A brief discussion of these numerical methods
is presented in the Appendix of this paper, and we refer to [36, 37] for further details.
We take advantage of the flexibility of this computational technique to calculate also
the intersection curves of the manifolds with a suitable two-dimensional surface [1,
16]. More specifically, we initially consider the classical approach of taking a plane
Σ through the equilibrium p; in this way, for the simple Shilnikov bifurcation we
discover that W s(p) is a bounded surface that accumulates on a repelling strange
set. However, we mainly study the intersections of the respective two-dimensional
global manifolds with a sphere SR of radius R centered at p.

The advantage of the sphere SR is that it is compact, which allows us to study in
a convenient way how the basins of attraction of q and Γ change as their boundaries,
formed by different portions of W s(p), rearrange themselves at the simple Shilnikov
bifurcation. Provided R is chosen small enough, we find that there are only two
intersection curves of W s(p) with SR (provided R is small enough); one accumulates
on the other at the homoclinic bifurcation, and this changes the topology of the
regions they bound on the sphere. For the chaotic Shilnikov bifurcation, on the
other hand, there are infinitely many intersection curves between W s(p) and SR;
they are nested before the bifurcation, and this nesting property is progressively
lost after the bifurcation in a sequence of transitions that all involve the analogous
rearrangement of closed curves that we found for the simple Shilnikov bifurcation.
Moreover, we find that the stable manifolds W s(Γk) of the saddle periodic orbits
Γk (which are part of the chaotic saddle S) accumulate on W s(p) and, hence, are
organised and bifurcate in the same way; in particular, we identify W s(p) as the
accessible boundary of the basin of attraction of the equilibrium q.

This paper is structured as follows. In Section 2 we present the laser model that
is used throughout for the analysis of the Shilnikov bifurcation. The study of the
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simple Shilnikov bifurcation is presented in Section 3, where we also introduce our
approach of computing and visualizing suitable intersection curves of W s(p). The
chaotic Shilnikov bifurcation is studied in Section 4, where we show in turn how
the stable manifolds W s(p) of the saddle-focus p and W s(Γk) of the saddle periodic
orbits Γk organize the phase space in the presence of a chaotic saddle. In Section 5
we briefly summarize the main results, discuss their consequences and outline some
challenges for future work. The Appendix presents an overview of the boundary-
value-problem implementation that we used to compute two-dimensional invariant
manifolds of saddle equilibria and periodic orbits.

2 The laser model

We consider here the laser model with optical injection derived in [59]. We write
the system of equations as

ẋ = ωy + 1
2 x z −

a
2y z + k,

ẏ = −ωx+ 1
2 y z +

a
2 x z,

ż = −2Gz − (1 + 2B z)(x2 + y2 − 1),

(4)

where (x, y, z) ∈ R3. Here, x and y denote the real and imaginary parts of the
complex electric field, respectively, and z the population inversion, i.e., the number
of electron-hole pairs in the case of a semiconductor laser. This model describes
a single-mode laser that receives optical injection at amplitude k and detuning ω;
furthermore, a, B and G describe material properties of the laser; for our purposes,
they are fixed throughout at the realistic values a = 2, B = 0.015 and G = 0.035.

An extensive bifurcation analysis of the laser model (4) can be found in [58]
where, among several kinds of global bifurcations, many curves of Shilnikov homo-
clinic bifurcations to a saddle-focus p were found in the (k, ω)-plane for different
values of the parameter a. The study in [58] focused mainly on the complicated
structure of curves of n-homoclinic bifurcations as the parameter a is varied, and
their physical relevance as a means for understanding multipulse excitability of the
laser. Figure 2 shows one such curve, obtained by continuation of the homoclinic
orbit Γ0 using the HomCont [9] part of the continuation package Auto [18]. The
tooth-like curve h of (primary) 1-homoclinic orbits connects the points A1 and A2 in
Fig. 2, where it becomes tangent to a saddle-node bifurcation curve SN . The sad-
dle quantity σ, defined in (3), of the equilibrium p changes sign across the dashed
neutral-saddle curve labeled ns. Along h, the Shilnikov homoclinic bifurcation is
simple to the left of ns and chaotic to the right of ns. The transition between sim-
ple and complicated dynamics occurs at so-called Belyakov points, labeled B1 and
B2 in Fig. 2, which are precisely the points where h intersects ns, so that σ = 0;
see also [6, 58]. At all other points of the curve h the Shilnikov homoclinic bifur-
cation is of codimension one; this means that (except at the fold of h with respect
to ω) it happens at an isolated value ω = ω∗ when the single parameter ω ∈ R is
changed. This allows us to unfold the bifurcation by keeping a fixed value of k and
just changing ω through ω∗.
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Figure 2: The laser system (4) has a tooth-shaped curve h of primary Shilnikov
homoclinic bifurcations in the (k, ω)-plane; the curve h starts and ends at the points
A1 and A2 on a saddle-node bifurcation curve SN . At the selected points hs and
hc one finds a simple and a chaotic Shilnikov bifurcation, respectively, which can be
unfolded by changing only the parameter ω. The transition between the two cases
occurs at the Belyakov points B1 and B2, where the curve h intersects the neutral
saddle curve ns.

To the right of the curve SN there is a saddle equilibrium p and a stable equi-
librium point, denoted q, which has a large basin of attraction B(q) that is bounded
by the two-dimensional manifold W s(p). The existence of an attractor q is not part
of the classical theory of Shilnikov bifurcation, which only considers the saddle p
and a tubular neighborhood of the homoclinic orbit Γ0. In system (4) the attractor
q absorbs orbits that leave a neighborhood of the Shilnikov homoclinic orbit. This
allows us to gain insight into the bifurction by studying the properties of the basin
B(q). Specifically, we study how the interaction of B(q) and W s(p) gives rise to
the basin B(Γ) of the bifurcating saddle periodic orbit Γ in the simple Shilnikov
bifurcation; and how, near a chaotic Shilnikov bifurcation, the boundary of B(q) is
formed in a complicated way by W s(p) and by the stable manifolds of the periodic
orbits of saddle type.

In the following sections, we consider two specific points on the curve h in Fig. 2
where we find the simple and chaotic cases of Shilnikov homoclinic bifurcations:

• At hc = (k∗s , ω
∗
s) ≈ (0.45,−0.936533) the saddle-focus p ≈ (0.728926, 0.716564,

−0.716563) has associated eigenvalues λs
1,2 = −0.452133± 1.11566 i and λu =

0.205017. Hence, the saddle quantity σ is negative and one is dealing with a
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Γ

W s(p)
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Figure 3: The two-dimensional stable manifoldW s(p) before (row (a) for ω = −0.93)
and after (row (b) for ω = −0.94) the simple Shilnikov homoclinic bifurcation in (4)
for k = 0.45. The manifold is represented by orbit segments of fixed integration time
T0 = 40, and the viewpoint lies on the z-axis above the (x, y)-plane; in the right
panels W s(p) is rendered as a transparent surface.

simple Shilnikov bifurcation; see Fig. 1(a1)–(a3).

• At hc = (k∗c , ω
∗
c ) ≈ (0.7,−0.820455) the eigenvalues of p ≈ (0.0910993, 1.00029,

−0.126416) are λs
1,2 = −0.417498± 1.3632 i and λu = 0.638313. Hence, σ > 0

and one is dealing with a chaotic Shilnikov bifurcation; see Fig. 1(c1)–(c3).

3 The simple Shilnikov bifurcation

We first study the role of the stable manifold W s(p) of the saddle-focus p in the laser
model (4) near the simple Shilnikov homoclinic bifurcation for k = 0.45. Figure 3
shows W s(p) computed as a one-parameter family of orbit segments of fixed integra-
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Figure 4: Illustration of W s(p) for ω = −0.93 and k = 0.45. Panel (a) shows a single
computed orbit segment in W s(p). Panel (b) shows W s(p) as a transparent surface
from a different viewpoint that highlights the structure of its layers; also shown is a
global planar section Σ through p.

tion time T0 = 40, one end point of which lies in Es(p) at a distance of the order of
10−5 from p; see the Appendix for details. Panels (a1) and (a2) of Fig. 3 show W s(p)
before the Shilnikov bifurcation for ω = −0.93, and panels (b1) and (b2) show it
after the Shilnikov bifurcation for ω = −0.94; in each case, the blue surface W s(p)
is shown in both solid (left) and transparent (right) rendering from a viewpoint on
the z-axis above the (x, y)-plane.

