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Abstract

Phase resetting is an experimental tool, originally from neuroscience, for the study of
oscillatory systems. A phase reset measures the phase shift that occurs as points on the
oscillator return to an underlying stable periodic orbit Γ after a specific perturbation. Such
a perturbation is along a given unit direction d in phase space with amplitude A, and it
is applied to all points of Γ, which are parametrised by their phases ϑo (with respect to a
reference point). The classical Phase Transition curve (PTC) in the literature is the graph
of the circle map from ϑo to the new phase ϑn for fixed d and A.

We take a global, geometric point of view and consider the map to the new phase ϑn
in dependence not only on ϑo, but also on d and A. Its graph is a reset hypersurface that
encodes all phase information for any possible perturbation. Specifically, we study phase
resets of a planar system in this way, where the direction d is given by an angle ϕd. Any
slice through the reset hypersurface for fixed A is a reset surface in a three-torus that relates
ϑo, ϕd and ϑn. We study what this surface looks like and how it changes topologically at
isolated points of A; the latter involves the creation of singularities due to interactions with
the phaseless set.

We explain and illustrate our findings with two example systems. First, we present a
detailed case study of a constructed planar vector field designed by Winfree. It has the
special and exceptional property that its isochrons (curves of given phase response) and,
hence, the phase response can be computed analytically; in particular, the system is invariant
under rotation about the origin. This allows us to study changes of the phase response in
considerable detail. Our second example is the planar Van der Pol oscillator, which does not
have the above special properties. Indeed, its isochrons and phase response are not known
analytically and need to be computed numerically. We present a boundary value problem
setup to find reset surfaces and study their properties in an efficient and effective way. This
demonstrates that our global approach is computationally feasible for gaining insights into
the geometry of phase responses of general (planar) oscillatory systems.

1 Introduction

Phase resetting is a widely adopted approach for evaluating neuronal responses in experiments:
a spiking neuron is subjected to a current injection, which disrupts the regular spiking response
and generally leads to a phase shift: the spike following the perturbation comes earlier or later
than it would have occurred without the current injection; see [14, 25, 36, 37, 41] for experimental
results. The nature of the phase shift depends on the magnitude of the current injection and its
timing relative to the spiking activity.

The graph that relates the old phase to the resulting phase shift is called the Phase Response
Curve (PRC). The PRC is particularly useful in the study of neuronal systems, as evidenced, for
example, in [2, 11, 12, 21], and it can be used to distinguish between different types of neurons.
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Hodgkin [22] introduced a classification that categorises neurons as Type I or Type II. A Type I
neuron exhibits a PRC with a consistent sign, either positive or negative, while Type II neurons
have PRCs that change sign; Type II neurons are also less likely to fire at low-frequency firing
rates [11, 13].

Winfree [15, 47, 49] considered the graph that relates the old phase directly to the new phase,
which he called the Phase Transition Curve (PTC). A phase reset is defined as type 1 (or weak) if
the PTC increases or decreases by 1 when the old phase is varied over 1, and as type 0 (or strong)
when there is no phase increase or decrease between ϑo and ϑo + 1. Careful experiments with
the yeast cycle and the hatching of fruit flies in [47] allowed Winfree to represent the measured
phase response as a surface in the three-dimensional space of new phase over the plane of old
phase and perturbation amplitude; his “resetting surface” is a helicoid with a vertical “singular
axis”, which distinguishes the PTCs of type 1 for smaller perturbation amplitudes from those of
type 0 for larger ones. Mathematically, this difference can be interpreted in terms of which type
of torus knot they form (as a graph on the torus of input versus output phase) [24, 29]; namely,
a 1:1 torus knot with winding number 1 for type 1, and a 1:0 torus knot with winding number
0 for type 0. This topological difference is behind the proof of the conjecture by Winfree that
the existence of a PTC of type 0 necessarily implies the existence of a singularity (at least one)
where the PTC is discontinuous [24].

In the study of weakly coupled oscillators, PRCs or PTCs are useful for obtaining a so-
called phase reduction. This requires that the respective curve is well approximated by the
linearised system, meaning that, over a sufficiently large range of perturbation amplitudes, the
it is very similar to the one resulting from an infinitesimally small perturbation. The technique
of phase reduction transforms a potentially high-dimensional model of a single oscillator into
a one-dimensional phase equation. For the study of networks of coupled oscillators, multiple
phase equations are derived and coupled using phase reduction to analyse synchronisation [31,
39, 40]. However, experiments have revealed the limitations of standard phase reduction when
dealing with complicated coupled oscillators [32, 45]. When the PRC or PTC is no longer well
approximated by the linearised system, higher-order approximations are needed that take into
account the dependence on the perturbation amplitude. Various such amplitude-phase reduction
techniques have been developed to improve validity of the reduced model for larger ranges of
perturbation amplitudes [3, 4, 30, 38, 46].

In this paper, we take a global, geometric approach that captures all possible phase resets
of a given system. More specifically, we consider the phase response in dependence on the
full range of perturbation amplitudes and, moreover, also as a function of any direction of the
perturbation used in the phase reset. The basic setting is that of a dynamical system with an
attracting periodic orbit; the perturbation is applied at a point along this periodic orbit, in any
direction and with any amplitude, and we determine the new phase after relaxation back to the
periodic attractor.

To be more precise, we consider systems of the form

ẋ = F (x), (1)

where F : Rn → Rn is at least once continuously differentiable. We assume that there exists an
attracting (and hyperbolic) periodic orbit

Γ := {γ(t) ∈ Rn | t ∈ R with γ(t) = γ(t+ TΓ)},

where γ(t) is a solution (or trajectory) of (1) and TΓ > 0 is the (minimal) period. Hence, γ is a
covering map of Γ that is bijective for t ∈ [0, TΓ). As is the convention in the field, we assume
that the first point γ(0) = γ0 ∈ Γ lies at the maximum of the solution with respect to the first
component. We define the phase ϑ ∈ S1 for each point γ(t) ∈ Γ as the fraction ϑ := t/TΓ of the
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period; note that, throughout, we parametrise the circle S1 by ϑ ∈ [0, 1). Following Winfree [49],
we assign a latent phase to any point x0 in the basin of attraction B(Γ) of Γ, defined as the
value ϑ ∈ S1 such that the trajectory x(t) of (1) with x(0) = x0 converges to Γ in phase with
γϑ; more precisely, for K ∈ N, we have

lim
K→∞

‖x(K TΓ)− γϑ‖ = 0.

Winfree already observed that any point x0 ∈ B(Γ) has a unique latent phase and he defined
the set Iϑ of points with the same latent phase ϑ, which he called the isochron of γϑ. Gucken-
heimer [16] showed that each isochron Iϑ is an (n − 1)-dimensional manifold that contains γϑ.
More precisely, Iϑ is the stable manifold of the fixed point γϑ ∈ Γ under the time-TΓ map, and
the family I := {Iϑ}ϑ∈S1 of all isochrons foliates the basin B(Γ).

Geometrically, the reset of a point γϑo ∈ Γ with (old) phase ϑ = ϑo that is perturbed to a
point x0 ∈ B(Γ) is given by the unique (new) phase ϑn for which x ∈ Iϑn . Any perturbation
is given by a unit direction vector d ∈ Sn−1 ⊂ Rn together with a positive amplitude A ∈ R+

0 ,
where Sn−1 is the (n − 1)- dimensional sphere. Hence, the above requirement is that x0 =
γϑo + Ad ∈ B(Γ) for the chosen d and A. If this is not the case then the reset is not defined,
and this is why the complement of B(Γ) is also called the phaseless set. Winfree observed that
the basin boundary ∂B(Γ) = B(Γ) \ B(Γ) has the property that all isochrons in the family I
intersect any neighbourhood (no matter how small) of a point in ∂B(Γ) [16, 48]. Consequently,
resets near ∂B(Γ) lead to large phase sensitivity.

The ‘traditional view’ to phase resetting is to fix the direction vector d and consider the PRC
or PTC for different values of the perturbation amplitude A, so that the difference between the
above mentioned types can be investigated [15, 47, 49]. However, one might also ask how the
phase after perturbation depends on the direction vector d for fixed A, or on any combination of
A and d of interest. This motivates us to take the more global and quite natural point of view
of considering simultaneously the dependence of ϑn on all aspects of the perturbation: where it
is applied along Γ, its direction d and amplitude A. In other words, for an attracting periodic
orbit in Rn, we consider the resetting map

P : S1 × Sn−1 × R+
0 → S1

(ϑo, d, A) 7→ ϑn,
(2)

defined by the property that
γϑo +Ad ∈ Iϑn . (3)

In practice, one needs to choose a parametrisation of d ∈ Sn−1 ⊂ Rn by n− 1 angles.
We refer to the graph of P ⊂ S1 × Sn−1 × R+

0 × S1 as the resetting hypersurface, and it
encodes all resetting information. Since it is of dimension at least 3, we find it useful to consider
two-dimensional ‘slices’ of graph(P) in selected three-dimensional subspaces; this is achieved
by fixing A or ϑo and/or (a sufficent number of) angles parametrising d in a particular way.
We refer to the associated slice of graph(P) as a resetting surface; indeed, the helical resetting
surface Winfree drew in [47, Fig. 4] is an example of a slice for fixed d.

We will demonstrate this geometric point of view with two planar systems, where n = 2
and d is given by a single angle ϕd. Here, the two-dimensional intersection of graph(P) with
the subspace of fixed ϕd captures the entire transition of the PTC from type 1 to type 0.
Alternatively fixing ϑo, that is, the point of Γ where the perturbation is applied, provides a
complementary and dual view of how the resetting depends on the direction d. As we will show
in subsequent sections, resetting surfaces for a sequence of fixed values of the amplitude A, which
we refer to as graph(PA), provide insight into geometric and topological changes of the overall
phase resetting. In particular, we show that there is a one-to-one correspondence between the
geometry of the isochron foliation near the phaseless set and that of resetting surfaces near
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their singularities. Our findings extend and bring the mathematical viewpoint full circle with
Winfree’s interpretation of his experimental data.

