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Abstract

We consider the bifurcation diagram in a suitable parameter plane
of a quadratic vector field in R3 that features a homoclinic flip bifurca-
tion of the most complicated type. This codimension-two bifurcation is
characterized by a change of orientability of associated two-dimensional
manifolds and generates infinite families of secondary bifurcations. We
show that curves of secondary n-homoclinic bifurcations accumulate on
a curve of a heteroclinic bifurcation involving infinity.

We present an adaptation of the technique known as Lin’s method
that enables us to compute such connecting orbits to infinity. We first
perform a weighted directional compactification of R3 with a subse-
quent blow-up of a non-hyperbolic saddle at infinity. We then set up
boundary-value problems for two orbit segments from and to a com-
mon two-dimensional section: the first is to a finite saddle in the reg-
ular coordinates, and the second is from the vicinity of the saddle at
infinity in the blown-up chart. The so-called Lin gap along a fixed
one-dimensional direction in the section is then brought to zero by
continuation. Once a connecting orbit has been found in this way, its
locus can be traced out as a curve in a parameter plane.

1 Introduction

Homoclinic flip bifurcations are bifuractions of codimension two that occur
in families of continuous-time dynamical systems, given by ODEs or vec-
tor fields, whose phase space is of dimension at least three. This type of
bifurcation of a homoclinic orbit to a real hyperbolic saddle—a special tra-
jectory that converges both in forward and backward time to the saddle
equilibrium—occurs when a stable or unstable manifold transitions, when
followed along the homoclinic orbit, from being orientable to being non-
orientable, or vice versa. While such a change of orientability may occur
in higher-dimensional phase spaces, the characterization of homoclinic flip
bifurcations and their unfoldings have been studied in detail mostly for the
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lowest-dimensional case of a three-dimensional systems, both from a theo-
retical [10, 18, 19, 20, 22, 31] and a numerical point of view [1, 15, 16, 8, 21].

In three-dimensions, which is the case we also consider here, the ori-
entability of a homoclinic orbit is determined by the orientablility of the
two-dimensional (un)stable manifold. The saddle equilibrium is assumed to
be a hyperbolic saddle, meaning that it has one or two stable and two or
one unstable eigenvalues, respectively. In the case of one stable eigenvalue,
which we encounter in the example vector field below, its stable manifold
is one dimensional, that is, a curve consisting of two trajectories that con-
verge to the saddle in forward time; its unstable manifold is two dimensional,
that is, a surface formed by all trajectories that converge to the saddle in
backward time. Generically, this surface, when followed locally along the
homoclinic orbit in backward time to the equilibrium, closes up along the
one-dimensional strong unstable manifold, which is tangent to the strongest
unstable eigendirection of the saddle, to form either a cylinder in the ori-
entable case, or a Möbius strip in the non-orientable case. The orientability
of the homoclinic orbit, that is, of the two-dimensional unstable manifold
(in this case), can change in three different ways:

1. the two unstable eigenvalues become complex conjugate and the equilib-
rium turns into a saddle-focus;

2. orbit flip: the one-dimensional stable manifold returns (in backward time)
to the equilibrium tangent to the strong unstable eigendirection (instead
of the weakest unstable eigendirection);

3. inclination flip: the two-dimensional unstable manifold when followed
along the homoclinic orbit is tangent to the plane spanned by the stable
and weak unstable eigendirections (instead of the plane spanned by the
stable and strong unstable eigendirections).