Figure 3 illustrates that the computed piece of W s(p), which is a topological
disk, has a quite complicated, shell-like geometry. The rotational component of the
vector field near the saddle-focus p induces a swirling behavior of W s(p). Moreover,
the surface has several layers, which may be very close to each other and separate
the phase space locally into different regions. Figure 3 gives an idea that the global
geometry of W s(p) is quite intriguing, but it does not illustrate very well where
W s(p) lies in relation to the unstable manifold W u(p) and the saddle-focus p, and
what topological change this manifold undergoes at the homoclinic bifurcation.

Figure 4 further illustrates the properties of W s(p) for ω = −0.93 before the
bifurcation; recall that the equilibrium q is the only attractor, so that all points
not on W s(p) end up at q under the flow of (4). Figure 4(a) shows how a single
orbit in W s(p) spends a long time in a transient motion before finally reaching p.
This gives a hint of the influence of the different layers of W s(p), which induce a
similarly complicated transient behavior of nearby orbits in the basin of the attractor
q. Figure 4(b) shows W s(p) as a transparent surface, from the same viewpoint as
panel (a), which clearly shows the different layers.
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in the planar section Σ through the equilibrium p before (row (a) for ω = −0.93),
approximately at (row (b) for ω = ω∗

s ≈ −0.936533), and after (row (c) for ω =
−0.94) the simple Shilnikov bifurcation for k = 0.45 in the laser model (4); the
right panels are enlargements near p. The darker blue curve W0 ⊂ W s(p)∩Σ is the
unique intersection curve that contains p. Along the tangency locus C the vector
field changes direction (w.r.t. the normal to Σ) between pointing up (⊙) and down
(⊗).
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3.1 Intersection of W s(p) with a planar section

In order to get an impression of the complicated arrangement of layers of W s(p) near
the simple Shilnikov bifurcation at ω∗

s , we first follow the classical approach and con-
sider its intersection with a planar section through the equilibrium p. Figure 4(b)
shows such a section Σ, namely, the plane through p spanned by the unstable eigen-
vector vu and a vector vs in Es(p). Figure 5 shows the corresponding intersection
sets of invariant manifolds with Σ before, at and after the bifurcation in rows (a)–
(c), respectively. More specifically, shown are the set W s(p) ∩ Σ (blue curves), the
set {ui}i := W u(p) ∩ Σ (red dots) and, in row (c) after the bifurcation, the inter-
section points Γ∩Σ (green dots). The curves in W s(p)∩Σ have been computed by
continuing orbit segments whose begin points lie in Σ and whose end points lie near
p in Es(p); see the Appendix for details. Also shown in Fig. 5 is the tangency locus
C ⊂ Σ where the vector field (4) is tangent to Σ; it is given by

C := {x ∈ Σ | f(x) · n⃗Σ = 0}, (5)

where n⃗Σ is the unit normal vector to Σ. The relevance of C is that it divides Σ
into two regions where the flow points upwards (in the direction of positive z) or
downwards (in the direction of negative z); this is indicated with the symbols ⊙
and ⊗, respectively. The first-return map to the global section Σ is not a diffeomor-
phism [41], and this has some interesting consequences. In particular, W s(p) ∩ Σ is
not a single curve, but consist of infinitely many curves. Note that many of these
curves in W s(0)∩Σ cross the tangency locus C; nevertheless, they can be computed
reliably [19]. The special curve containing the equilibrium p is labeled W0 and col-
ored a darker blue; note that p ∈ Σ implies that p ∈ C. The intriguing geometry of
the many layers of W s(p) is a feature both before and after the Shilnikov bifurca-
tion. The fact that we find infinitely many bounded curves in W s(p)∩Σ implies that
W s(p) is a bounded surface that converges (in backward time) to a chaotic repellor.
In other words, the orbit through a generic point in Σ returns many times to Σ,
while visiting different regions bounded by curves in W s(p) ∩ Σ, until it eventually
converges to either q or to Γ.

Figure 5 illustrates the interaction between the manifolds W s(p) and W u(p) on
the level of their intersection sets with the plane Σ. Before the simple Shilnikov
bifurcation, the set W u(p) ∪ Σ consists of only finitely many points, namely the
four points u1, . . . u4 in panel (a1). These points lie in the intersection with Σ of
the basin B(q) of the attracting equilibrium q, which consists of Σ \W s(p). At the
bifurcation, in row (b), there are infinitely many points ui ∈ W u(p) ∪ Σ, which lie
on the curve W0 ⊂ W s(p)∩Σ and converge to p. After the bifurcation, in row (c) of
Fig. 5, there are still infinitely many points ui ∈ W u(p)∪Σ, but they now lie on the
other side of W0 and accumulate on the intersection points Γ ∩Σ of the bifurcating
periodic orbit Γ with Σ. In particular, this implies that the plane Σ must be divided
by W s(p) ∩ Σ into its intersection with the basin of q and its intersection with the
basin of Γ, respectively. Note, however, that it is not at all clear which of the two
basins is where, and one cannot decide from Fig. 5 how W s(p) changes topologically
at the simple Shilnikov bifurcation. The enlargement panels (right column) of Fig. 5
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show that there are some rearrangements of W s(p) ∩Σ, but it is not clear which of
these rearrangements happen directly at the Shilnikov bifurcation. The problem is
that, as the parameter is changed, curves in W s(p)∩Σ may reconnect differently in
tangency bifurcations that take place at isolated points on C (away from p). This
type of bifurcation in the section Σ is a consequence of the presence of the tangency
locus C, and such a tangency bifurcation of W s(p)∩Σ is generally not a bifurcation
of the two-dimensional invariant manifold W s(p) itself; see [41] for more details.

The issues outlined above highlight the need for a better representation and
visualization of the global manifolds involved.

3.2 Intersection of W s(p) with a sphere

The topological change of W s(p) during the simple Shilnikov bifurcation becomes
much easier to understand when one considers its intersection with a suitable sphere
around the saddle-focus p. We consider the sphere

SR = {(x, y, z) ∈ R3 | (x− px)
2 + (y − py)

2 + (z − pz)
2 = R2}

centered at the equilibrium point p = (px, py, pz), where we choose R = 0.5 as a
suitable radius. Figure 6 shows how a strip of W s(p) (blue surface) returns (in
backward time) to the sphere SR, while following the upper branch of W u(p) (red
curve). Here rows (a) and (b) show the situations before and after the simple
Shilnikov bifurcation, respectively; also shown in green in row (b) is the periodic orbit
Γ. Panels (a1) and (b1) show only the strip that returns to SR, while panels (a2)
and (b2) show how it is situated within the entire (transparent) stable manifold
W s(p). Note, in particular, that W u(p) moves from one side of the strip of W s(p)
to the other at the bifurcation.

The idea is now to consider only the intersection sets of the relevant manifolds
with the sphere SR, which can be computed readily by restricting the continuation
to orbit segments whose end points (in backward time) lie on SR; see the Appendix

for details. It turns out that the set Ŵ s(p) := W s(p) ∩ SR consists of only two
curves W0 and W1 before, at and after the bifurcation (provided R is sufficiently
small). More specifically, W0 := W s

loc(p) ∩ SR is the first intersection of W s(p) with
SR. It is a simple closed curve that bounds a disk formed by the part of W s

loc(p)
inside SR. All points on W0 flow directly to p, that is, the vector field along W0

points into the sphere SR. The second intersection curve W1 is formed by a portion
of W s(p) that re-enters SR (in backward time) and leaves again, containing points
where the flow is tangent to SR; the blue strip in Fig. 6 is a portion of W s(p) that
gives rise to W1. Figure 7 shows the situation on SR approximately at the Shilnikov
bifurcation for ω = ω∗

s ; panel (a) shows the intersection curves on the sphere, with
parts of the region of interest obscured due to the choice of viewpoint. Figure 7(b)
shows a stereographic projection of the sphere onto the (u, v)-plane tangent to SR

at the north pole N = (px, py, pz +R), which is given by the transformation

(u, v) :=

(
− R (y − py)

R+ z − pz
,
R (x− px)

R+ z − pz

)
, (6)
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Wu(p)
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Γ

W s(p)

q

(b2)(b1)

Γ

q

SR

Figure 6: A (blue) strip of orbit segments on W s(p) (blue transparent surface)
returning (in backward time) to the sphere SR with radius R = 0.5, shown before
(row (a) for ω = −0.93) and after (row (b) for ω = −0.94 ) the simple Shilnikov
bifurcation in (4) for k = 0.45; also shown are W u(p) (red curve) and Γ (green
curve).