This paper proceeds as follows. In Sec. 2, we introduce Winfree’s model and subsequently
use it to investigate the properties of graph(P) in detail. This planar vector field has rotational
symmetry: its attracting periodic orbit is the unit circle and the origin is a repellor and the
only point in the phaseless set. Moreover, the function P can be studied analytically because
the isochrons of the system are known analytically as parametrised curves; in fact, depending
on the value of a parameter they are straight lines or they spiral into the origin. These special
properties make Winfree’s model an good test-case example for our purposes. We first consider
the case of straight isochrons and recall in Sec. 2.1 the notions of PRC and PTC and how they
change type with A; here, we also introduce the dual Directional Transition Curve (DTC), which
describes the resetting as a function of ϕd for fixed ϑo and A. Specifically, we illustrate how
the intersection of the respective perturbation set for fixed A, consisting of all perturbations
(as a function of ϑo and ϕd, respectively), determines the nature of the PTC and of the DTC.
Section 2.2 then discusses and explains the associated transitions of the PTC and the DTC in
terms of resetting surfaces, including their singularities that arise due to the respective perturbed
point being exactly the origin (the phaseless set).

We then turn to the case that the isochrons in Winfree’s model spiral around the phaseless
set, which is the generic situation. This introduces an additional complexity in the transition
from type 1 to type 0 of the PTCs that has not been discussed before, and similarly for the DTC.
We discuss in Sec. 2.3 what this transition looks like at the level of these curves, and then present
in Sec. 2.4 the corresponding resetting surfaces and their associated singularities. Due to the
spiralling of the isochrons, the transition between torus-knot type is quite dramatic and involves
the accumulation of the PTC or DTC on a circle; this implies that the image ϑn is covered
more and more, inifinitely many times at the singularity, and then less and less. We explain
this process in Sec. 2.5 by sequences of what we call twin tangencies between isochrons and the
perturbation set, as the latter moves over the origin with A. This is a generic phenomenon when
the isochrons are spirals around an equilibrium of a planar system.

Due to its rotational symmetry, Winfree’s model is not representative when it comes to the
structure of graph(PA) and its geometric and topological changes with A. Firstly, the function P
is generally not known analytically, and resetting surfaces of interest must be found numerically.
We demonstrate in Sec. 3 with the example of the planar Van der Pol system that this can
be achieved by formulating and solving for solution families of a multi-segment boundary value
problem (BVP). Our computational approach is based on that in [29] and implemented in the
Matlab-based software package COCO [5]; its key aspects are discussed briefly in Appendix A.
Secondly, the attracting periodic orbit in Winfree’s model is a perfect circle with the phaseless
set at its centre; hence, all points on the periodic orbit have the same distance to the phaseless
set. This is generically not the case, and we show in Sec. 3.1 what this means for the PTCs and
DTCs of the Van der Pol system. The geometry of the accociated resetting surface graph(PA)
for increasing A is then presented in Sec. 3.2; Notably, singularities of it now occur over a range
of A (rather than only for A = 1 as in Winfree’s model): they are created and disappear when
A is the minimal and maximal distance of any point Γ to the origin, which is again the phaseless
set here. Sequences of twin tangencies of the DTC occur in the Van der Pol system as well.
However, as Sec. 3.3 shows, their A-values are extremely close to that of the transtion from a
1:0 to a 1:1 torus knot, which is due to the isochrons being very steep spirals.

In the final Sec. 4, we draw some general conclusions and point out how our approach can be
used more widely to understand qualitative changes in phase resetting arising from transitions
through more complicated phaseless sets, such as those studied in [19] in the context of planar
systems.
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2 Case study of resetting in Winfree’s model

In the 1970s, Winfree constructed several planar oscillator models that were sufficiently simple
for him to find explicit expressions of their isochrons; see [48] and Examples 1–4 in the chapter
Attracting Cycles and Isochrons in [49]. In the same spirit, we combine his Examples 2 and 4
into the following system, defined in polar coordinates (R,φ) ∈ R+

0 × S1 as{
Ṙ = κ (1−R)R2,

φ̇ = 1 + ε(1−R).
(4)

Winfree used the fixed values κ = 5 in Example 2 and κ = 1 in Example 4.
Note that the right-hand sides of both equations only depend on the radial component R.

Consequently, the flow is invariant under any translation in φ, and the equation for R identifies
the trajectory with R = 1 as the only attracting solution. This means that the unit circle in
the plane of Euclidean coordinates is an attracting periodic orbit Γ whose basin is the entire
plane except for the origin 0. Winfree takes derivatives with respect to scaled time in units of
the period of this periodic orbit; hence, the period of Γ is 1.

Translation invariance is the property that makes it possible to find an explicit formulation
for the isochrons. In complete analogy to Winfree’s derivation from [49], the isochrons are given
by the level sets of the function

Φ(R,φ) = φ+
ε

κR
− ε

κ
. (5)

Hence, Iϑ is defined implicitly as the level set Φ(R,φ) = ϑ, which for each ϑ ∈ S1 can be
formulated explicitly as the R-parametrised curve

Iϑ :=
{

(R,φ(R)) ∈ R+
0 × S1

∣∣ φ(R) = ϑ+ ε
κ −

ε
κR

}
. (6)

We consider system (4) as a system in Euclidean coordinates, given by x = R cos (2π φ) and
y = R sin (2π φ), and we fix κ = 2π thoughout. This the convenient choice leads to the system{

x′ = −(1 + ε) y + (x+ ε y)
√
x2 + y2 − x(x2 + y2),

y′ = (1 + ε)x− (ε x− y)
√
x2 + y2 − y(x2 + y2),

(7)

where the derivative is now taken with respect to the ‘standard’ time where Γ has period 2π.
The origin 0 is the only equilibrium; it is a repelling focus (with complex conjugate eigenvalues)
and the only point in the phaseless set. The translation invariance of system (4) is equivalent
to invariance of (7) under any rotation of the (x, y)-plane about 0; in particular, for any ϑ ∈ S1

the isochron Iϑ is given in Euclidean coordinates by x = R cos (2π φ) and y = R sin (2π φ), with
φ = φ(R) as defined in (6).

Recall that the resetting map P for n = 2 with (ϑo, ϕd, A) ∈ S1 × Sn−1 × R+
0 is defined as

the unique latent phase ϑn such that γ(ϑo) + Ad(ϕd) ∈ Iϑn . For Winfree’s model in the form
of system (7), the explicit expression for Iϑ via (6) allows us to find an implicit equation that
relates triples (ϑo, ϕd, A) with ϑn ∈ S1 and, hence, defines graph(P). However, this fails when
the triple (ϑo, ϕd, A) is such that γ(ϑo) + Ad(ϕd) = 0, that is, this perturbation lies on the
only point in the phaseless set; at such points, P(ϑo, ϕd, A) is not defined and graph(P) has a
singularity.

2.1 PRC, PTC and DTC for straight-line isochrons

To introduce and discuss the properties of the PRC, the PTC and also the new DTC, we
start off with the geometrically simplest and rather special case with ε = 0 when the flow of
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system (7) has constant angular velocity in the anticlockwise direction. In particular, according
to equation (6) all isochrons are then the straight rays from 0 given by

Iϑ :=
{

(R,φ(R)) ∈ R+
0 × S1

∣∣ φ(R) = ϑ
}
.

Therefore, ϑn = P(ϑo, ϕd, A) is defined as the latent phase of the point

γ(ϑo) +Ad(ϕd) =

[
cos (2π ϑo) +A cos (2π ϕd)

sin (2π ϑo) +A sin (2π ϕd)

]
.

In other words, we seek ϑn ∈ S1 such that

sin (2π ϑn) (cos (2π ϑo) +A cos (2π ϕd))

= cos (2π ϑn) (sin (2π ϑo) +A sin (2π ϕd)) ,

where we use the convention that no solution exists if (ϑo, ϕd, A) are such that the equality holds
trivially, that is, when cos (2π ϑo)+A cos (2π ϕd) = sin (2π ϑo)+A sin (2π ϕd) = 0. Simplification
with the trigonometric angle sum identity gives

sin (2π (ϑn − ϑo)) = −A sin (2π (ϑn − ϕd)), (8)

where again the convention is that no solution exists if (ϑo, ϕd, A) are such that this equality
holds trivially for any ϑn ∈ S1.

The ‘classical’ PRC and the PTC are readily computed from the implicit equation (8), and
Fig. 1 illustrates three different phase resets in the fixed direction d = [1, 0], that is, with
ϕd = 0, for perturbation amplitudes A = 0.5, A = 1, and A = 1.5. Panel (a) shows Γ and
20 isochrons uniformly distributed in phase. Also shown are the corresponding three shifted
versions of Γ for these three values of A, which we refer to as perturbation sets defined by
ΓA := {γϑo + Ad | ϑo ∈ S1}. The phase response is determined by how each perturbation set
intersects the isochrons. Plotting the corresponding phase shifts ∆(ϑo) = ϑn−ϑo and new phases
ϑn(ϑo) for all ϑo ∈ [0, 1) gives the three PRCs and PTCs shown in Fig. 1(b) and (c), respectively.
Note that the range for ϑn in panel (c) has been extended beyond [0, 1) for illustrative purposes
to show the periodic nature of the PTCs, which is the graph of the circle map from ϑo ∈ S1

to ϑn ∈ S1; here and in all similar figures, the shaded unit square [0, 1) × [0, 1) is the standard
representation of the torus S1 × S1 (its fundamental domain in the covering space S1 × S1) on
which this graph lives.

For the trivial case that A = 0 we have Γ0 = Γ, which means that the PRC in Fig. 1(b) is
the constant function 0. The associated PTC in Fig. 1(c) is the graph of the identity, which is
of type 1 with winding number 1; mathematically, it forms a 1 : 1 torus knot on the torus. For
all 0 < A < 1 the perturbation set ΓA surrounds the phaseless set 0 and intersects all isochrons
in the family I; the shown case for A = 0.5 is representative for this interval of perturbation
amplitudes. Since the isochrons are linear, the horizontal translations of γ0 and γ0.5 along
d always lie on their respective isochrons I0 and I0.5. Consequently, ∆(0) = ∆(0.5) = 0 in
Fig. 1(b), and these values are actually sign changes of the PRC, which is therefore of Type
II. Notice further from equation (8) that the phase difference ∆(ϑo) = ϑn − ϑo ranges between
± 1

2π sin−1 (A) when A ≤ 1. Similarly, for the PTC in Fig. 1(c) we have that ϑn = ϑo when
ϑo = 0 or ϑo = 0.5; moreover, the PTC is still a 1 :1 torus knot, and so remains of type 1.