The first case, when the saddle equilibrium has a double leading eigenvalue,
is known as a Belyakov bifurcation [6, 7] and a numerical study of its sim-
plest unfolding was performed in [8, 25]; see also [2]. Both the orbit flip
and inclination flip bifurcations have similar unfoldings, which are split into
three different generic cases, referred to as A, B and C, depending on the
eigenvalues of the saddle equilibrium; see [18, 19, 20, 21] for the actual eigen-
value conditions. In a two-parameter unfolding, case C, which is the most
complicated one, gives rise to infinitely many curves of secondary bifurca-
tions, including saddle-node, period-doubling, and n-homoclinic bifurcations
(which involve so-called n-homoclinic orbits that make n− 1 close passes of
the equilibrium before returning to it). Moreover, there are two different
unfoldings with quite different arrangements of the associated secondary bi-
furcations, called inward twist Cin and outward twist Cout; which of the
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two unfoldings occurs is determined by global geometric properties of the
two-dimensional manifold [10, 18].

We previously conducted numerical studies of the unfoldings of the differ-
ent homoclinic flip bifurcations, with a particular focus on clarifying changes
of two-dimensional global invariant manifolds [1, 15, 16]. To this end, we
studied a model vector field developed by Sandstede [32, 33]: a system of
three ordinary differential equations with eight parameters, which contains
all three cases A, B and C of both orbit flip and inclination flip bifurcations
for suitable choices of the parameters; the underlying homoclinic orbit is al-
ways to the saddle located at the origin. However, all unfoldings of case C in
Sandstede’s model are outward twisted for the inclination flip [33]. Further-
more, we considered the case of the orbit flip in Sandstede’s model and did
not find a parameter regime where the unfolding of case C is inward twisted.
In fact, no explicit example of a vector field with the inward-twisted case
Cin of a flip bifurcation was known.

This has changed very recently, when Algaba, Domı́nguez-Moreno, Merino,
and Rodŕıguez-Luis [3] found an example of a three-dimensional quadratic
system with an inward-twisted homoclinic flip bifurcation. More precisely,
they presented the system

ẋ1 = a + x2 x3,

ẋ2 = −x2 + x21,

ẋ3 = b − 4x1

(1)

and showed that it exhibits a codimension-two homoclinic orbit flip bifurca-
tion of type Cin of a saddle p when a ≈ −1.20338 and b ≈ 1.89616. This was
achieved by identifying the orbit flip homoclinic bifurcation numerically in a
parameter regime where the eigenvalue condition at p of case C is satisfied,
and then computing a sufficient number of secondary bifurcation curves em-
anating from this codimension-two point to show that it unfolds as case Cin.
Note that the homoclinic orbit is not to the origin but to the equilibrium
p = (x1, x2, x3) = (b/4, b2/16, −16 a/b2), which exists provided b 6= 0.

Algaba et al. [3] studied the local bifurcation structure near Cin in quite
some detail. We are interested here in how the unfolding of Cin is embedded
more globally in an overall bifurcation diagram. An interesting aspect of
system (1) is that it has only one finite equilibrium, the origin that is involved
in the homoclinic bifurcation. By contrast, in Sandstede’s model there exists
a second equilibrium, and we found that it is responsible for additional global
bifurcations in the overall bifurcation diagram, including connecting orbits
to the origin [1, 15, 16].

In this paper, we focus on a particular global feature of system (1),
namely connecting orbits to a second equilibrium q∞ that, intriguingly, is
located at infinity. More specifically, we study the bifurcation diagram near
Cin in a suitable two-parameter plane and show that it features curves of
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n-homoclinic bifurcation that emanate from Cin. We find that these curves
accumulate, as n increases, on a curve of heteroclinic bifurcations involving
infinity, given by the existence of a connecting orbit of codimension-one
from the finite equilibrium p to the equilibrium q∞ at infinity. Hence, the
bifurcation diagram near the codimension-two orbit flip point Cin in the
quadratic system (1) features global connecting orbits to infinity.