15



W1

W0

u0 u1C

E

D

W1

C

u0

N

SR

⊗
⊙

W0

E

D

(a) (b)

Figure 7: The intersection curves W0 (dark blue) and W1 (blue) of W s(p) ∩ SR for
k = 0.45 and ω = ω∗

s ≈ −0.936533, shown on the sphere SR (a) and in stereographic
projection (b); also shown is the tangency locus C, where the direction of the vector
field changes between pointing out of SR (⊙) and into SR (⊗).

where (x, y, z) ∈ SR. The closed curve W0 (shown in a darker blue) divides SR

into two regions, one of which contains W1. Note that the two points {u0, u1} =
Γ̂0 := W u(p) ∩ SR lie on W1 and W0, respectively. The stereographic projection
clearly shows how W1 accumulates on W0, which forms the boundary of the region
of interest on SR. The orbit of a point on the outside of W0 in Fig. 7(b) converges
directly to the attractor q without intersecting SR again. Points inside W0, on the
other hand, have orbits that move ‘in between’ the layers of W s(p) before converging
to q.

Also shown in Fig. 7 is the tangency locus C ⊂ SR, now given by

C := {x ∈ SR | f(x) · n⃗SR
(x) = 0}, (7)

where n⃗SR
(x) is the unit normal vector to SR at x. Notice that C is quite far from

the accumulation of W1 on W0. Hence, in contrast to the planar section Σ, there
is no evidence of tangency bifurcations on the sphere SR near the simple Shilnikov
bifurcation.

We now turn to the question of howW0 andW1 change topologically at the simple
Shilnikov bifurcation. The region inside W0 in Fig. 7 is subdivided by W1 into two
regions labelled D and E . Their roles become clear in Fig. 8, where we show how
W1 changes topologically through the Shilnikov bifurcation. The situation before
the bifurcation is illustrated in panels (a)–(c) for three values of ω approaching ω∗

s ,
while panels (d)–(f) show the situation after the bifurcation for three values of ω
decreasing from ω∗

s . Panels (a1)–(f1) of Fig. 8 show the stereographic projection of
the relevant sets on the sphere SR. In each panel, W0 is the darker blue curve that
bounds the region of interest in which one finds W1.

Before the simple Shilnikov bifurcation, the upper branch of W u(p) leaves the
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Figure 8: Stereographic projection of Ŵ s(p) = {W0,W1} near a simple Shilnikov

bifurcation (a1)–(f1); panels (a2)–(f2) are enlargements near u0 ∈ Ŵ u(p). Pan-
els (a)–(c) for ω ∈ {−0.93,−0.935,−0.936} are before, and panels (d)–(e) for
ω ∈ {−0.937,−0.938,−0.94} are after the bifurcation for k = 0.45. The inside
of W0 is divided into the regions D and E ; after the bifurcation E becomes the basin
B̂(Γ).

sphere SR at the (red) point u0 inside the closed tangency curve C, and it re-enters
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SR at the (red) point u1. The manifold then leaves SR again to converge to q; this
final intersection point u2 is far away from the shown region of interest and is not
depicted in Fig. 8(a1)–(c1). The basin B̂(q) := B(q) ∩ SR of the only attractor q is

the complement of Ŵ s(p) = {W0,W1}. Notice that, before the bifurcation, W1 is a
closed curve that divides the region of interest inside W0 into two simply connected
regions: the region D ⊂ B̂(q) that is bounded by both W0 and W1, and the (shaded)
region E ⊂ B̂(q) that is bounded only by W1. Orbits of points in D converge directly
to q, while orbits of points in E make an excursion before reaching q. As the Shilnikov
bifurcation at ω∗

s is approached, the (red) points u0 and u1 approach W1 and W0,
respectively. At the same time, the region E develops a ‘tail’ that grows clockwise
toward W0; see Fig. 8(a)–(c). At the Shilnikov bifurcation for ω = ω∗

s the set W1

is no longer a Jordan curve. Rather W1 is an arc of infinite arclength, both ends of
which accumulate on the closed curve W0; this is the situation depicted in Fig. 7(b).

The situation after the simple Shilinikov bifurcation is shown in panels (d)–

(f) of Fig. 8. The set Ŵ u(p) = W u(p) ∩ SR now consists of infinitely many points
{u0, u1, · · · } that converge very rapidly to the (green) intersection points Γ̂ := Γ∩SR

of the bifurcating attracting periodic orbit Γ; the (indistinguishable) odd-numbered
intersection points are indicated by the symbol uo and the (equally indistinguishable)
even-numbered ones by ue. Notice that W1 is again a closed curve that separates
the interior of W0 into two simply connected regions, but it has effectively ‘turned
inside out’ at the bifurcation. The (shaded) region bounded by both W1 and W0

is the basin of attraction B̂(Γ) := B(Γ) ∩ SR of Γ; hence, this basin emerges as
the continuation of the E ⊂ B̂(q) that exists before and at the bifurcation. The
region bounded by only W1, on the other hand, is now (the continuation of) region
D ⊂ B̂(q). As ω is increased towards ωs and the bifurcation is approached, D forms
a ‘tail’. This means, that a small narrow and growing ‘inlet’ is taken out of B̂(Γ);
see the sequence of panels (f)–(d) of Fig. 8. The result of this convergence process
is again the situation at the bifurcation itself that is depicted in Fig. 7(b).

It is an important realization that the topological change we observe at the
simple Shilnikov bifurcation does not depend on the choice of the radius R of SR,
provided it is small enough. More specifically, for any sufficiently small R > 0 there
exist a neighborhood U∗

R of ω∗
s such that W0 and W1 are the only intersection curves

in Ŵ s(p) for ω ∈ U∗
R, and they have the properties we discussed and illustrated in

Figs. 8 and Fig. 7(b). Hence, the representation of the invariant global manifolds on
the sphere SR indeed provides the desired insight into the exact topological nature of
the simple Shilniov bifurcation. In particular, it explains how the basin of attraction
B̂(Γ) (dis)appears as a big set at the moment of bifurcation.

While these results were obtained for the specific laser model (4), they appear
to be an entirely general description of the topological change observed near any
simple Shilnikov bifurcation. We formalize this observation as follows.

Result 1 (Simple Shilnikov bifurcation) Suppose that the parameter η unfolds a
simple Shilnikov bifurcation at η = η∗s of a saddle-focus p of vector field (1). Then,

on any sufficiently small sphere SR centered at p, the set Ŵ s(p) := W s(p) ∩ SR

consists of only two curves, W0 and W1. Furthemore, W0 := W s
loc(p)∩SR is always
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a closed curve and the following holds:

(S.1) For η < η∗s (before the bifurcation) W1 is a closed curve that bounds a simply
connected region E. As η approaches η∗s , the arclength of W1 diverges.

(S.2) For η = η∗s (at the bifurcation) the curve W1 is an arc with infinite arclength,
the two ends of which converge to the closed curve W0.

(S.3) For η > η∗s (after the bifurcation) W1 is again a closed curve with finite
arclength. The basin B̂(Γ) ⊂ SR of the bifurcating stable periodic orbit Γ is
bounded by both W0 and W1. Furthermore, B̂(Γ) is the continuation (in the
Hausdorff metric) of the region E for η < η∗s , that is,

lim
η↗η∗s

E = lim
η↘η∗s

B̂(Γ).

4 The chaotic Shilnikov bifurcation

We now consider how the two-dimensional stable manifolds of the saddle-focus p
and saddle periodic orbits Γk organize the overall dynamics in phase space near a
chaotic Shilnikov bifurcation. Figure 9 shows the stable manifold W s(p) before and
after the chaotic Shilnikov bifurcation for ω = −0.81 in row (a) and ω = −0.83 in
row (b), respectively. Similar to before, the manifold has been computed as a one-
parameter family of orbit segments, but now with fixed integration time T0 = 27; see
the Appendix for details. Both the solid rendering (left column) and the transparent
rendering (right column) show the computed part of W s(p) as an intriguing bounded
surface whose global geometry appears to be quite different from that observed
near the simple Shilnikov bifurcation; in particular, the manifold W s(p) does not
encompass the attracting equilibrium q; compare Fig. 9 with Figs. 3 and 4(b). The
orbits of most points will end up at q both before and after the chaotic Shilnikov
bifurcation; due to the presence of the chaotic saddle S and depending on where
they lie with respect to the different layers of W s(p), orbits may display complicated
transient motion in the process.