When A > 1, the perturbation set ΓA no longer surrounds 0; it now intersects only a subset
of the isochrons in I, as can be seen for the representative case A = 1.5 shown in Fig. 1. Observe
in panel (a) that both γ0 and γ0.5 now lie on I0, so that now ∆(0) = ∆(0.5) = 0 in panel (b) and
ϑn(0) = 0 and ϑn(0.5) = 0.5 in panel (c). Consequently, the PRC has the same (negative) sign
and is of Type II, while the PTC now forms a 1 : 0 torus knot, which means that it is of type
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Figure 1: Phase resets with d = [1, 0] for A = 0.5, A = 1, and A = 1.5 in Winfree’s model (7)
with ε = 0. Panel (a) shows Γ (black) and the three perturbation sets Γ0.5 (orange), Γ1 (red),
and Γ1.5 (purple) together with 20 isochrons uniformly distributed in phase, which are coloured
in increasingly darker shades from 0 (cyan) to 1 (dark blue). The resulting PRCs and PTCs
are shown in matching colours in panels (b) and (c), respectively; the vertical line (grey) at
ϑo = 0.5 represents the discontinuity for A = 1, and the shaded unit square (green) in panel (c)
represents S1 × S1.

0 with winding number 0. This observation follows when equation (8) with A > 1 is written in
the equivalent form

sin (2π (ϑn − ϕd)) = −A−1 sin (2π (ϑn − ϑo)), (9)

which shows that ∆ = ϑn − ϑo is always positive or negative in this case, while there is a sign
change of sin (2π (ϑn − ϕd)).

The topological change of the PRC and PTC occurs when the perturbation amplitude is
such that the perturbation set contains a point in the phaseless set. In the case of Winfree’s
model (as well as many other planar systems) the phaseless set is a single point, here 0, which
lies on Γ1. More specifically, γ0.5 + [1, 0] = 0, and this means that both the PRC and PTC are
not defined at ϑo = 0.5: both exhibit a discontinuity at this ϑo-value. In Fig. 1(b) and (c), when
A = 1, the PRC and PTC are actually linear with slopes −0.5 and +0.5, respectively; as is
discussed further in Sec. 2.3, this is due to the special case that the isochrons are straight rays.

Equation (8) for 0 < A < 1 and equation (9) for A > 1 also explain the observed similarities
between the PRCs and the PTCs in Fig. 1. Namely, they show that for ϕd = 0 the PRC for
given A is exactly the ‘negative’ PTC for A−1, defined as the graph of −ϑn(ϑo).

Figure 2 shows a new type of reset, again for Winfree’s model with A = 0.5, A = 1, and
A = 1.5, but now for varying unit direction vector d around a given point on Γ, here, we
choose γϑo = γ0.125. We write d = d(ϕd) := [cos (2π ϕd), sin (2π ϕd)], where ϕd ∈ S1, and are
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Figure 2: Directional resets of system (7) with ε = 0 at γ0.125 for A = 0.5, A = 1, and A = 1.5
with d = [cos (2π ϕd), sin (2π ϕd)] and ϕd ∈ S1. Panel (a) shows Γ (black) and the three
perturbation sets C0.5 (orange), C1 (red), and C1.5 (purple) centred at C0 = γ0.125 (black dot)
together with 20 isochrons uniformly distributed in phase, coloured from 0 (cyan) to 1 (dark
blue). The resulting DTCs in matching colours are shown in the (ϕd, ϑn)-plane in panel (b) and
on the torus in panel (c); the discontinuity for A = 1 occurs at ϕd = 0.625 (grey line). Compare
with Fig. 1.

interested in the new phase ϑn as a function of the direction angle ϕd; this is also a different
circle map whose graph we refer to as the Directional Transition Curve (DTC). Figure 2(a)
shows the periodic orbit Γ (black) and the same 20 isochrons as in Fig. 1 with the perturbation
sets CA := {γ0.125 +Ad(ϕd) | ϕd ∈ S1} for the three values of A, which are nested circles centred
at C0 = γ0.125. Panel (b) shows the three resulting DTCs, where we again show a larger range
of ϑn with the unit square shaded. It represents the torus on which the DTCs live, which is
shown in panel (c) as an embedding into R3.

The DTCs in Fig. 2(b) exhibits properties that are similar, yet ‘dual’ to those of the PTCs
shown in Fig. 1(c). Namely, any perturbation set for 0 < A < 1, such as the representative C0.5

in panel (a), does not surround the origin 0 and the DTC is a 1:0 torus knot. The representative
C1.5 and all perturbation sets for A > 1, on the other hand, do surround 0, intersect all isochrons
and their DTCs are 1:1 torus knots. These two different torus knots are visualised in Fig. 2(c).
The topological change occurs again at A = 1, since 0 = γ0.625 +d(0.125) ∈ C1; the DTC is then
again linear with slope 0.5, but with discontinuity at ϕd = 0.625. Note that, for any other value
of ϑo ∈ S1 one finds the same DTCs modulo a corresponding translation in ϕd; this is due to
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Figure 3: Resetting surface graph(PA) of system (7) with ε = 0 for A = 0.5 in panel (a), A = 1
in panel (b), and A = 1.5 in panel (c), shown in (ϑo, ϕd, ϑn)-space for ϑn ∈ [−1.5, 1.5] with
the corresponding DTCs for ϑo = 0.125, labelled C0.5 (orange), C1 (red), and C1.5 (purple),
respectively.

the rotational invariance of this simple model. The observed duality between DTCs and PTCs
for fixed ϑo = 0 follows again from equations (8) and (9) when one considers them for fixed ϑo

and variable ϕd: the DTC for given A is exactly the PRC for A−1, subject to a translation by
ϑo.

9



2.2 Resetting surfaces for straight-line isochrons

The PTC and DTC for a given amplitide A are closely related, and they correspond to different
slices of the corresponding resetting surface graph(PA) ⊂ S1×S1×S1 of ϑn as a function of both
ϑo and ϕd. Figure 3 shows this surface for system (7) with ε = 0 and the same three choices
A = 0.5, A = 1, and A = 1.5 as in Figs. 1 and 2. In each panel of Fig. 3 we extend the range
of ϑn to [−1.5, 1.5] and show two copies of graph(PA). Also shown in panels (a), (b) and (c)
are the corresponding DTCs at ϑo = 0.125 from Fig. 2(b), which are labelled C0.5, C1 and C1.5,
respectively.

Observe that graph(PA) is a smooth surface in panels (a) and (c) of Fig. 3. The difference
is that there is a phase shift by 1 in ϑo and none in ϕd when 0 < A < 1, as in panel (a), while
there is a phase shift by 1 in ϕd and none in ϑo when A > 1, as in panel (c). In particular, this
encodes the fact that the properties of the DTCs for ϑo = 0.125 as discussed in Sec. 2.1 also
hold for DTCs for any other value of ϑo. The equivalent statement is true for the PTCs with
ϕd fixed. In fact, it follows from equations (8) and (9) that these two surfaces are related by the
duality transformation

(ϑo, ϕd, A) 7→ (ϕd, ϑo, A
−1), (10)

which is the global manifestation on the level of graph(PA) of the duality between the PTCs
and the DTCs. In particular, this implies the symmetry of exchanging ϑo and ϕd of the surface
for A = 1 in Fig. 3(b). It features singularities at ϕd − ϑo = 0.5, represented here as vertical
planes in (ϑo, ϕd, ϑn)-space, where the surface ends and has a discontinuity. Again, this encodes
that any DTC for A = 1, such as the shown curve C1 for ϑo = 0.125, as well as any PTC for
A = 1, has a discontinuity.

Since the DTC with ϑo = 0.125 is representative for all DTCs, and due to duality also for all
PTCs, we can illustrate a key property of the overall graph(P) by showing its intersection with
the different three-dimensional subspace with ϑo = 0.125 fixed. Figure 4(a) shows this surface in
(ϕd, A, ϑn)-space, again over the extended range ϑn ∈ [−0.5, 1.5], together with the three DTCs
for A = 0.5, A = 1, and A = 1.5. The surface is smooth, except at the singular point A = 1
and ϕd = ϑo + 0.5 = 0.625, where ϑn is undefined. This is represented in (ϕd, A, ϑn)-space as
the vertical line, on which the surface is seen to limit in a helical fashion; in other words, the
surface can be completed by the vertical line.

A key observation from equation (3) is the following: the level set for any fixed ϑn of the
surface shown in Fig. 4(a) consists of the points in the (ϕd, A)-plane that lie on the isochron Iϑn .
Moreover, as Fig. 2 illustrates with the shown perturbation sets CA, for fixed ϑo, any point in the
(x, y)-plane is represented uniquely by (A,ϕd) as polar coordinates around the point C0 = γϑo ,
given by the map

Ψ : S1 × R+
0 → R2

(ϕd, A), 7→ γϑo +Ad(ϕd) = γϑo + [A cos(ϕd), A sin(ϕd)].
(11)

While Ψ depends on ϑo, we do not reflect this in the notation for convenience. Its inverse
Ψ−1 is well defined, except at the point γϑo . In particular, Ψ−1 is a diffeomorphism with
bounded distortion near the point 0 of the phaseless set. Hence, the surface in Fig. 4(a) is the
diffeomorphic image of the isochron surface in (x, y, ϑ)-space near 0, which is simply the lift
of the isochrons Iϑ for ϑ ∈ S1. The isochron surface is shown Fig. 4(b) with the 20 straight
isochrons from Fig. 2(a). Since the straight isochrons are given in polar coordinates by Φ(R) = φ
for ε = 0, according to (5), the isochron family I over the (x, y)-plane is the Riemann surface
given by the graph of the argument function arg(log z)/(2π) of the complex logarithm log(z),
where z = x+ iy. This implies that a single loop in the (ϕd, A)-plane around the singular point
(ϕd, A) = (0.625, 1) lifts to a helix on the resetting surface in Fig. 4(a), resulting in a phase
shift by 1 in ϑn. Note that any helix on the isochron surface in Fig. 4(b) is anticlockwise, while
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ϑ
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Figure 4: Resetting surface of system (7) with ε = 0 for fixed ϑo = 0.125. Shown in panel (a)
are two copies of the surface in (ϕd, A, ϑn)-space over the range ϑn ∈ [−0.5, 1.5], as well as the
corresponding three DTCs for A = 0.5, A = 1 and A = 1.5. The surface is discontinuous at
the vertical line {ϕd = 0.625, A = 1} (grey); compare with Fig. 2(b). Panel (b) shows the
associated isochron surface in (x, y, ϑ)-space near 0 over the range ϑ ∈ [−0.5, 1.5], with the 20
straight isochrons from Fig. 2(a).

on resetting surface in Fig. 4(a) it is clockwise; this is due to the latter being the image of the
former under Ψ−1.