To address the challenge of finding such connecting orbits to infinity,
we adapt the numerical technique from [23], referred to as Lin’s method,
for computing connecting orbits between finite objects. More precisely, we
modify system (1) by translating the equilibrium p to the origin 0 and by
introducing a third parameter that helps separate the very closely spaced
bifurcations. For the transformed system, we perform a weighted direc-
tional compactification of phase space to study the behavior at infinity. The
analysis at infinity involves an additional blow-up transformation to under-
stand the behavior of solutions approaching q∞ in backward time; these are
bounded in the blow-up chart by a two-dimensional surface related to a spe-
cific periodic orbit at infinity. To set up Lin’s method, we choose a section Σ
that is well defined in the original coordinates as well as the blow-up chart
near infinity. We then consider and compute two orbit segments, from this
periodic orbit surrounding q∞ to Σ and from Σ to 0, such that their end
points in Σ lie in the so-called Lin space. In this way, we obtain a well-defined
and computable test function, which is zero exactly at the parameter values
where there exists a connecting orbit to q∞. All our computations are per-
formed via the continuation of solutions to suitable two-point boundary value
problems with the pseudo-arclength continuation package Auto [11, 12] and
the homoclinic continuation toolbox HomCont [9].

This paper is organized as follows. In the next section, we introduce the
transformed system with a homoclinic orbit to the origin. Furthermore, we
identify the codimension-two point Cin and present a bifurcation diagram
in two parameters that suggests the need for the analysis of the dynamics
at infinity. Section 3 presents the compactification and the blow-up analysis
in different charts at infinity. We use these results in Section 4 to set up
Lin’s methods by defining a suitable boundary value problem to compute
the boundary of the existence of connecting orbit from 0 to the equilibrium
q∞ at infinity. Section 5 then explains how this set-up can also be used
to find connecting orbits from a saddle periodic orbit to infinity. In the
final Section 6 we draw conclusions and point to some directions for further
research.
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2 Codimension-two orbit flip bifurcation of inward-
twisted type Cin

A homoclinic flip bifurcation of case C is the global bifurcation of the lowest
codimension that involves a real saddle equilibrium (its eigenvalues relevant
to the bifurcation are all real) and gives rise to chaotic dynamics. While its
complete unfolding is not fully understood, a lot is known about the dynanics
nearby [18, 19, 20, 22, 31, 16, 21]. It has been proven that there exists a
nearby parameter region with Smale-horseshoe dynamics, and this means
that infinitely many saddle periodic orbits are created near this codimension-
two point. The precise way in which this occurs is organized by cascades
of period-doubling and saddle-node bifucations as well as cascades of n-
homoclinic bifurcations; these infinitely many different bifurcations occur
arbitrarily close in parameter space to the homoclinic flip bifurcation point.
The difference between the two cases Cour and Cin lies in the positions of
these cascades relative to the primary homoclinic orbit that undergoes the
flip bifurcation.

Algaba et al. [3] identified an orbit flip bifurcation of system (1), and
computed and presented several bifurcation curves in the (a, b)-parameter
plane to show that the bifurcation diagram is that of inward-twisted type
Cin. Unfortunately, the bifurcations for system (1) occur extremely close
together and it is not easy to distinguish them. Furthermore, the multi-loop
periodic orbits that are created in the n-homoclinic bifurcations come very
close to the saddle equilibrium and do not extend far in phase space. In a
bid to ameliorate this, we move the unique equilibrium p of (1) to the origin
and introduce a third parameter to obtain the system

ẋ = α y + γ z + y z,
ẏ = β x − y + x2,
ż = −4x.

(2)

Here, the new variables are given by (x, y, z) = (x1 − b/4, x2 − b2/16, x3 +
16 a/b2) and the new parameters by α = −16 a/b2, β = b/2, and γ = b2/16.
The new parameter γ allows us to improve the separation of bifurcating
periodic orbits from 0, the only equilibrium of system (2). The parameters
α and β are allowed to vary as the unfolding parameters of the orbit flip
bifurcation, while we fix γ = 0.5 throughout our investigation.