Figure 10 shows a (blue) strip situated inside W s(p) (blue transparent surface) of
orbit segments that follow (in backward time) the upper branch ofW u(p) (red curve)
back to a neighborhood of the saddle-focus p; more specifically, the computed orbit
segments have begin points (in backward time) on the intersection W0 of W s(p)
with the sphere SR of radius R = 0.3 around p. The properties of the strip are
illustrated further in Fig. 11, where it is shown in relation to W u(p) in panels (a)–
(c) before, approximately at, and after the bifurcation, respectively. Notice the
helicoidal nature of W s(p) in the enlargement panels (a2)–(c2); the only noticable
difference through the bifurcation is again the fact that W u(p) lies on different sides
of the strip before and after the bifurcation. Although the global structure of W s(p)
is very different near the chaotic Shilnikov bifurcation, the properties of this strip of
orbits in W s(p) that return to SR in backward time are effectively the same as those
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Figure 9: The two-dimensional stable manifold W s(p) (blue) before (row (a) for
ω = −0.81) and after (row (b) for ω = −0.83) the chaotic Shilnikov homoclinic
bifurcation in (4) for k = 0.7; also shown is W u(p) (red curve). The manifold W s(p)
is represented by orbit segments of fixed integration time T0 = 27; in the right panels
it is rendered as a transparent surface.

of the corresponding strip near a simple Shilnikov bifurcation; compare Fig. 11(a1)
and (c1) with Fig. 6(a1) and (b1), respectively. In other words, the first return (in
backward time) of W s(p) to the sphere SR is very much the same near the two cases
of a Shilnikov bifurcation.

4.1 Intersection of W s(p) with a sphere

What makes the chaotic Shilnikov bifurcation much more complicated is the fact
that the manifold W s(p) returns to neighborhood of the saddle focus p infinitely
many times. In particular, for any sufficiently small sphere SR around p and ω
sufficiently close to ω∗

c , the set Ŵ s(p) = W s(p) ∩ SR consists of infinitely many
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W s(p)

Wu(p)
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Figure 10: A (blue) strip of orbit segments inside W s(p) (blue transparent surface)
as it returns to the sphere SR of radius R = 0.3 around the saddle-focus p, shown
in panel (a) for ω = −0.81 before, and panel (b) for ω = −0.83 after the chaotic
Shilnikov bifurcation in (4) for k = 0.7; also shown is W u(p) in red.

curves. We chose R = 0.3 in Figs. 10 and 11, so that the first two intersections
curves are relatively easy to see, but this radius is too large to visualize properly the
infinitely many intersection curves of W s(p) near the chaotic Shilnikov bifurcation;
hence, we consider SR with a radius of R = 0.055 from now on and only plot its
stereographic projection defined by (6). Figure 12 shows the set Ŵ s(p) of (blue)

intersection curves of W s(p) and the (red) points of the set Ŵ u(p) on SR, along

with the tangency locus C. Figure 13 shows enlargements near u0 ∈ Ŵ u(p) of
the respective panels of Fig. 12. A special role is again played by the closed curve
W0 = W s

loc(p) ∩ SR that contains all other curves in Ŵ s(p) inside it. We further

distinguish the curveW1 ∈ Ŵ s(p) on which u0 ∈ Ŵ u(p) lies at the primary Shilnikov
bifurcation; both W0 and W1 are colored in a darker blue.

We now explain the geometry of this set before, at and after the chaotic Shilnikov
bifurcation in more detail. For ω > ω∗

c , before the bifurcation, Ŵ
s(p) is a nested set

of infinitely many closed curves; see panels (a)–(d) of Fig. 12. We consider again the
domain D that is bounded by the two darker blue curves W0 and W1 and contains
u0 ∈ Ŵ u(p) (red point). All other, infinitely many closed and nested curves in

Ŵ s(p) lie in the domain E (shaded) that is bounded by W1 only. Thus, orbits of
points in D display the rather simple behavior of converging directly to the attracting
equilibrium q. Orbits of points in E , on the other hand, are more complicated and
can make many excursions in phase space while following the many layers of W s(p);
in particular, they may have many intersections with SR before ending up at q. As
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Figure 11: The (blue) strip of W s(p) before (row (a) for ω = −0.81), approximately
at (row (b) for ω = ω∗

c ≈ −0.820455), and after (row (a) for ω = −0.83) the chaotic
Shilnikov bifurcation in (4) for k = 0.7, shown together with W u(p) (red curve);
compare with Fig. 10.
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Figure 12: Stereographic projection of Ŵ s(p) = {W0,W1, . . .} near a chaotic
Shilnikov bifurcation. Panels (a)–(d) for ω ∈ {−0.81,−0.813,−0.816,−0.818} are
before, panel (e) for ω = ω∗

c ≈ −0.820455 is approximately at, and panels (f)–(i)
for ω ∈ {−0.822,−0.823,−0.827,−0.83} are after the chaotic Shilnikov bifurcation
in (4) for k = 0.7. The inside of the darker blue curve W0 = W s

loc(p)∩SR is divided

into the two regions D and E (shaded) by the primary curve W1 ∈ Ŵ s(p) (also

colored in a darker blue); also shown are the (red) points u0, u1 ∈ Ŵ u(p).

was the case for the simple Shilnikov bifurcation, when the bifurcation value ω = ω∗
c

is approached, the domain E grows a ‘tail’ while the curve W1 approaches W0. At
the bifurcation, u0 ∈ Ŵ u(p) lies on the curve W1; see panel (e) of Figs. 12 and 13.
Moreover, W1 is no longer a closed curve but an arc whose two ends accumulate
on W0. After the primary chaotic Shilnikov bifurcation, the domain D is bounded
only by W1 and the point u0 lies in the domain E , which is now bounded by both
W1 and W0; see panels (f)–(i) of Fig. 12. We conclude that there is no difference
between the two cases of Shilnikov bifurcation if one only considers the two curves
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Figure 13: Enlargements near u0 ∈ Ŵ u(p) of the respective panels of Fig. 12.

W0,W1 ∈ Ŵ s(p). More specifically, the curve W1 undergoes the same topological
transition via its accumulation on W0.

The new feature of the chaotic Shilnikov bifurcation is the fact that there are now
infinitely many closed curves of Ŵ s(p) that lie in the domain E . After the bifurcation,

the point u0 ∈ Ŵ u(p) lies in E and, as the parameter ω is moved away from the

bifurcation, it moves ‘through’ the other curves in Ŵ s(p). When u0 ∈ Ŵ u(p) lies

exactly on such a curve Wl ⊂ Ŵ s(p) then the upper branch of W u(p) lies in W s(p).
Hence, there is a subsidiary Shilnikov bifurcation: an n-homoclinic orbit, where
W u(p) returns to the saddle focus p only at the nth return to a neighborhood of
p for some n ≥ 2 (note that n and l need not be the same). Since the saddle
quantity σ = σ(ω) is positive at ω∗

c and depends continuously on the parameter
ω, all subsidiary Shilnikov bifurcation are of the chaotic type, as long as σ(ω) > 0.
Figure 14 shows the situation before and after a subsidiary Shilnikov bifurcation due
to the transitions of u0 through a curve Wl ∈ W s(p). Notice that Wl undergoes the
same topological change — from closed curve, to arc accumulating on W0, back to
closed curve — that we found for the curve W1 of the primary Shilnikov bifurcation.
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Figure 14: Stereographic projection of Ŵ s(p) before (row (a) for ω = −0.822)
and after (row (b) for ω = −0.823) a subsidiary Shilnikov bifurcation associated

with u0 ∈ Ŵ u(p) crossing the darker blue curve Wl ⊂ Ŵ s(p); also shown are the
corresponding domains Dl and El (shaded).

This is illustrated further in Fig. 14 by considering, as before, the corresponding
sets Dl and El (shaded). Before the subsidiary Shilnikov bifurcation Dl is bounded
by W0 and Wl and El is bounded by Wl alone; see Fig. 14 (a). After the subsidiary
Shilnikov bifurcation, on the other hand, El is bounded by both W0 and Wl and Dl

is bounded by Wl alone; see Fig. 14 (b).
In conclusion, we find an infinite sequence of subsidiary chaotic Shilnikov bifur-

cations after the primary chaotic Shilnikov bifurcation, each of which is associated
with a particular closed curve Wl ⊂ Ŵ s(p) that undergoes the same topological
change as the primary curve W1. The fact that every subsidiary chaotic Shilnikov
bifurcation unfolds just like the primary one explains the selfsimilar structure of the
set Ŵ s(p). We remark that the sequence of topological changes of Ŵ s(p) near ω∗

c

can be observed on SR provided that R is sufficiently small. Moreover, the topo-
logical changes we find on the sphere SR are again not associated with interactions
between the respective curves and the tangency locus C on SR. Hence, the topo-
logical changes of the set of curves Ŵ s(p) on SR represent global bifurcations of the
two-dimensional manifold W s(p) in the three-dimensional phase space of (4).
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4.2 The role of the saddle periodic orbits

The topological changes of W s(p) near p through the primary chaotic Shilnikov
homoclinic bifurcation and the subsequent n-homoclinic subsidiary Shilnikov bifur-
cations have been illustrated clearly in Figs. 12–14. However, the boundary of the
basin B(q) is no longer formed by W s(p) alone; namely, one must take into account
its interaction with the chaotic saddle S and the saddle periodic orbits {Γk}k∈Z it
contains. To keep this exposition simple, we concentrate here on the three represen-
tative and coexisting periodic orbits ΓA, ΓB and ΓC for ω = −0.83 and k = 0.7 on
the principal branch of periodic orbits shown in Fig. 1(b2). Note that this value of
ω corresponds to the situation before the primary chaotic Shilnikov bifurcation.