The geometry of the resetting surface encodes the qualitative change of the DTC observed in
Fig. 2, namely, as the subspace for fixed A passing before, exactly through or past the singularity.
In fact, the surface in Fig. 4(a) is representative for the intersection of graph(P) of system (7)
with ε = 0 with any three-dimensional subspace of fixed ϕd or of fixed ϑo. Indeed, the singularity
is always the implicitly defined point ϕd − ϑo = 0.5 with A = 1, and the surfaces for fixed ϑo

and for fixed ϕd are related by the duality transformation (10). The helical resetting surface
drawn by Winfree in [47, Fig. 4] is indeed exactly the slice of graph(P) for fixed ϕd and, hence,
also the diffeomorphic image of the isochron surface in Fig. 2(b).

2.3 PRC, PTC and DTC for spiralling isochrons

The case ε = 0 of Winfree’s model (7) is helpful for illustrating the basic concepts in the simplest
setting. However, it is atypical: isochrons are generally not straight lines. In particular, the
period of a full rotation around the central repelling focus equilibrium is generically different from
that of the surrounding periodic orbit, which means that its isochons spiral as they approach
the equilibrium. This is the case for system (7) with ε 6= 0, and we now set ε = −1 < 0 as a
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Figure 5: Phase resets with d = [1, 0] for A = 0.5, A = 1, and A = 1.5 in Winfree’s model (7)
with ε = −1. Panel (a) shows Γ (black), 20 isochrons uniformly distributed in phase, coloured
from 0 (cyan) to 1 (dark blue), and Γ0.5 (orange), Γ1 (red), and Γ1.5 (purple). The resulting PRCs
and PTCs are shown in matching colours in panels (b) and (c), respectively; the discontinuity
for A = 1 is at vertical ϑo = 0.5, and the shaded unit square (green) in panel (c) represents
S1 × S1. Compare with Fig. 1.

representative example for which the isochrons spiral anticlockwise around the origin 0.
We again seek ϑn ∈ S1 by finding the isochron Iϑn that contains the perturbed point γϑo +

Ad(ϕd). As in Sec. 2.1, this leads to the expression

sin (2π (ϕ− ϑo)) = −A sin (2π (ϕ− ϕd)), (12)

but now with
ϕ = ϑn +

ε

2π
− ε

2π ‖γϑo +Ad(ϕd)‖
, (13)

rather than simply ϕ = ϑn as in (8). Again, the convention is that no solution exists if (ϑo, ϕd, A)
are such that the equality holds for any ϕ ∈ S1, that is, when γϑo +Ad(ϕd) lies at the origin.

Figures 5 and 6 illustrate that this seemingly minor variation from ϕ = ϑn to equation (13)
has dramatic consequences. These two figures are shown in the same layout as Figs. 1 and 2; in
particular, we show the respective resets for the same three values A = 0.5, A = 1, and A = 1.5,
but now with ε = −1 instead of ε = 0.

Figure 5(a) shows Γ with 20 isochrons uniformly distributed in phase, now spiralling an-
ticlockwise into 0, and the three perturbation sets Γ0.5, Γ1 and Γ1.5. As panels (b) and (c)
show, the PRCs and the PTCs for A = 0.5 and for A = 1.5 have hardly changed; compare with
Fig. 1(b) and (c). However, the transition with increasing A of the PRC from Type I to Type II
and the associated transition of the PTC from a 1:1 torus knot to a 1:0 torus knot, respectively,
now involves an accumulation process of the DTC on the singular vertical line at ϑo = 0.5.
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Figure 6: Directional resets of system (7) with ε = −1 at γ0.125 for A = 0.5, A = 1, and A = 1.5.
Panel (a) shows Γ (black) with 20 isochrons uniformly distributed in phase, coloured from 0
(cyan) to 1 (dark blue), and C0 = γ0.125 (black dot) C0.5 (orange), C1 (red), and C1.5 (purple).
The resulting DTCs in matching colours are shown in the (ϕd, ϑn)-plane in panel (b) and on
the torus in panel (c); the discontinuity for A = 1 occurs at ϕd = 0.625. Compare with Figs. 2
and 5.

As is illustrated in Figure 6, this accumulation process is indeed also observed for the dual
transition of the DTCs from a 1 : 0 torus knot, as for A = 0.5, to a 1 : 1 torus knot, as for
A = 1.5. Panel (a) shows Γ with the 20 spiralling isochrons, together with the point C0 = γ0.125

and the three perturbation sets C0.5, C1 and C1.5. The accumulation of the DTC for A = 1
at ϕd = 0.625 is illustrated in the (ϕd, ϑn)-plane in panel (b), while panel (c) illustrates it on
the embedded torus; here, ϕd = 0.625 is a circle, on which the DTCs is seen to accumulate as
A→ 1.

In both Figs. 5 and 6, the new phase ϑn (and, hence, also ∆ = ϑn−ϑo) grows beyond bound
in the covering space R of ϑn ∈ S1 in the limit as A→ 1; this is due to the fact that the respective
perturbation set intersects all spiralling isochrons infinitely many times near 0. Hence, compared
to the special case ε = 0, the PRC, PTC and DTC for A = 1 are markedly different for the
generic case ε 6= 0. The consequences of the accumulation process for the geometry of graph(P)
with ε 6= 0 will be discussed in the next section. As we will show in Sec. 2.5, associated changes
in the range of ϑn during the transition through A = 1 can be explained by what we call twin
tangencies between an isochron and the perturbation set CA.
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Figure 7: Resetting surface graph(PA) of system (7) with ε = −1 for A = 0.5 in panel (a), A = 1
in panel (b), and A = 1.5 in panel (c), shown in (ϑo, ϕd, ϑn)-space for ϑn ∈ [−1.5, 1.5] with the
corresponding DTCs for ϑo = 0.125; compare with Fig. 3.

2.4 Resetting surfaces for spiralling isochrons

Figure 7 shows the surface graph(PA) of system (7) with ε = −1 in (ϑo, ϕd, ϑn)-space for
ϑn ∈ [−1.5, 1.5], again for A = 0.5, A = 1, and A = 1.5 and with the corresponding DTCs for
ϑo = 0.125. The presentation is as that in Figure 3 with ε = 0, so that the respective panels
can be compared. Indeed, panel (a) for A = 0.5 and panel (a) for A = 1.5 look very similar.
Figure 7(b), however, is significantly different and shows that graph(PA) becomes unbounded
in the direction of decreasing ϑn, as it approaches the singular plane {ϕd − ϑo = 0.5}. When
ϑn ∈ S1 is viewed as a periodic variable, graph(PA) makes infinitely many ‘turns’ around S1 as
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Figure 8: Resetting surface of system (7) with ε = −1 for fixed ϑo = 0.125, shown in panel (a)
in (ϕd, A, ϑn)-space with the three DTCs for A = 0.5, A = 1 and A = 1.5 from Fig. 6. Panel (b)
shows the associated isochron surface in (x, y, ϑ)-space near 0, with the 20 spiralling isochrons
from Fig. 6(a). Compare with Fig. 4.

it approaches the singular plane from the directions of both increasing and decreasing ϕd. Note
that the duality transformation (10) again applies: it relates the case for 0 < A < 1 with that
for A > 1, and explains the symmtry of the singular surface for A = 1 in Figure 7(b).

As Fig. 7 illustrates, the parameter ε has no influence on the rotational invariance of Winfree’s
model (7). Hence, also for ε = −1 6= 0, we can again visualise the key property of graph(P)
by showing its intersection with the representative three-dimensional subspace {ϑo = 0.125}.
Figure 8(a) shows this surface in (ϕd, A, ϑn)-space over the range ϑn ∈ [−0.5, 1.5] with the three
DTCs labeled C0.5, C1 and C1.5 from Figs. 6 and 7. The surface is again not defined at the
singularity (A,ϕd) = (1, 0.625), which is indicated by the vertical line in Fig. 8(a). In contrast
to the case with ε = 0 in Fig. 4, the surface does ‘not end on’ this vertical line, but rather ‘wraps
around’ it.

The observation in Sec. 2.2 holds in complete generality due to the definition of the resetting
map P by (3), and this explains the geometry of the resetting surface in Fig. 8(a): near the
singularity it is the diffeomorphic image of the isochron surface, shown in panel (b), under the
inverse Ψ−1 of the polar coordinate transformation Ψ defined in (11). Since the isochrons Iϑn
are anticlockwise spirals around 0 according to (5) with ε = −1, the level sets of the resetting
surface are clockwise spirals. Any single closed loop in the (ϕd, A)-plane that surrounds the
singularity still lifts to a curve on the surface whose end points have a phase difference of 1
in ϑn. However, since the phase ϑn is not bounded (in the covering space R of S1), this may
include excursions to larger and larger negative phase and back when a curve passes closer to
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Figure 9: First twin tangency for 0 < A < 1 of the DTC with ϑo = 0.125 of system (7)
with ε = −1. Panel (a) shows Γ (black) with C0 = γ0.125 (black dot) and the perturbation
sets CA for A = 0.7908 (orange), A = 0.8408 (magenta), and A = 0.8908 (purple), which have
tangencies, respectively, with the isochrons I0.2658 (navy) and I0.5101 (brown), with I0.2738 (olive)
twice, and with I0.2818 (dark green) and I0.8184 (light green); the tangency points are marked.
Panel (b1) shows the corresponding DTCs for ϑn ∈ R, and the highlighted rectangle is enlarged
in panel (b2); here the unit square (green shading) represents S1 × S1, and the ϑn-values of the
extrema of the DTCs as indicated by horizontal lines (black).

the singular point (ϕd, A) = (0.625, 1).

2.5 Range of the DTC and twin tangencies

The surface in Fig. 7(a) for ε = −1 represents the general case of a phaseless set with isochrons
that spiral around an isolated point of the phaseless set. In particular, it encodes the qualitative
change of the DTC: passing through the subspace for A = 1 leads to the transition observed
in Fig. 6, from a 1 : 0 torus knot, as shown with C0.5, via the discontinuous curve C1, to a
1 : 1 torus knot, as shown with C1.5. The reverse transition occurs for the PTC via the duality
transformation (10).