System (2) is our object of study. To find the orbit flip bifurcation in the
(α, β)-plane for γ = 0.5, we start from the parameter values corresponding
to those reported in [3] and continue the (primary) homoclinic bifurcation
to γ = 0.5. Next, we continue the locus of the homoclinic bifurcation as a
curve in the (α, β)-plane while keeping γ = 0.5 fixed throughout all subse-
quent computations. On the curve of homoclinic bifurcations, we detect the
orbit flip point, which we denote Cin, at (α, β) ≈ (5.3573, 2.19173). At this
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parameter point the origin 0 has eigenvalues λs ≈ −3.7444, λu ≈ 0.2108, and
λuu ≈ 2.5335. Hence, at Cin, and also nearby, the point 0 is a hyperbolic
saddle with a one-dimensional stable manifold W s(0) and a two-dimensional
unstable manifold W u(0). Moreover, the condition | −λuu |< −λs on the
eigenvalues for an orbit flip of case C is indeed satisfied at Cin [21, 32].

Figure 1 shows the partial bifurcation diagram for system (2), which pro-
vides the numerical evidence that we are indeed dealing with an orbit flip
of inward-twisted type Cin. The curve of (primary) homoclinic bifurcation
in the (α, β)-plane is separated by the orbit flip point Cin into a branch
Ho of orientable and a branch Ht of non-orientable or twisted homoclinic
bifurcation. Subsequently, we found and continued other bifurcation curves
emanating from Cin, namely, curves SNP of saddle-node bifurcation of peri-
odic orbits (green), PD and PD2 of period-doubling bifurcation, and Hn of
n-homoclinic bifurcation for n = 2, . . . , 6. Figure 1(a) shows the bifurcation
diagram in the (α, β)-plane of (2). Because the different bifurcation curves
are still a bit hard to distinguish in the (α, β)-plane, panel (b) shows them
relative to the curve Ho/t of primary homoclinic bifurcation. More specifi-

cally, we show the (α, β̂)-plane, where β̂ represents the distance to Ho/t with
respect to the β-coordinate. Hence, the curve Ho/t is now the α-axis where

β̂ = 0. Figure 1(b) illustrates that all bifurcation curves emanate from the
point Cin on the side of Ho; in particular, the curves Hn of n-homoclinic bi-
furcation are tangent to Ho near Cin, as can be seen in panel (c). Moreover,
the curve SNP, as well as the first two curves PD and PD2 of a cascade of
period-doubling bifurcations lie on one side of Ho/t, while the curves Hn lie
on the other side. These are all characteristic features that distinguish the
inward twist from the outward twist [16, 32, 33]. Hence, we conclude that the
codimension-two point Cin of (2) for γ = 0.5 is of the same inward-twisted
type as that of (1) found in [3].

Figure 2 illustrates the transition through the orbit flip bifurcation along
the curve Ho/t. On both sides of Cin, the one-dimensional stable manifold
W s(0) returns to 0 tangent to the weak stable eigendirection to form the
homoclinic orbit ΓHOM. At the same time, the two-dimensional unstable
manifold W u(0) returns back to the saddle 0 and closes up along the one-
dimensional strong unstable manifold W uu(0) ⊂W u(0). The shown part of
the surface consists of a family of orbit segments that start at distance of 10−3

from 0; it has been computed with the boundary-value problem set-up from
[15, 16, 24]. The two typical cases of homoclinic bifurcation are that W u(0)
either forms a cylinder along Ho or a Möbius strip along Ht, depending on
which side of W uu(0) the stable manifold W s(0) returns. This is illustrated
in Fig. 2 by the different positions on the surface W u(0) of the curve W uu(0)
relative to the homoclinic orbit; see especially the enlargements. The change
in orientability occurs at the point Cin when W s(0) returns to 0 exactly
along W uu(0), which is represented in Fig. 2 by the respective branches of
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Figure 1: Bifurcation diagram of system (2) showing: the curve of primary
homoclinic bifurcation (brown), along which the homoclinic orbit changes
at Cin from being orientable along Ho to being non-orientable along Ht;
curves SNP and SNP3 (green) of saddle-node bifurcation of periodic orbits;
the first two curves PD and PD2 (red) of a cascade of period-doubling
bifurcations; and the curves Hn (increasingly darker shades of cyan) of n-
homoclinic bifurcations for n = 2, 3, 4, 5, and 6. On Hn there are points
Cn