Figure 15 shows the manifolds W s(ΓA) (turquoise), W s(ΓB) (cyan) and W s(ΓC)
(purple) from two different viewpoints in rows (a)–(c), respectively; note that the
viewpoint in the left column is the same as that in Fig. 9. Each manifold is repre-
sented by a family of orbit segments (of fixed integration time T0 = 30), computed
with the method explained in the Appendix. The manifolds W s(ΓA) and W s(ΓC)
are orientable (see the discussion in Section 1), which means that they consist of
two sides separated by ΓA and ΓC, respectively. One side of these manifolds is ren-
dered as a solid surface in Figs. 15(a) and (c), while the other one is transparent. In
contrast, the non-orientable manifold W s(ΓB) is obtained by a single computation
and shown as a solid surface in Fig. 15(b).

Note that the manifolds W s(p), W s(ΓA), W s(ΓB) and W s(ΓC) have similar
size and shape: they are all bounded and consist locally of a collection of layers;
compare Figs. 9 and 15. In particular, since these are immersed manifolds, their
boundedness implies a complicated structure in phase space. Figure 16 illustrates
this further with the example of ΓA, the green period orbit with the lowest period of
the three. Panel (a) shows only one side of the turqoise manifold W s(ΓA) together
with the blue manifold W s(p) to illustrate how close they are in phase space. More
specifically, the side of W s(ΓA) shown in Fig. 16 is the solid side from Fig. 15(a1),
and W s(p) is as in Fig. 9(b2); the red unstable manifold W u(p) is included for
reference. In fact, both sides of W s(ΓA) lie entirely inside the region bounded by
W s(p), and this turqoise manifold displays a very similar geometry. Panel (b) of
Fig. 16(b) shows a strip of orbits in W s(ΓA) that start on the sphere SR (not shown,
but with R = 0.3 as in Fig. 9); by definition, these orbits approach the periodic orbit
ΓA in forward time, but they also come close to p in backward time. Notice the
characteristic helicoidal shape of W s(ΓA) near the saddle focus p and compare with
W s(p) in Fig. 11.

4.3 Cantor structure of global stable manifolds

Figure 16 suggests that W s(ΓA) must somehow lie ‘in between’ the layers of W s(p);
the same applies to the other two manifolds W s(ΓB) and W s(ΓC). This gives a hint
of the way these manifolds subdivide the phase space. We now consider in more
detail the exact nature of this subdivision and the role of the chaotic saddle. To
this end, we again consider the sets of intersection curves of these manifolds with
the sphere SR, where R = 0.055 as before.
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Figure 15: Two views each of the two-dimensional stable manifolds W s(ΓA)
(turquoise), W s(ΓB) (cyan) and W s(ΓC) (purple) of the coexisting saddle periodic
orbits ΓA (green), ΓB (cyan) and ΓC (magenta) for ω = −0.83 and k = 0.7. The
manifolds W s(ΓA) and W s(ΓC) are orientable; one side of them has been rendered
transparent; W s(ΓB) is non-orientable.
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Figure 16: Panel (a) shows one side of the manifold W s(ΓA) (turquoise) and the
manifold W s(p) (transparent blue) for ω = −0.83 and k = 0.7. Panel (b) shows a
strip of orbit segments on W s(ΓA) that return (in backward time) to a neighborhood
of p.

Figure 17 shows in rows (a)–(c) the sets of computed intersection curves in

Ŵ s(ΓA) := W s(ΓA)∩SR (green), Ŵ s(ΓB) := W s(ΓB)∩SR (cyan), and Ŵ s(ΓC) :=
W s(ΓC)∩SR (magenta), approximately at the primary chaotic Shilnikov bifurcation

for ω = ω∗
c ≈ −0.820455. Also shown is the set Ŵ s(p) (blue curves). Here, we again

show the stereographic projection (6) of SR. For ω = ω∗
c , the sets Ŵ

s(ΓA), Ŵ s(ΓB)

and Ŵ s(ΓC) consist of infinitely many disjoint, nested, closed curves that lie inside

the region E whih is bounded by the curve W1 ⊂ Ŵ s(p); compare with Figs. 12(e)

and 13(e). Notice that the sets of curves in Ŵ s(ΓA), Ŵ s(ΓB) and Ŵ s(ΓC) indeed

lie in between the curves in Ŵ s(p), sharing their observed properties.
Suppose now that the parameter ω is changed past its value ω∗

c at the primary bi-

furcation, so that the point u0 ∈ Ŵ u(p) enters the region E and crosses the curves in

Ŵ s(ΓA), Ŵ s(ΓB) and Ŵ s(ΓC). Every time u0 lies on a curve in, say, Ŵ s(ΓA) there
is, hence, a codimension-one heteroclinic connection from the saddle focus equilib-
rium p to the saddle periodic orbit ΓA; one also speaks of an EtoP connection [38].

Depending on which curve in Ŵ s(ΓA) is involved, there will be a particular number
of close approaches back to p before ΓA is reached. The transition through such
an EtoP connection manifests itself topologically on SR in an already known way:
before the EtoP connection the corresponding curve in Ŵ s(ΓA) is one of the nested
closed curves, at the bifurcation it is an arc whose two ends accumulate on W0, and
after the EtoP connection it is again closed.

Figure 18 shows all four sets of curves in Ŵ s(p) (blue), Ŵ s(ΓA) (green), Ŵ s(ΓB)

(cyan), and Ŵ s(ΓC) (magenta) in a single image. Indeed, it further illustrates that,
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Figure 17: Stereographic projection of Ŵ s(p) together with Ŵ s(ΓA) (green) in

row (a), with Ŵ s(ΓB) (cyan) in row (b), and with Ŵ s(ΓC) (magenta) in row (c),
shown for ω = ω∗

c ≈ −0.820455 and k = 0.7; the right columns shows enlargements

near {u0, u1} ⊂ Ŵ u(p) (red dots).

due to their boundedness, the different stable manifolds must lie very close to each
other in phase space, as was already suggested by Figs. 15 and 16. Any intersection
curve of a stable manifold lies in the complement of the basin B̂(q) of the attracting
equilibrium q, which is identified in Fig. 18 as the white region. Notice that all
intersection curves of stable manifolds lie in the region bounded by W0 ⊂ Ŵ s(p).
Furthermore, they are intricately intertwined in what appears to be the structure of
a Cantor set of arcs.

To illustrate this further, we consider the horizontal line segment L through the
red point u0 ∈ Ŵ u(p) in Fig. 18. Length and position of L have been chosen in such

a way that all curves in Ŵ s(p) \ {W0}, Ŵ s(ΓA), Ŵ s(ΓB) and Ŵ s(ΓC) intersect L
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Figure 18: Stereographic projection of the four sets Ŵ s(p) (blue), Ŵ s(ΓA) (green),

Ŵ s(ΓB) (cyan) and Ŵ s(ΓC) (magenta) for ω = ω∗
c ≈ −0.820455 and k = 0.7. These

sets of global manifolds are subsets of Ŵ s(S), which is the complement in SR of the
basin B̂(q).

exactly once and these intersections are transversal. Figure 19 shows a sequence of
consecutive enlargements of the computed curves of stable manifolds near L, which
clearly illustrates the underlying Cantor structure. More specifically, four clusters
of curves can be identified in panel (a). Further enlargement reveals more details of
the two leftmost and the two rightmost clusters in panel (b1) and (b2), respectively;
panels (c1)–(c4) show the next level of enlargements in this process. While this is
difficult to see in the figure, our numerical results show that each cluster of curves
is bounded both on the left and on the right by a curve in Ŵ s(p).