Note in Figs. 6(b) and 7(a) that the DTC for A = 0.5 is not only a 1:0 torus knot but, as for
the limiting case for A = 0, it is not surjective as a circle map on S1 × S1; note that this DTC
is also not injective. The DTC for A = 1.5, on the other hand, is not only a 1 : 1 torus knot
but, as for limiting case A → ∞ (equivalent to the PTC for A = 0), it is also a near-identity
map; in particular, this DTC is not only surjective but also injective. For the special case ε = 0
of non-spiralling isochrons, these properties of the DTC hold for all 0 < A < 1 and A > 1,
repsectively, and the transition takes place ‘suddenly’ at the transition value A = 1. However,
this is not the case when the isochrons spiral into the phaseless set 0: surjectivity is gained
by the DTC with 0 < A < 1 before A = 1 is reached; likewise, the DTC is injective only for
sufficiently large A > 1. As we discuss now, these changes of the mapping properties of the DTC
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Figure 10: The second and third twin tangencies for 0 < A < 1 of the DTC with ϑo = 0.125 of
system (7) with ε = −1. Panels (a) and (c) show CA (magenta) and the twin tangency isochron
(olive) with k = 2 at A = 0.9201, and with k = 3 at A = 0.9468, respectively; panels (b1)
and (d1) and the enlargements in panels (b2) and (d2) show the corresponding DTCs on the
unit square representing S1 × S1.

are due to twin tangencies between the perturbation set CA and the spiralling isochrons as the
respective section of the resetting surface in Fig. 7(a) passes closer and closer to the singularity
at (A,ϕd) = (1, 0.625), and develops longer and longer excursions to large negative values of ϑn.

Figure 9 illustrates the emergence of surjectivity of the DTC of system (7) with ε = −1 and
for fixed ϑo = 0.125. Shown in panel (a) are Γ (black curve) together with three perturbation
sets CA for values of A just before, at, and just after this transition, together with isochrons
that they are tangent to; the corresponding DTCs are shown in panel (b1) with the indicated
rectangle enlarged in panel (b2). Each DTC has two extrema, a (local) maximum and a (local)
minimum, which are each due to a tangency with a corresponding isochron; such a tangency is
generically quadratic (see also [28]), and the respective isochrons and tangency points are shown
in Fig. 9(a). The DTC becomes surjective when its minimum and maximum have the same value
in S1 for the first time; hence, in the covering space R they have a phase shift by exactly 1. In
terms of isochron tangencies, this means that CA is tangent to one and the same isochron, rather
than to two different isochrons; we refer to this special situation as a twin tangency. Figure 9
shows that it occurs for the first time (for increasing A) at A ≈ 0.8408, where C0.8408 is tangent
to I0.2738 at two points. For A = 0.8408 ± 0.05, on the other hand, CA is clearly tangent to
two different isochrons. Note that C0.8408 is the circle with the smallest radius that intersects
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Figure 11: Twin tangencies for A > 1 of the DTC with ϑo = 0.125 of system (7) with ε = −1,
shown in the style of Fig. 10 for ` = 3 at A = 1.0458 in panels (a) and (b), and for ` = 2 at
A = 1.0645 in panels (c) and (d).

all isochrons in I. Hence, the DTC is surjective for A > 0.8408 and, since it is still a 1 :0 torus
knot for A < 1, each value of ϑn ∈ S1 is now achieved at least twice.

As A is increased, the minimum moves towards larger negative values of ϑn as the DTC
starts to accumulate on the circle with ϕd = 0.625 in the limit of A→ 1, as shown in Fig. 6(c).
The maximum of the DTC, however, effectively remains unchanged. Hence, there is an infinite
sequence of further twin tangencies, at which the phase shift in ϑn ∈ R is exactly k ∈ N, so that
the maximum and minimum of the DTC are again equal on S1. Just past the kth twin tangency
the DTC covers the full range ϑn ∈ S1 at least 2k times. Figure 10 illustrates this in panels (a)
and (b) for k = 2 where C0.9201 has a twin tangency with I0.3100, and in panels (c) and (d) for
k = 3 where C0.9468 has a twin tangency with I0.2907. As a result, ϑn covers S1 at least four
times for 0.9201 < A < 1, and at least six times for 0.9468 < A < 1.

This ‘increase of surjectivity’ continues at infinitum since k → ∞ as A ↗ 1. However, the
DTC remains a 1 : 0 torus knot for 0 < A < 1: it appears to increase its winding number by
adding further rotations through the centre of the torus but, upon reaching its local minimum
with respect to ϑn ∈ R, the DTC changes direction and unwinds itself before this curve closes.
At A = 1 the DTC is singular, and this is exactly where it changes to a 1 : 1 torus knot for
A > 1. Indeed, a similar accumulation process of the DTC exists: there is now a sequence of
twin tangencies for A > 1, where the phase shift in ϑn ∈ R is exactly ` ∈ N, with ` → ∞ as
A↘ 1. Since it is now a 1:1 torus knot, this means that the DTC covers the full range ϑn ∈ S1
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CA = 1.1092 is tangent twice to I0.3175 (olive), which is shown with CA for A = 1.1092± 0.03 in
the style of Fig. 9.

at least 2` + 1 times just before the `th twin tangency, and only 2` − 1 times just after it. In
Fig. 11 we illustrate this sequence of twin tangencies with decreasing `, that is, for increasing A.
In panels (a) and (b) for ` = 3, the perturbation set C1.0458 has a twin tangency with I0.3100, and
in panels (c) and (d) for ` = 2, C1.0645 has a twin tangency with I0.2907. As a result, ϑn covers
S1 at least five time for 1.0458 < A < 1.0645, while this number drops to three for A > 1.0645.

Figure 12 illustrates the case ` = 1 of the last twin tangency for A > 1. Here we show
the perturbations set CA with the isochrons to which it is tangent for three values of A just
before, at, and just after this twin tangency at A ≈ 1.1092. Observe how Fig. 12 shows the
reverse process of that illustrated in Fig. 9. However, the global picture is different: because
the DTC is now a 1 : 1 torus knot, the last twin tangency for ` = 1 does not result in a loss
of surjectivity. Notice that C1.1092 in panel (a) has two tangency points with CA and only one
additional crossing; hence, the DTC in panel (b) at the nearby value of A = 1.1392, indeed,
remains surjective.

The DTC for A = 1.5 in Figs. 6(b) and 7(a) is close to the identity on S1× S1, which means
that it is the graph of an injective function. However, this is not the case for the DTC for
A = 1.1392 in Fig. 12(b), because the graph still features a maximum and a minimum. The
transition to injectivity occurs when the DTC has a cubic tangency (with respect to lines of
constant ϑn), where its maximum and minimum coalesce and subsequently disappear; Fig. 13
illustrates that this happens for A ≈ 1.4931. The perturbation set C1.3 in panel (a), has
quadratic tangencies with the isochrons I0.2219 and I0.3515, which correspond to the extrema of
the DTC shown in panel (b). At A ≈ 1.4931, there is a cubic tangency between C1.4931 and
I0.3953, that is, at the value of ϑn ≈ 0.3953 of the DTC. For A > 1.4931, the perturbation set CA
has no tangency with any of the isochrons and, rather, intersects each isochron exactly once, as
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Figure 13: Transition through a cubic tangency at A = 1.1092 of the DTC with ϑo = 0.125 of
system (7) with ε = −1. Shown in panel (a1) and the enlargement panel (a2) are Γ (black),
20 isochrons uniformly distributed in phase, C0 = γ0.125, the perturbations sets CA for A = 1.3
(orange), A = 1.4931 (magenta), and A = 1.7 (purple), and additional isochrons that have
tangencies with them. Panel (b) shows the corresponding DTCs in matching colours for ϑn ∈ R,
where the unit square (shaded green) represents S1×S1 and the horizontal lines (black) indcate
extrema.

is the case for C1.7 in Fig. 13. The DTC is now monotonically increasing and, indeed, the graph
of an injective (and, in fact, bijective) function. We remark that successive cubic tangencies
between the perturbation set and the isochron foliation have been identified in [29] as the source
of additional extrema of the PTC. This is the same mechanism we found for the DTC, albeit
exactly once for decreasing A.

The transition of the DTC from a 1:0 torus knot close to the constant function ϑn(ϕd) ≡ 0
for small A to a 1 :1 torus knot close to the identity for sufficiently large A necessarily involves
the sequences of kth twin tangencies up to A = 1 and of `th twin tangencies past A = 1 followed
by a single cubic tangency. Due to the duality transformation (10), the reverse transition
through these tangencies occurs for the PTC. As we showed for the specific example of Winfree’s
model (7) with ε = −1, this scenario is entirely due to the spiralling nature of the isochrons near
0. In particular, encountering sequences of twin tangencies is a generic phenomenon when the
perturbation set of a planar system transitions through an isolated point of the phaseless set
around which isochrons spiral. How well this phenomenon can be observed in a given system
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Panel (a) shows Γ (black) with 12 isochrons evenly distributed in phase. Panel (b) shows the
critical transition amplitude Ac as a function of ϑo, and panel (c) shows it as a function of the
angle ϕd of the associated direction d(ϕd).

depends on how much the isochrons spiral around this point. For system (7) with ε = −1
the sprialling is very pronounced, and this allowed us to identify and compute twin tangencies.
When ε is moved closer to 0, the spirals becomes steeper and all kth and `th tangencies occur
increasingly closer to the singulariy A = 1, and they can be thought of as all ‘occurring’ at
A = 1 in the exceptional case of straight-line isochrons for ε = 0.

3 Case study of resetting in the Van der Pol system

In this section, we consider phase resetting in the planar Van der Pol system [42, 43, 44], which
we write as {

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − x1.

(14)

For µ > 0, system (14) has a globally attracting periodic orbit Γ surrounding the origin 0, which
is a repellor and the only point of the phaseless set. We fix µ = 1 throughout, for which Γ
has period TΓ = 6.6633, and 0 is a focus with eigenvalues 0.5 ± 0.8660i and associated period
T0 = 2π/0.8660 = 7.2544 near it. Rotation of system (14) is in the clockwise direction, and,
since TΓ < T0, the isochrons of Γ spiral also clockwise around 0.