O of orbit flip bifurcations (blue dots) and on H2 there is a point C2
I

of inclination flip bifurcation (open dot). Panel (a) shows the (α, β)-plane,
while panel (b) shows the (α, β̂)-plane, where β̂ is the distance in the β-
coordinate from the curve Ho/t of primary homoclinic bifurcation, which is

now at β̂ = 0 (brown horizontal line). Panel (c) is an enlargement of the
(α, β̂)-plane near Cin.
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Figure 2: Phase portraits of system (2) along Ht, at Cin and along Ho

with enlargements near the saddle 0 (top row). Shown are the saddle 0,
the homoclinic orbit ΓHOM (brown curve) formed by one branch of W s(0),
the other branch of W s(0) (cyan curve), a first part of W u(0) (red surface),
and W uu(0) (magenta curve). Here (α, β) = (5.8, 1.7010) in panel Ho,
(α, β) = (5.3573, 2.1917) in panel Cin and (α, β) = (5.1, 2.717) in panel Ht.

the two manifolds coinciding in panel Cin. As a result, the surface W u(0)
comes back tangent to the strong direction and so is neither orientable nor
non-orientable.

The top-left region of the bifurcation diagram in Fig. 1(b), to the left
of SNP and above Ht, is the only region where system (2) has no periodic
orbits as a result of the flip bifurcation. Upon crossing Ht, a single saddle
periodic orbit Γt is created, which is non-orientable; hence, it has negative
nontrivial Floquet multipliers. When followed around the point Cin, the
periodic orbit Γt persists throughout the different regions in the bifurcation
diagram until the curve PD, where it merges with a repelling period-doubled
orbit in a subcritical period-doubling bifurcation. This turns Γt into an
attracting periodic orbit, which exists in the region between the curves PD
and SNP. Since Γt is now attracting, it can transform from a non-orientable
to an orientable periodic orbit, which allows it to bifurcate at SNP with the
orientable saddle periodic orbit Γo that is created upon crossing Ho into the
region with β̂ > 0.

Many more periodic orbits are created and disappear again near the orbit
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Figure 3: The primary homoclinic orbit on Ht and the n-homoclinic orbits
H2 to H6 of (2) for α = 5.3, shown in R3 in brown and increasingly darker
shades of cyan to match the colors of the corresponding bifurcation curves
in Fig. 1.

flip point Cin, and we now turn our attention to an associated global feature
of the bifurcation diagram: the nature of the curves Hn of n-homoclinic
bifurcations. Observe in Fig. 1(b) that each of the curves H2 to H6 ema-
nating from Cin has a fold (a maximum) with respect to α and then extends
towards decreasing α and β̂, past the α-value of the point Cin. Hence, all
these curves also exist on the side of Ht. The curve PD2 emanating from
Cin ends on the curve H2 at a codimension-two orbit flip bifurcation point
C2

O, quite close to the fold. We find that the bifurcation diagram in the
(α, β)-plane is even more complicated than was suggested in [3]. We identify
codimension-two inclination flip bifurcation points Cn

I on each of the curves
H2 to H6, again very close to where they have a fold with respect to α;
see the enlargement Fig. 1(c). Also shown in all panels is the curve SNP3

of saddle-node bifuraction of periodic orbits that emanates from C3
I . We

observe that for sufficiently small values of α the n-homoclinic orbits along
the curves H3 to H6 are non-orientable.