From Figs. 17–19 the following general picture emerges. The observed Cantor
structure of stable invariant manifolds is a manifestation in phase space of the chaotic
saddle S, which contains not only the saddle periodic orbits but also the saddle
equilibrium p. More specifically, its stable manifold W s(S) is a compact set that
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Figure 19: Successive enlargements of Fig. 18 near L, illustrating the Cantor struc-
ture of the intersection curves of stable manifolds on SR.

contains W s(p), W s(ΓA), W s(ΓB) and W s(ΓC), and forms the boundary of the
basin B(q). The fact that the end points of the intervals in the complement of

the Cantor set on the line segment L in Fig. 19 are in Ŵ s(p) ∩ L implies that
W s(p) = W s(S), where W s(p) is the closure of W s(p). Moreover, W s(p) ⊂ W s(S)
is the accessible boundary of the basin B(q).

Considering again the situation on the sphere SR, the overall structure of the
curves in Ŵ s(p), Ŵ s(ΓA), Ŵ s(ΓB) and Ŵ s(ΓC) in Fig. 18 represents the intersec-

tion set Ŵ s(S) := W s(S)∩SR, which is the boundary of B̂(q). The curves of Ŵ s(S)
separate the basin B̂(q) locally into large regions that coexist with arbitrarily thin
strips of B̂(q). The orbit of an initial condition in such a thin strip is first approach-
ing the chaotic saddle, spending a long time in a transient motion before finally
converging to the attractor q [27]. We argue that the time spent visiting the chaotic
saddle depends on the width of the strip, which reflects ‘how deep’ it is in the Cantor
structure. This feature of the saddle chaotic set has already been observed in other
systems near homoclinic bifurcations — in particular, in the Lorenz equations where
a chaotic saddle bifurcating from the first homoclinic bifurcation gives rise to the
preturbulent regime [17, 32].

This brings us to the question of the global topological nature of the stable in-
variant manifolds on the sphere SR. As we concluded in the discussion above, the
local intersection of the set of curves Ŵ s(p) with any transverse line consists of the
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countably many points of a Cantor set that bound the open intervals in its com-
plement. The (uncountable) Cantor set itself is the intersection of the set of curves

Ŵ s(S) with said line. In particular, it follows that the set Ŵ s(p) and the intersec-

tion set Ŵ s(Γk) ⊂ Ŵ s(S) of any saddle periodic orbit Γk are locally disconnected.

Moreover, the α-limit set of W s(Γk) is W s(S), which implies that the set Ŵ s(Γk)

accumulates on Ŵ s(S) and, hence, on W s(p). What is more, our computations

indicate that the sets Ŵ s(ΓA), Ŵ s(ΓB) and Ŵ s(ΓC) that we considered are dense

in Ŵ s(S).
To summarize its properties, the set Ŵ s(S) on SR is closed, bounded, locally

disconnected and locally homeomorphic to a Cantor bundle [29]. Moreover, Ŵ s(S)
is connected, meaning that it cannot be partitioned into two nonempty subsets such
that each subset has no points in common with the closure of the other. These
properties identify Ŵ s(S) and, hence, the closure of Ŵ s(p), as an indecompos-
able continuum [33]. Note that indecomposable continua occur naturally in many
(chaotic) dynamical systems as the closures of stable or unstable manifolds of planar
diffeomorphisms. Concrete examples can be found in the Smale horseshoe map, the
Hénon map and the Ikeda map; see [33, 51] for further details.

The global stable manifold W s(p) in the three-dimensional phase space is com-
pact. Therefore, also W s(S) = W s(p) is an indecomposable continuum. In particu-
lar, it is locally homeomorphic to a Cantor set of discs. The stable manifold W s(p)
of the saddle focus p, which is dense in W s(S), forms the accessible boundary of
the basin B(q) ⊂ R3. These topological properties formalize and are in agreement
with the numerical observation that the two-dimensional manifolds W s(p), W s(ΓA),
W s(ΓB) and W s(ΓC) form a complicated collection of many interleaved layers in a
bounded region of phase space. In spite of the complicated topology of its boundary,
the basin B(q) is simply connected, that is, a topological sphere; this follows imme-
diately from the fact that each point in B(q) is connected to q by a unique forward
trajectory of finite arclength.

To conclude this section we briefly discuss what happens as the parameter ω is
changed through the primary chaotic Shilnikov bifurcation at ω∗

c ; let us denote the
interval for this parameter variation by Ωc. Generically, the point u0 = u0(ω) ∈
Ŵ u(p) follows a path L = {u0(ω) ; ω ∈ Ωc} transverse to the curves in Ŵ s(S), such
as the line L in Fig. 18. Under the assumption that ω parameterizes L, the Cantor set
Ŵ s(S)∩L has a diffeomorphic image in Ωc. When ω is changed, it crosses this Cantor
set in Ωc, which corresponds to topological changes of the indecomposable continuum
Ŵ s(S) and, hence, the chaotic saddle S itself. Each open interval of B̂(q) ∩ L
corresponds to an open interval in Ωc for which the indecomposable continuum is of
the same topological type. On the other hand, two instances of Ŵ s(S) corresponding
to ω-values from different intervals, are not homeomorphic. Before the bifurcation,
for ω < ω∗

c , the set Ŵ s(S) is a collection of infinitely many nested circles that are
contained in the region E , while u0(ω) ∈ D. After the bifurcation, as the parameter
ω is decreased from ω∗

c , the point u0(ω) enters E . When u0(ω) lies in the Cantor

set Ŵ s(S) ∩ L, a global bifurcation occurs (for example, an n-homoclinic orbit or

an EtoP connection is encountered) and the corresponding curve in Ŵ s(S) that
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contains u0(ω) is an arc whose two ends accumulate on W0 ∈ Ŵ s(p); all other

curves in Ŵ s(S) are closed curves.
As was the case in Sec. 3, the observations we made for the specific example of

the laser model (4) appear to be an entirely general description of the topological
properties of stable manifolds near any chaotic Shilnikov bifurcation. We summarize
them as follows.

Result 2 (Chaotic Shilnikov bifurcation) Suppose that the parameter η unfolds a
chaotic Shilnikov bifurcation at η = η∗c of a saddle-focus p of the vector field (1).
Then, in a neighborhood of η∗c and on any sufficiently small sphere SR centered at

p, the set Ŵ s(p) := W s(p) ∩ SR consists of infinitely many curves. Its closure is

the intersection set Ŵ s(S) := W s(S)∩SR of the stable manifold of a chaotic saddle

S. The set Ŵ s(S) is an indecomposable continuum, and it contains as subsets the

stable manifold Ŵ s(Γk) of any saddle periodic orbit Γk; the set Ŵ s(p) ⊂ Ŵ s(S)
is accessible from any point in SR outside a large enough neighborhood of Ŵ s(S).
Furthermore, W0 := W s

loc(p) ∩ SR is always a closed curve that bounds Ŵ s(S) and
the following holds:

(C.1) For η < η∗c (before the bifurcation) there is a closed curve W1 ⊂ Ŵ s(p)

that bounds a simply connected region E that contains all curves in Ŵ s(S) \
{Wo,W1}. As η approaches η∗c , the arclength of W1 diverges.

(C.2) For η = η∗c (at the bifurcation) the curve W1 is an arc with infinite arclength,
the two ends of which converge to the closed curve W0.

(C.3) For η > η∗s (after the bifurcation) W1 is again a closed curve with finite ar-
clength and the region E is bounded by both W0 and W1. There is a Cantor
set of parameter values at which Ŵ s(S) changes topologically. In particular,

whenever the intersection point u0 ∈ Ŵ u(p) crosses a curve in Ŵ s(p), there is
a subsidiary chaotic Shilnikov bifurcation of an n-homoclinic orbit with n ≥ 2.
Similarly, there is an EtoP heteroclinic connection of codimension one when-
ever the intersection point u0 crosses a curve in Ŵ s(Γk). At each such global
bifurcation the intersection curve of the associated global manifold changes
topologically in the same way as W1 does at the primary Shilnikov bifurcation.

5 Discussion

We have analyzed the role of two-dimensional global invariant manifolds in the tran-
sition through a Shilnikov homoclinic bifurcation of a saddle focus equilibrium p of
a three-dimensional vector field; as a specific example we considered model equa-
tions for an optically injected laser. We identified two points of simple and chaotic
Shilnikov bifurcation on a curve of primary homoclinic bifurcations, respectively, and
then varied the single parameter ω to study the transition through the respective
codimension-one bifurcation.
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We employed a boundary value problem setup to compute the two-dimensional
stable manifolds W s(p) of p and W s(Γk) of bifurcating saddle periodic orbits Γk;
moreover, this setup also allows one to compute the sets of intersection curves
of these manifolds with suitably chosen surfaces in phase space. In this way, we
demonstrated that all information on the topological changes associated with the
Shilnikov bifurcation can be represented comprehensively by considering the in-
tersection curves of the two-dimensional stable manifolds with a sufficiently small
sphere SR around p. The topological properties of the stable manifolds that we
found for the laser model appear to be generic and, hence, are expected to be found
near any simple or chaotic Shilnikov bifurcation.