The Van der Pol system is invariant under the discrete symmetry transformation

(x1, x2) 7→ (−x1,−x2), (15)

which is the rotation over π of the (x, y)-plane; hence, the periodic orbit Γ and its isochron
foliation have this symmetry, but are not invariant under any other rotation. This can be
seen in Fig. 14, where panel (a) shows a phase portrait with Γ and 12 isochrons that are
evenly distributed in phase. The expansion near 0 in the radial direction over one period is
e0.5T0 ≈ 37.6074; therefore, the isochrons of Γ approach 0 so ‘quickly’ that it is hard to see the
spiralling on the scale of Fig. 14(a). This difference notwithstanding, near 0, the isochrons of
the Van der Pol system (14) are geometrically as those of Winfree’s model (7) with ε 6= 0.
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In spite of this similarity, there are a number of obvious and important differences between
these two planar systems, which stem from the fact that system (14) is not invariant under any
rotation about 0. In particular, the distance of a given point γϑo from 0 — the phaseless set —
is no longer independent of its position on Γ, as given by the phase ϑo. Consequently, there is a
ϑo-dependence of the value of A required for the respective perturbation set to contain 0, when
perturbed in the associated direction d(ϕd). More specifically, or each ϑo ∈ S1 there exists a
ϕd ∈ S1 such that this value of A is exactly the distance of γϑo from 0; we refer to it as the
critical transition amplitude Ac = ‖γϑo‖ from now on. Panels (b) and (c) of Fig. 14 show Ac

as a function of ϑo and of ϕd, respectively. Both are periodic functions that are bounded by a
pair of minima, labelled f1 and f∗1 , and a pair of maxima, labelled f2 and f∗2 ; they correspond
to the points on Γ of smallest and largest distance from 0, respectively. Note that f1 maps to
f∗1 , and vice versa, under the symmetry transformation (15), and likewise for f2 and f∗2 . Taking
into account this discrete symmetry, the graphs in panels (b) and (c) are generic in the sense of
Morse theory [1, 6, 35]: they have a finite number of extrema, which are locally quadratic (that
is, look like parabolas). This is in marked contrast to the situation for Winfree’s model, where
Ac(ϑo) ≡ 1 ≡ Ac(ϕd).

The interpretation of Fig. 14(b) and (c) is the following: the point on Γ labelled f1 ina
panel (a), is given as γϑo with ϑo ≈ 0.2323 lies at the minimal distance Ac ≈ 1.5317 from 0 for a
reset in the direction d(ϕd) with ϕd ≈ 0.3631. Similarly, at the point f2 on Γ, which is γϑo with
ϑo = 0.3859, the maximal value Ac ≈ 2.8299 is achieved for ϕd ≈ 0.1925. The same is true for the
points f∗1 and f∗2 subject to a shift by 0.5. For any given value Ac with 1.5317 < Ac < 2.8299,
there are four points (two symmetry-related pairs) on Γ that have distance Ac from 0; they
are given by the ϑo-values of the points at which a horizontal line at the selected value of Ac

intersects the branches s1, s2, s∗1 and s∗2 of the graph in panel (b). The corresponding ϕd giving
the direction d(ϕd) of the perturbation required can be obtained from the graph in panel (c)
in the same way. We conclude that singularities of graph(PA) now occur over a range of A-
values (rather than only for A = Ac = 1 as in Winfree’s model). As we discuss next, this has
consequences for the PTCs and DTCs, as well as for their associated resetting surfaces.

As Fig. 14(a) shows, the isochrons of system (14) are not simply rigid rotations of one
another. Moreover, there is now no formula that parametrises them and, hence, isochrons
and also PTCs and DTCs need to be computed numerically. We do so by defining suitable
one-parameter families of multi-segment BVPs, which are formulated then solved within the
Matlab-based software package COCO [5]. More specifically, we compute isochrons with the
COCO-implementation from [19], and PTCs and DTCs with the method from [29] (which
we implemented in COCO); details can be found in Appendix A. Any resetting surfaces are
rendered from the data of curves computed for a sufficient number of slices.

3.1 PTC and DTC

Figure 15 illustrates three phase resets of system (14) with µ = 1 in the direction d = [1, 0],
that is, with ϕd = 0, for the perturbation amplitudes A = 1.7, A = Ac ≈ 2.0086 and A = 2.3.
Panel (a) shows Γ with the 12 isochrons from Fig. 14(a) and the corresponding perturbations sets;
the resulting PTCs are shown in panel (b). The perturbation set Γ0.2 is close to Γ, surrounds 0
and intersect all isochrons exactly once; its PTC is not only a 1:1 torus knot, but a near-identity
transformation. At A = Ac the point 0 lies on Γ2.0086, and the corresponding PTC is singular
at ϑo = 0.5; as this value is approached from either side, ϑn ∈ R diverges to large negative
values. The computation of this singular PTC stops close to ϑo = 0.5 on the vertical line shown
in Fig. 15(b). The perturbation set Γ3.8 no longer surrounds 0 and the PTC is, indeed, a 1 : 0
torus knot.

Hence, these observations for the Van der Pol system agree with what we found for Winfree’s
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and A = 3.5. Panel (a) shows Γ (black), 12 isochrons uniformly distributed in phase, coloured
from 0 (cyan) to 1 (dark blue), and C0 = γ0 (black dot) C0.5 (orange), C2.0086 (red), and C3.5

(purple). The resulting DTCs in matching colours are shown in the (ϕd, ϑn)-plane in panel (b);
the discontinuity for A = Ac is at ϕd = 0.625. Compare with Fig. 15.

model in Sec. 2.3 with Ac = 1. However, there are also differences and they have to do with
the structure of the isochrons outside Γ. While they spiral out evenly in Winfree’s model, as
shown in Fig. 5(a), they spiral out to infinity very ‘unevenly’ for the Van der Pol system: the
isochrons make excursions to larger and larger, alternatingly positive and negative values of y.
In the process they become almost vertical, and so all phases are covered in ‘vertical strips’ of
the (x, y)-plane, as in the right-hand part of Fig. 15(a); we refer to [18] for a different but similar
planar example with this geometry of the isochrons. As a result, Γ3.8 intersects every isochron
at least four times, which explains why the corresponding PTC is still surjective for this large
value of A.

Figure 16 illustrates in the same way three directional resets centred at γ0, that is, for
ϑo = 0. From Fig. 14(b) we know that the critical transition amplitude for the DTC is again
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Ac ≈ 2.0086, as for the PTC in Fig. 15, because this value corresponds to ϕd = 0 according to
Fig. 14(c). We choose A = 0.5, A = Ac ≈ 2.0086 and A = 3.5 in Fig. 16 for the situations before,
at and after the critical transition amplitude. The perturbation set C0.5 is close to C0 = γ0; it
intersect only nearby isochrons. The corresponding DTC is therfore a 1 : 0 torus knot, and the
graph of a non-surjective function. At A = Ac the DTC is singular, with ϑn diverging towards
large negative values as ϕd = 0.5 is approached from either side. The circle C3.5 surrounds 0
and the DTC is now indeed a 1 :1 torus knot. These observations for the DTC also agree with
our findings for Winfree’s model in Sec. 2.3, but there is again a difference due to the geometry
of the isochrons of the Van der Pol system. As was the case for Γ3.8 in Fig. 15(a), the circle C3.5

intersects the almost vertical strips of repeating isochrons in the right-hand part of the (x, y)-
plane in Fig. 16(a). Consequently, the corresponding DTC has a more complicated structure;
in particular, it is not near the identity on S1 × S1.

Comparison between Figs. 15(b) and 16(b) shows that the singular PTC and the singular
DTC are almost identical after the transformation ϕd = 1 − ϑo, that is, after reflection in the
vertical line with ϑo = 0.5 or ϕd = 0.5. Note here that the respective transition happens for
the same value of Ac ≈ 2.0086 in both cases because we consider the PTC with d = [1, 0] and
the DTC around the point γ0; see Fig. 14(b) and (c). We conclude that duality between PTC
and DTC, which we found to be exact for Winfree’s model as given by the transformation (10)
centred at A = 1, still holds, to good approximation, also for the Van der Pol system centred at
Ac — in spite of the fact that the perturbation set ΓA is now no longer an actual circle (while
CA still is). We proceed by investigating what this duality means for the resetting surfaces, and
the transition through sequences of twin tangencies.

3.2 Resetting surfaces

Figure 17 shows the resetting surface graph(PA) for the Van der Pol system (14) with µ = 1
in (ϑo, ϕd, ϑn)-space over the range ϑn ∈ [−2, 1.5]. To illustrate its transition with A, we now
show graph(PA) for six values of the perturbation amplitude A. For small A, such as A = 1.3 in
panel (a), the two sheets (ϑn-shifted copies) shown in this range of ϑn are parallel, that is, do not
interact. Moreover, in any slice for fixed ϕd there is an increase of ϑn by 1 when ϑo is increased
by 1, while in any slice for fixed ϑo there is no such increase (or decrease) when ϕd is increased
by 1; this is saying that any PTC is a 1 : 1 torus knot, and any DTC is a 1 : 0 torus knot. For
sufficiently large A, such as A = 3 in Fig. 17(f), the two sheets shown in this range of ϑn are
again parallel, but there is now a decrease by 1 in ϑn when ϕd is increased by 1 for any slice
with fixed ϑo, and no similar increase or decrease for slices with fixed ϕd. In other words, any
PTC is now a 1 :0 torus knot, and any DTC a 1:1 torus knot. Hence, for sufficently small and
for sufficiently large A the resetting surface graph(PA) shares its qualitative and structurally
stable properties with the resetting surface for Winfree’s model with spiralling isochrons when
0 < A < 1 and A > 1, respectively; compare with Fig. 7(a) and (c).