For the case of a simple Shilnikov bifurcation, where a single stable periodic orbit
Γ bifurcates from the homoclinic orbit, there are exactly two intersection curves, W0

and W1, of W
s(p) with a sphere SR centered at p, provided its radius R is small

enough. As the bifurcation is approached, the closed curve W1 starts to ‘wind up’ on
the closed curve W0, which is the intersection of W s

loc(p) with SR. At the bifurcation,
the curveW1 contains a point u0 ∈ W u(p) and it is an arc whose two ends accumulate
on W0. After the bifurcation, W1 is again a closed curve that ‘unwinds’ from W0 as
the parameter is moved further away from the bifurcation value. Effectively, in this
bifurcation, the regions bounded by W0 and W1 turn ‘inside-out,’ and one of them
becomes the basin of the bifurcating attracting periodic orbit Γ.

For the case of a chaotic Shilnikov bifurcation, on the other hand, the stable
manifold W s(p) intersects the sphere SR not only in the two curves W0 and W1, but
in infinitely many other curves, which all lie inside the same region of SR bounded
by W0. Moreover, before the bifurcation these additional intersection curves all lie
in the region bounded by W1. At the bifurcation W1 undergoes exactly the same
topological transition as we found for the simple Shilnikov bifurcation. However,
this means now that the point u0 ∈ W u(p) ∩ SR enters the region with infinitely
many additional intesection curves of W s(p) and SR. As a consequence, we find a
subsidiary chaotic Shilnikov bifurcation whenever u0 ∈ W u(p) ∩ SR crosses one of
these additional curves, which then also ‘winds up’ and ‘unwinds’ onto W0 exactly
as W1 did. What is more, we showed with three examples how the two-dimensional
stable manifolds W s(Γk) of saddle periodic orbits Γk intersect the sphere SR in
a very similar fashion, giving rise to infinitely many codimension-one heteroclinic
bifurcations between p and Γk as the parameter is varied past the primary chaotic
Shilnikov bifurcation.

Our investigations show for the chaotic Shilnikov bifurcation that the closure of
W s(p) is the stable manifold W s(S) of a chaotic saddle S that exist in a tubular
neighborhood of the primary homoclinic orbit. The set W s(S) also contains the
manifolds W s(Γk) of the saddle periodic orbits, and its intersection with SR is an
indecomposable continuum that is locally a Cantor bundle of arcs. Moreover, the
manifoldW s(p) is in the accessible boundary of the complement in phase space of the
tubular neighborhood containing S. When the unfolding parameter is varied past the
primary chaotic Shilnikov bifurcation one encounters uncountably many topological
changes of the indecomposable continuum at a Cantor set of parameter values; in
particular, there are infinitely many subsidiary chaotic Shilnikov bifurcations of n-
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homoclinic orbits and infinitely many codimension-one heteroclinic (EtoP) orbits
between p and the periodic orbits Γk. Note that there are other bifurcations (which
we did not consider here) that change the chaotic saddle S. In particular, near
the primary and near all subsidiary chaotic Shilikov bifurcations one finds infinitely
many saddle-node bifurcations of periodic orbits; the bifurcating periodic orbits of
saddle type are subsets of S, and they may undergo further bifurcations, including
period-doubling and torus bifurcations.

We remark that the overall topological structure of the two-dimensional stable
manifolds near the chaotic Shilnikov bifurcation is different from that which one finds
due to the existence of a chaotic saddle near other global bifurcations. For instance,
after the homoclinic explosion in the Lorenz system one also finds an indecomposable
continuum on a suitable sphere, but it has very different properties [17]. More
specifically, it is the closure of the intersection curves with the sphere of the two-
dimensional stable manifolds of the pair of saddle periodic orbits that bifurcated from
the main homoclinic bifurcation (also known as the homoclinic explosion point). The
stable manifold of the origin (the saddle equilibrium of the system), on the other
hand, is locally connected and a separatrix between the basins of two (symmetrically
related) attracting equilibria; see [17] for more details.

The numerical setup that we used in this work can also be employed for the study
of the role of (un)stable manifolds in other global bifurcations. In ongoing work we
are analyzing the nature of the stable manifold of a saddle with real eigenvalues near
codimension-two homoclinic flip bifurcation points [30, 46], which are key for under-
standing transitions between orientable and non-orientable manifolds. This is an ex-
ample of a global bifurcation of codimension two; other examples of codimension-two
bifurcations near which manifold computations may provide global insight include
non-central saddle-node homoclinic points [58, 61] or Belyakov points [6].
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of global Poincaré maps, SIAM J. Appl. Dyn. Syst., 7 (2008), 712–754.

[42] E. N. Lorenz, Deterministic nonperiodic flows, J. Atmosph. Sci., 20 (1963),
130–141.

[43] J. R. Munkres, “Topology”, 2nd edition, Prentice Hall, Upper Saddle River,
NJ, 2000.

[44] T. Noh, Shilnikov’s chaos in the oxidation of formic acid with bismuth ion on
Pt ring electrode, Electrochimica Acta, 54 (2009), 3657–3661.

[45] B. E. Oldeman, A. R. Champneys and B. Krauskopf, Homoclinic branch
switching: a numerical implementation of Lin’s method, Internat. J. Bifur.
Chaos Appl. Sci. Engrg., 13 (2003), 2977–2999.

[46] B. E. Oldeman, B. Krauskopf and A. R. Champneys, Numerical unfoldings
of codimension-three resonant homoclinic flip bifurcations, Nonlinearity, 14
(2001), 597–621.

38



[47] H. M. Osinga, Nonorientable manifolds in three-dimensional vector fields,
Internat. J. Bifur. Chaos, 13 (2003), 553–570.

[48] I. M. Ovsyannikov and L. P. Shil’nikov, On systems with a saddle-focus homo-
clinic curve, Math. USSR Sbornik, 58 (1987), 557–574.

[49] T. Peacock and T. Mullin, Homoclinic bifurcations in a liquid crystal flow, J.
Fluid Mech., 432 (2001), 369-386.

[50] A. M. Rucklidge, Chaos in a low-order model of magnetoconvection, Physica
D, 62 (1993), 323–337.

[51] M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke, Indecomposable continua
and the characterization of strange sets in nonlinear dynamics, Phys. Rev. Lett.,
78 (1997), 1892–1895.

[52] L. P. Shilnikov, A case of the existence of a countable number of periodic orbits,
Sov. Math. Dokl., 6 (1965), 163–166.

[53] L. P. Shilnikov, A contribution to the problem of the structure of an extended
neighborhood of a rough state to a saddle-focus type, Math. USSR-Sb, 10 (1970),
91–102.

[54] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. Chua, “Methods of
Qualitative Theory in Nonlinear Dynamics, Part II,” World Scientific Series on
Nonlinear Science, Series A, Vol. 5, 2001.

[55] S. H. Strogatz, “Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry and Engineering,” Adison-Wesley, Reading, MA, 1994.

[56] G. A. K. van Voorn, B. W. Kooi and M. P. Boer, Ecological consequences
of global bifurcations in some food chain models, Math. Biosc., 226 (2010),
120–133.

[57] K. Watada, T. Endo and H. Seishi, Shilnikov orbits in an autonomous third-
order chaotic phase-locked loop, IEEE Trans. on Circ. and Syst. I, 45 (1998),
979–983.

[58] S. Wieczorek and B. Krauskopf, Bifurcations of n−homoclinic orbits in optically
injected lasers, Nonlinearity, 18 (2005), 1095–1120.

[59] S. Wieczorek, B. Krauskopf and D. Lenstra, A unifying view of bifurcations
in a semiconductor laser subject to optical injection, Optics Communications,
172 (1999), 279–295.

[60] S. Wieczorek, B. Krauskopf and D. Lenstra, Multipulse excitability in a semi-
conductor laser with optical injection, Physical Review Letters, 88 (2002), 1–4.

[61] S. M. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, The dynam-
ical complexity of optically injected semiconductor lasers, Phys. Reports, 416
(2005), 1–128.

39



[62] S. Wiggins, “Introduction to Applied Nonlinear Dynamical Systems and
Chaos,” 2nd edition, Springer-Verlag, New York/Berlin, 2003.