On the other hand, the sudden transition from one case to the other in Winfree’s model
at A = 1, shown in Fig. 7(b), is due to rotational invariance and not typical for systems
without this continuous symmetry. The fact that the critical transition amplitude Ac is no
longer constant manifests itself by the existence of an intermediate range of A values where
graph(PA) is topologically different and also structurally stable. For the Van der Pol system,
the dependence of Ac on ϑo and ϕd from Fig. 14(b) and (c) manifests itself in Fig. 17 as follows.
When A has the value A ≈ 1.5317 of the mininima f1 and f∗1 of Ac, there are two asscociated
singularities of graph(PA), which are represented in Fig. 17(b) by the two vertical lines that are
correspondingly labelled f1 and f∗1 as well. Increasing A past this value, leads to the creation
of two pairs of singularities of graph(PA); they correspond to the four branches of Ac and are
labelled s1, s2, s∗1, s∗2 in Fig. 17(c) and (d). Note that, at A ≈ 1.5317, the singularities s1 and s2
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Figure 17: Resetting surface graph(PA) of system (14) with µ = 1, shown in (ϑo, ϕd, ϑn)-space
for ϑn ∈ [−2, 1.5]. Panel (a) is for A = 1.3, (b) for A = 1.5317, (c) for A = 2, (d) for A = 2.3,
(e) for A = 2.8299, and (f) for A = 3. Vertical lines (grey) represent the singularities f1 and f∗1
in (b), s1, s2, s∗1, s∗2 in (c) and (d), and f2 and f∗2 in (e); see Fig. 14(b) and (c), and compare
with Fig. 7.

are created from f1, and s∗1 and s∗2 from f∗1 ; see panel (c). As A is increased further, these points
drift apart and then meet again in a different constellation: s1 moves close to s∗2, and s2 close
to s∗1, as is shown in panel (d). These new pairs of points meet at f∗2 and at f2, respectively,
when A ≈ 2.8299, as shown in panel (e); indeed, this value of A is given by the corresponding
maxima of Ac in Fig. 14(b) and (c). For A > 2.8299 there are no singularities any longer, and
the transition from panel (a) to panel (f) in Fig. 17 is complete.

The intermediate case of the resetting surface graph(PA) with singularities for 1.5317 < A <
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Figure 17: Continued.

2.8299 encodes the structurally stable situation when some DTCs are already 1 : 1 torus knots,
while other DTCs are still 1 : 0 torus knots; and by duality, some PTCs are are already 1 : 0
torus knots, while others are still 1 : 1 torus knots. More specifically, DTCs passing between s∗1
and s∗2, and between s∗1 and s∗2, in Fig. 17(c) and (d) are already 1:1 torus knots; the remaining
ones are still 1 : 0 torus knots, except for the four special DTCs that pass exactly through one
of the singularities; the dual statement holds for the PTCs. As A is increased, there are, hence,
more and more DTCs and PTCs that already changed their torus-knot type, until all of them
have done so after s1 met s∗2, and s2 met s∗1, and the singularities have disappeared.

Unlike for Winfree’s model, the duality between the PTC and the DTC, which we already
observed in Sec. 3.1, is not exact for the Van der Pol system. Rather, it is satisfied to good
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Figure 18: Enlargement of graph(PA) for A = 2 from Fig. 17(c) near the singularities s1 and
s2 (grey vertical lines), shown for ϑo ∈ [−0.12, 0.48], ϕd ∈ [0.05, 0.65] and ϑn ∈ [−1.9, 0.7].
Anticlockwise loops around either s1 or s2 in the (ϑo, ϕd)-plane lift, respectively, to downward
and upward helices on graph(PA) (red curves), while loops around both s1 and s2 lift to closed
loops on graph(PA) (blue curves).

approximation, and this can be explained by considering, for given fixed ϕd, the map

Θ : S1 × R+
0 → R2

(ϑo, A), 7→ γϑo +Ad(ϕd) = γϑo + [A cos(ϕd), A sin(ϕd)].
(16)

The image of Θ is the ‘half-strip’ in the (x, y)-plane of translations of Γ in the direction d(ϕd);
in particular, this map is neither surjective nor injective. Nevertheless, when Θ is restricted to a
neighbourhood of 0, it is invertible, since the distance of Γ to the phaseless set is positive. Hence,
Θ is locally a diffeomorphism and the ‘dual’ of the map Ψ from (11) near 0. The difference
between the two maps lies in whether ϑo or ϕd is the input variable. Indeed, exchanging the
roles of ϑo and ϕd means considering different and perpendicular slices through the resetting
surface graph(PA), that is, switching between considering PTCs versus DTCs.

The resetting surface graph(PA) for 1.5317 < A < 2.8299 crucially features the interaction
near the singularities between its sheets (ϑn-shifted copies). The corresponding topology and
geometry is illustrated in Fig. 18, which shows enlargements near s1 and s2 of the surfaces for
A = 2 in Fig. 17(c). Near each singularity the surface graph(PA) in Fig. 18 is helical, with the
same local geometry as that shown in Fig. 8. However, the ‘wrapping’ of the surface around
line of singularities in Fig. 18 is so ‘sudden’ (due to the fast approach of the isochrons to 0)
that it cannot be seen in Fig. 18; this is why graph(PA) near s1 and s2 looks rather like the
case for non-spiralling isochrons shown in Fig. 4. Nevertheless, the key property is that the
geometry of graph(PA) in the covering space of ϑn is locally akin to a parking garage with two
helical ramps of different orientation in between its parking levels. As Fig. 18 illustrates, any
anticlockwise loop in the (ϑo, ϕd)-plane around just s1 lifts on graph(PA) to a downward helix,
while one around just s2 lifts to an upward helix — each connecting a ‘level’ of graph(PA) with
the one below or above, respectively. A closed loop in the (ϑo, ϕd)-plane around both s1 and
s2, however, lifts to closed a family of loops on graph(PA), that is, does not result in a change
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Figure 19: Resetting surface of system (14) with µ = 1 for fixed ϑo = 0, shown in panel (a) in
(ϕd, A, ϑn)-space with the DTCs for A = 0.5, A = 2.0086 and A = 3.5 from Fig. 16. Panel (b)
shows the associated isochron surface in (x, y, ϑ)-space near 0, with the 12 spiralling isochrons
from Fig. 14(a). Compare with Fig. 8.

of level. In particular, this means that s1 and s2 can indeed meet at f1 and then disappear as
A is decreased. Since, s∗1 is also a downward helix, the situation near s2 and s∗1 is completely
equivalent and, hence, this pair of singularities can also meet and disappear, namely at f2 as A is
increased. These qualitative changes are both due to the transition through a regular extremum
of a Morse function and, hence, generic bifurcations of graph(PA).

Figure 19 illustrates the resetting surface given by the slice of graph(P) for fixed ϑo = 0.
Panel (a) shows it in (ϕd, A, ϑn)-space with its singularity at (ϕd, A) = (0.5, 2.0086). The DTCs
from Fig. 16(b) are shown on the surface, illustrating in a different way how their transition
across the singularity with A changes them from a 1:0 to a 1:1 torus knot. This resetting surface
in Fig. 19(a) is again the image under the inverse of Ψ from (11) of the isochron surface of the
Van der Pol system, which is shown in panel (b). Again, the spiralling nature of the isochrons is
hardly visible at this scale, but this surface is geometrically like that in in Fig. 8(b) for Winfree’s
model (7) with ε = −1, except that the direction of spiralling is reversed. Notice, that there are
some differences further away from the singularity between Fig. 19(a) and Fig. 8(a), due to the
different overall isochron structure of the Van der Pol system.
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3.3 Twin tangencies

The Van der Pol system (14) with µ = 1 becomes surjective at the twin tangency shown in
Fig. 20, which occurs at A ≈ 1.8444. Panel (a) shows that the perturbation set C1.8444 has two
tangencies with I0.3021, and the DTC in panel (b) has a maximum and a minimum that coincide
at ϑn ≈ 0.3021 ∈ S1. Notice that A = 1.8444 is quite far from the critical transition value
Ac ≈ 2.0086 and that both extrema look locally like parabolas that are not very steep. Moreover,
the minimum is not near ϕd = 0.5 but near ϕd = 0, that is, the corresponding tangency with
I0.3021 in Fig. 20(a) occurs near the rightmost point of C1.8444, where the isochrons form parallel,
almost straight curves.

While the twin tangency at A ≈ 1.8444 is responsible for the loss of surjectivity of the DTC,
it is not actually part of the sequence of twin tangencies near 0 that we discussed for Winfree’s
model in Sec. 2.5. Rather, this sequence involves a second pair of a maximum and minumum
of the DTC for A = 1.8444 near ϑn = 0.9. This pair is created at the cubic tangency between
C1.623 and I0.9731 that is also shown in Fig. 20. We remark that these additional extrema of the
DTC for A > 1.623 arise because of a property that is not shared by the spiralling isochrons
of Winfree’s model: the isochrons of the Van der Pol system spiral near Γ in an anticlockwise
direction before they reach a small neighbourhood of 0, around which they spiral in a clockwise
direction.

While the resetting surface in Fig. 19(a) is geometrically as that of Winfree’s model in
Fig. 4(a), the isochrons of the Van der Pol system (14) for µ = 1 form spirals near 0 that are
much steeper. As a result, the corresponding sequence of twin tangencies for increasing k as
A↗ Ac, and that for increasing ` as A↘ Ac, occur in the Van der Pol system extremely close
to the critical transition value Ac. Nevertheless, they do exist, as Fig. 21 illustrates.

More specifically, Fig. 21(a) shows the DTC for A = 2.00861986; it has still two (local)
minuma and two (local) maxima as in Fig. 20(a), but the minimum near ϕd = 0.5 has moved
to lower values of ϑn ∈ R. Both maxima in Fig. 21(a) remain clearly parabola-like, but the
‘excursion’ of the DTC near ϕd = 0.5 occurs over a tiny ϕd-interval and this minimum is very
‘sharp’. Note that it is at ϑn ≈ 0.4272, while the corresponding maximum near ϕd = 0.4 is
at ϑn ≈ 0.9396; hence, the first twin tangency with k = 1 has not yet occured, and the DTC
is geometrically as the DTC for A = 0.7908 of Winfree’s model that is shown in Fig. 9(b1).
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Figure 21: DTCs for ϑo = 0 of system (14) with µ = 1 extremely close to and on either side of the
critical transition value Ac. Panel (a) show sthe DTC in the (ϕd, ϑn)-plane for A = 2.00861986
just before the first twin tangency with k = 1, and panel (b) shows it for A = 2.00861987 at the
last twin tangency with ` = 1. Compare with Fig. 9(b1) and Fig. 12(b1), respectively.