Appendix: Computation of global invariant manifolds

In general, there are no analytical expressions for homoclinic orbits and associated
global (un)stable manifolds. Therefore, one must use numerical techniques to obtain
them. Homoclinic and heteroclinic orbits can readily be computed with continuation
software packages such as Auto [14, 18] and Matcont [13, 26]. We used Hom-
Cont [9], which is a standard extension of Auto for the detection and continuation
of connecting orbits based on projection boundary conditions [7]; see also [22, 45, 46].
Here, we describe the numerical techniques used to compute the two-dimensional
global stable manifolds of the equilibrium and periodic orbits in this paper. Precise
details can be found, for example, in the survey papers [36, 37].

A two-dimensional invariant manifold of a vector field can be thought of as a
one-parameter family of orbits. Hence, any finite part of interest of such a manifold
can be computed as a family of finite-time orbit segments that are solutions of a
suitable two-point boundary value problem (BVP). We make use of the boundary
value solver of Auto to find such a family of orbit segments by continuation [15, 36].
The general set-up in Auto, assuming that the vector field is three-dimensional, is
to consider a function

u : [0, 1] 7→ R3

that satisfies the differential equation

u̇ = Tf(u(t)) (8)

Equation (8) is the scaled form of the vector field defined by f . Any solution u of (8)
defined on the time interval [0, 1] corresponds to a solution x : [0, T ] 7→ R3, with T >
0, of the unscaled vector field via the transformation x(t) = u(t/T ), with 0 ≤ t ≤ T .
The total integration time T (also called the ‘period’) of the orbit segment x appears
as an explicit parameter in (8). The function u is a unique solution of (8), if suitable
boundary conditions are imposed at one or both end points u(0) and u(1). A suitable
boundary condition presents itself by way of the Stable Manifold Theorem [27, 40],
which states that the stable manifold of an equilibrium p or periodic orbit Γ is
tangent to the linearized manifolds of these invariant objects. Below, we discuss the
specific boundary conditions used for computing large, representative parts of the
two-dimensional manifolds W s(p) and W s(Γ), as well as their intersection curves
with a plane and sphere, respectively.

The stable manifold of an equilibrium

A part of interest of the stable manifold W s(p) of an equilibrium p can be computed
as, and represented numerically by, a collection of orbit segments with end points
in the linear stable eigenspace Es(p), at a sufficiently small distance from p. If the
stable eigenvalues of the linearization at p are real then one requires these end points
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to lie on a small circle or ellipse in Es(p) around p. When the stable eigenvalues
are complex conjugate, as is the case for the saddle-focus p considered in this paper,
one requires the end points of orbit segments to lie on an interval

u(1) = ws
0 + δ (ws

1 −ws
0). δ ∈ [0, 1). (9)

The two points ws
0,w

s
1 ∈ R3 are chosen as follows. We consider ws

0 = p + ϵvs,
where vs ∈ Es(p) is a unit (generalized) stable eigenvector of p and ϵ > 0 is small
and fixed (we used ϵ = 10−5 throughout). Then ws

1 is defined as the first return (in
backward time) of the orbit through ws

0 to the local section spanned by vs and the
unstable eigenvector vu of p. Hence, the line segment defined in (9) is an approximate
fundamental domain, meaning that δ ∈ [0, 1) uniquely parameterizes the family of
orbits on W s(p); moreover, this line segment lies in an O(ϵ2) neighborhood of W s(p).

The BVP (8)–(9) defines a (δ, T )-dependent family of orbit segments. For any
fixed T = T0 we have a uniquely defined one-parameter family of orbit segments
that constitutes an accurate approximation of the corresponding part of W s(p). In
order to compute this δ-family by continuation in Auto, we need to specify a first
orbit segment that satisfies (8)–(9) for some fixed δ = δ0 ∈ [0, 1). To this end, one
considers the trivial orbit segment u ≡ ws

0 with T = 0; continuation in T for fixed
u(1) = ws

0 up to T = −T0 yields the desired orbit segment satisfying (8)–(9) for
δ = δ0. (Note that this continuation step is effectively integration from ws

0 backward
in time.) A continuation in δ over the interval [0, 1) results in a collection of orbits
segments, which is then used to render W s(p) as a surface.

Intersections of the manifold with a chosen codimension-one submanifold

Instead of keeping T fixed to perform the continuation, one can choose to restrict the
point u(0). This allows one, for instance, to calculate the intersection set W s(p)∩M
with a codimension-one submanifold M = {x ∈ R3 : G(x) = 0}, by imposing the
second boundary condition

G(u(0)) = 0. (10)

Solutions of the BVP (8)–(10) are, hence, orbit segments that start on M and end in
the (approximate) fundamental domain of W s(p) near p. For every fixed δ this BVP
has a locally unique solution with a given value of the integration time T , which is
now a free parameter. This means that we again obtain a one-parameter family of
orbit segments, whose begin points u(0) trace out a curve in W s(p) ∩ M . A first
orbit segment that satisfies the BVP (8)–(10) can be found by continuation in T of
any orbit segment that satisfies (9) for some choice of δ ∈ [0, 1); we monitor the value
of G(u(0) and stop the continuation when condition (10) is satisfied. Note that not
all points on the line segment (9) may reach the submanifold M ; on the other hand,
there may be many disjoint curves in W s(p) ∩ M , in which case it is necessary to
generate many initial orbit segments that satisfy BVP (8)–(10). Hence, in general,
a number of different values of δ0 need to be chosen to generate suitable first orbits
segments. Any such first orbit segment can then be continued as a one-parameter
family of solutions of BVP (8)–(10) where δ and T are free parameters; we refer to
[1, 36] for more details
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The explicit form of the function G(·) for computing the intersection curves with
the plane Σ from Section 3.1 is

G(x) = (vu × vs) · (x− p),

where vu and vs are the unstable and stable eigenvectors as above. For the sphere
SR of radius R centered at p, as in Section 3.2 and Section 4.1, we consider

G(x) = ||x− p|| −R. (11)

The stable manifold of a periodic orbit

The stable manifold W s(Γ) of a periodic orbit Γ of saddle type can be computed
effectively with the same BVP setup as W s(p). At each point q ∈ Γ there is a well-
defined stable linear eigendirection spanned by the unit vector vs(q) corresponding
to the eigenvalue of the Poincaré map at q with modulus less than 1; this vector
family {vs(q) ; q ∈ Γ} forms the stable eigenbundle Es(Γ) of Γ. By extending
system (8) in Auto, one can obtain a discretized version of Es(Γ); see [19, 38] for
details.

Once vs(q) has been calculated for some fixed choice q ∈ Γ, we choose ws
0 =

q+ ϵvs(q), where ϵ is again small and fixed, and define ws
1 to be the first return (in

backward time) of the trajectory through ws
0 to a local planar section that contains

vs(q); we used the plane with normal (−v2, v1, 0), where vs(q) = (v1, v2, v3). A
piece of interest of W s(Γ) can now be computed as the δ-family of solution of the
BVP (8)–(9) for a fixed choice of T = T0. To obtain intersection curves of W s(Γ)
with the sphere SR, we continue the BVP (8)–(10), with G(·) as given by (11).
Starting orbits for the continuation are again found by continuation in T in the
same way as for W s(p).

We remark that attention must be paid to the orientation of W s(Γ). If the
Floquet multipliers are both positive, then W s(Γ) is an orientable surface, that is,
it consists of two half-cylinders that are joined smoothly at Γ. Hence, W s(Γ) has
two sides that need to be computed separately; this can be achieved by considering
both +vs(q) and −vs(q) in the definition of ws

0. If Γ has two negative Floquet
multipliers, on the other hand, then its stable manifold is a non-orientable surface,
that is, a Möbius strip locally near Γ. In particular, this means that changing the
parameter δ in (9) over the interval [0, 1) yields the respective piece of W s(Γ) in a
single continuation. We refer to [47] for more details about non-orientable manifolds.

The BVP approach used in this paper provides efficient and accurate approx-
imations of global invariant manifolds; see [15, 36] for more examples. The high
accuracy of our computations is evidenced, in particular, by the images of the sets
W s(p) ∩ SR, W

s(ΓA) ∩ SR, W
s(ΓB) ∩ SR, and W s(ΓC) ∩ SR in Figs. 18 and 19.

Despite the fact that these four interleaved sets of curves were obtained in sepa-
rate continuation runs and with different boundary conditions, they align perfectly
without intersecting each other. Furthermore, thanks to the BVP formulation, we
are able to identify each intersection curve in the figures of Sections 3 and 4 in
one-to-one correspondence with a specific subinterval of the associated fundamental
domain. This ensures, in particular, that no curve is repeated in the figures.
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