However, the DTC in Fig. 21(a) is the last (for increasing A) that we can compute and that is
still a 1 : 0 torus knot. Figure 21(b) shows the DTC at A = 2.00861987, which is now a 1 : 1
torus knot with an equally sharp minimum. Note that this DTC is actually at the last twin
tangency with ` = 1, since its sharp minumum and the maximum near ϕd = 0.4 have the same
value of ϑn = 0.9396 ∈ S1; this situation is geometrically as that for A = 1.1092 in Fig. 12(b1).
Therefore, we can state that Ac ≈ 2.00861986 is our best estimate for the critical transition
value.

It is clear from these subtle computational results that the ϑn-value of the minimum near
ϕd = 0.5 depends extremely sensitively on A near Ac; indeed, the DTCs shown in Fig. 21 are
right at the limit of what can be achieved numerically.

4 Discussion and outlook

We considered a stable periodic oscillation, represented by an attracting periodic orbit Γ of a
vector field, subject to a perturbations at phase ϑo of the oscillation with any amplitude A
and in any direction d. The resulting phase ϑn, after transients have died down, is encoded
by the phase resetting hypersurface graph(P) of the resetting function ϑn = P(ϑo,d, A). This
generalises the notions of phase response and phase transition curves, which are obtained by
fixing d and A.

We demonstrated the benefits of this extended and geometric approach to phase resetting
with two planar examples: a constructed, rotationally invariant model due to Winfree, where
the isochrons are known analytically, and the Van der Pol system, which needs to be investigated
numerically. For the planar case, slices of graph(P) for fixed A or for fixed ϑo are two-dimensional
surfaces in this case, and we showed how they provide overall geometric insight into the phase
resetting properties of the given oscillating system. Singularities of these surfaces arise when the
perturbation lies on the boundary of the basin of attraction of the periodic orbit, which is the
single repelling focus 0 for our examples. As we showed, the respective resetting surface near
any such singularity is the diffeomorphic image of the isochron surface near the phaseless set
0. This general statement explains, in particular, the duality between the PTCs and the DTCs
locally near their change of type, that is, from 1:1 to 1:0 torus knot, and vice versa. We remark
that Winfree’s helical surface in [47, Fig. 4] is mathematically the case of straight-line isochrons
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— or, in practice, hardly spiralling isochrons. Generically, isochrons do spiral into a repelling
focus, and we showed that this implies the existence of associated sequences of twin tangencies
on either side of the critical transition value.

Winfree’s model is representative near 0 for the case that the period of the periodic orbit
is different from that of the repelling focus and the isochrons are actual spirals around it.
This statement follows from the fact that (according to the Hartman-Grobmann theorem) the
dynamics is practically linear sufficiently close to the focus: in this limit, the isochrons are indeed
logarithmic spirals that map to each other under rigid rotations, as in Winfree’s model. This
configuration of isochrons can be found, in particular, past a Hopf bifurcation of the focus that
generates the attracting periodic orbit; see also [28].

On the other hand, Winfree’s model is very special because its rotational invariance holds
globally, and not just locally near 0. In particular, its periodic orbit Γ is an exact circle around
0, and this is not representative of general planar systems. Generically one expects the distance
of points on Γ to the repelling focus to be a smooth periodic function with isolated maxima and
minima. This is indeed the case for the Van der Pol system, and we explained the consequences
of this loss of symmetry: the resetting surface now has singularities for a range of perturbation
amplitudes, between well-defined minimal and maximal values, where they (dis)appear in pairs
at regular folds. The Van der Pol system is also typical in that its isochrons do not have analytic
expressions and, hence, need to be computed numerically. The same is indeed also true for the
PTCs, DTC and associated resetting surfaces. This is not an impediment to the approach taken
here: as we demonstrated, these objects, including surfaces with several singularities, can be
computed efficiently and accurately with a BVP setup. Finding the associated twin tangencies,
however, is a real challenge in this case, because the spiralling nature of the isochrons of the
Van der Pol system is hardly discernible near 0.

We believe that it will be interesting to study and represent resetting behaviour via resetting
surfaces also in other oscillatory systems. Even for the planar case, the isochron structure near
the basin boundary may be much more complicated. Already when the boundary is still a single
repelling equilibrium, the isochrons near it need not be simple spirals. Rather, they can feature
sudden turns, also referred to as boomerang turns [27, 33]. This phenomenon typically arises
in the presence of slow-fast dynamics, and it has been explained by the existence of quadratic
tangencies between the simultaneously existing foliations by the (forward-time) isochrons of the
attracting periodic orbit and by the (backward-time) isochrons of the repelling focus; see [28]
for details. The geometry of isochrons when the basin boundary consists of more than a single
point is discussed in [18] by means of a case study of a family of planar vector fields that is also
invariant under rotation by π, just as the Van der Pol system. The resetting surfaces in this
setting will be interesting objects of study, since their local geometry encodes and reflects how
the isochrons accumulate on such a more complicated phaseless set.

Understanding phase resetting geometrically in systems of dimension at least three is a chal-
lenge that may also be addressed in the general spirit of the approach taken here; see also
[29]. Parametrising the vector d now requires at least two angles and, hence, graph(P) is
higher-dimensional. Nevertheless, and possibly guided by what is perturbation can be gener-
ated in a particular application context, one may restrict d to lower-dimensional subsets, so
that corresponding slices of graph(P) are still actual two-dimensional resetting surfaces consist-
ing of PTCs and DTCs. Their geometric properties will reflect certain aspects of the phase
response. In particular, singularities on resetting surfaces encode how (intersection sets of)
higher-dimensional isochrons accumulate on (intersection sets of) parts of the basin boundary.
Our numerical tools can be employed in this higher-dimensional setting, and our ongoing work
concerns phase resetting in the three-dimensional Yamada model of a self-pulsing laser [10, 50]
and in a four-dimensional example of two coupled Van der Pol oscillators.
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Figure 22: Schematic of the BVP setup with the periodic orbit Γ (black) of the Van der Pol
system (14) with µ = 1, showing the orbit segment u (magenta) with begin point u(1) =
γϑo + Ad(ϕd) (here for ϑo = 0.5, ϕd = 0 and A ≈ 1.8871) and end point u(1) on the stable
vector vϑn (blue) at γϑn (here for ϑn = 0.15), and the orbit segment w (grey) with w(0) = γ0

and w(1) = γϑn .
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A BVP setup for computing resetting surfaces

Winfree constructed system (7) in such a way that the isochrons are known as parametrised
curves given by (6). As we explained, this yields implicitly defined expressions for the PTCs,
the DTCs and the phase resetting surface graph(P), which we used to compute and render these
objects.

However, it is not possible to derive formulas for the isochrons of a general vector field, such as
the Van der Pol system (14). Hence, its isochrons, PTCs, DTCs and resetting surfaces of interest
need to be computed numerically. To this end, we implemented the multi-segment boundary
value problem (BVP) setup from [29] in the Matlab-based software package COCO [5], where we
started from the demo files for computing isochrons in [19]. We present, here, for completeness
a high-level explanation of the overall setup; the complete required boundary conditions can be
found in [27, 28, 33] for computing isochrons, and in [19] for computing PTCs or DTCs. The
computation of phase resetting curves can be performed for systems of any dimension, but we
restrict here to the planar case where the direction vector d is given by the single angle ϕd ∈ S1.

The overall setup is sketched in Fig. 22 for the example of the Van der Pol system (14) with
µ = 1. Its central object is an orbit segment u = {u(s) | s ∈ [0, 1]} that satisfies the differential
equation

u′ = K TΓ F (u), (17)

where time is rescaled by an integer multiple K ∈ N of the period TΓ of Γ. At the begin and
end points of u we impose the boundary conditions

u(0) = γϑo +Ad(ϕd) = γϑo +A [cos (ϕd), sin (ϕd)], (18)

u(1) = γϑn + η vϑn . (19)
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Here, vϑn is the stable unit eigenvector at the point γϑn ∈ Γ and η ∈ R is small. For this
setup, it is assumed that we know γϑo for any ϑo ∈ S1, as well as γϑn and vϑn for any ϑn ∈ S1.
In practice, this is achieved as follows. The periodic orbit Γ with its period TΓ and its stable
Floquet bundle are computed with a separate and quite standard BVP formulation with begin
and end points at γ0; for the latter, we use the formulation from [19, 33] with the adjoint
variational equation. Moreover, an auxiliary orbit segment w with w(0) = γ0 and w(1) = γϑn
(and associated integration time), shown as the grey segment in Fig. 22, implements a ‘shift’
along Γ by ϑn and, hence, determines γϑn and vϑn ; see [29] for the details.

The key idea is that the orbit segment u with the boundary conditions (18) and (19) im-
plements the defining property (3) with d = d(ϕd) of the resetting function P. Namely, for
sufficiently small η, the point u(1) lies on Iϑn to good approximation and, therefore, so does
u(0) since it maps to u(1) under K iterations of the time TΓ-map according to (17). We stress
that this BVP formulation is very flexible. First of all, by selecting η as the continuation param-
eter that varies over an approximate fundamental domain near γϑn one can compute the isochron
Iϑn for given ϑn ∈ S1; see [19, 27, 33]. For the computation of resetting curves, there is complete
freedom to choose either ϑo, ϕd or A as continuation parameter, while keeping the other two
at fixed values of interest. Importantly, one can switch between different types of computations
by changing which of these parameters is varied during a continuation. More specifically, fixing
ϕd and A and varying ϑo gives the corresponding PTC as ϑn(ϑo) and, likewise, fixing ϑo and
A and varying ϕd gives the corresponding DTC as ϑn(ϕd). By appropriately switching between
these two options, we compute a set of PTCs for a sequence of ϕd-values and/or a set of DTCs
for a sequence of ϑo-values. Either of these sets of curves are then uses to render graph(PA)
as a surface; to this end, we generate a suitable mesh from the curve data in the spirit of [20].
Changing to a continuation in A allows us to generate start data for any chosen value of A. A
slice of graph(P) for fixed ϑo is computed from a set of DTCs in an analoguous way.

The respective one-parameter family of solutions of the overall multi-segement BVP is found
in COCO by its orthogonal collocation BVP solver in conjunction with pseudo-arclength con-
tinuation. Notice that for ϑo = ϕd = A = 0 the orbit segment representing Γ is a solution of (18)
and (19) with η = 0 and for any K; hence, this special case can be used to start a continuation
run. The advantage of implementing this in the software package COCO is that the number
of mesh intervals for the discretisation of each segment can be chosen separately [5]. This is
particularly useful here, because the orbit segment u is typically very long, compared with w
and the orbit segments that represent Γ and its Floquet bundle.
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