The computed curves H2 to H6 in Fig. 1 suggest that they are part
of a family of curves Hn that accumulate on a well-defined limiting curve.
Therefore, we now focus on the limiting behavior of the curves Hn and of
the associated n-homoclinic orbits as the number of loops n increases. The
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homoclinic orbits on Ht and H2 to H6 for fixed α = 5.3 are shown in Fig. 3,
where they are assigned the same color as the corresponding curves in Fig. 1.
Each time, from one panel to the next, the branch of W s(0) that forms
the homoclinc orbit has one extra loop before closing up. Notice that, with
increasing n, the additional loops of the homoclinic orbit extend increasingly
futher along the y-direction. This behavior is intriguing, because it suggest
that the n-homoclinic orbits converge with n to a heteroclinic connection
from 0 to an equilibrium or periodic orbit at infinity, which corresponds
to the limiting case of an infinite number of larger and larger loops. This
suggests that the curves Hn in the two-parameter plane accumulate onto a
curve of such heteroclinic bifurcations involving infinity, which is, therefore,
expected to be of codimension one.

3 Characterizing the dynamics at infinity

For the purpose of finding a possible heteroclinic bifurcation involving in-
finity, we must identify equilibria or periodic orbits at infinity. We take
advantage of the fact that system (2) is a polynomial vector field, which
means that we can compactify the phase space. In general terms, the be-
havior at infinity is given, after a suitable compactification, by the terms
of highest order. We identify and analyze different invariant objects in new
coordinate charts that represent the dynamics at and near infinity. This
approach makes it possible to continue equilibria or other special solutions
as they interact in degenerate bifurcations at infinity [15]. The purpose here
is to use charts at infinity to set up a well-posed boundary value problem
with a solution that represents the heteroclinic connection to infinity.

More specifically, we follow the recent work by Matsue [28] to obtain a
suitable Poincaré compactification for system (2); see also [17, 29, 30]. The
underlying idea was already proposed in [13] for planar vector fields, where
it is defined as a directional blow-up for so-called quasi-homogeneous vector
fields. In our context, this means applying a directional compactification in
the direction of positive y, because the n-homoclinic orbits extend predom-
inantly in the y-direction as n increases, while their x- and z-components
remain relatively bounded.

Note that system (2) is not quasi-homogeneous. However, investigation
of the leading terms of the right-hand side of system (2) in the limit to
infinity shows that it is asymptotically quasi-homogeneous [28] to the quasi-
homogeneous vector field of type (3, 4, 1) and order 3 given by

ẋ = y z,
ẏ = x2,
ż = −4x.

(3)

The powers of the directional blow-up are then determined by the type of the
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quasi-homogeneous system (3), which leads to the coordinate transformation

(x, y, z) 7→ (x̄, z̄, w̄), x =
x̄

w̄3
, y =

1

w̄4
, and z =

z̄

w̄
.

These coordinates define the chart with y > 0, and w̄ represents the dis-
tance to infinity in the y-direction. More precisely, let (xs, ys, zs) be the
transformed coordinates of system (3) inside the Poincaré sphere centered
at the origin, where directions of escape to infinity are represented by points
on the sphere of radius one. In these coordinates, (x̄, ȳ, z̄) correspond to
the projection of the positive ys-hemisphere of the two-dimensional Poincaré
sphere onto the plane defined by ys = 1. The resulting weighted directional
compactification then becomes

˙̄x =
1

w̄2

(
z̄ + α w̄ + 3

4 x̄ [w̄2 − β w̄3 x̄− x̄2] + γ z̄ w̄4
)
,

˙̄z =
1

w̄2

(
−4x̄+ 1

4 z̄ [w̄2 − β w̄3 x̄− x̄2]
)
,

˙̄w =
1

w̄2

(
1
4 w̄ [w̄2 − β w̄3 x̄− x̄2]

)
.

It can be desingularized via a rescaling of time with the factor w̄2, yielding
the desingularized vector field that contains the dynamics at infinity as

˙̄x = z̄ + α w̄ + 3
4 x̄ (w̄2 − β w̄3 x̄− x̄2) + γ z̄ w̄4,

˙̄z = −4x̄+ 1
4 z̄ (w̄2 − β w̄3 x̄− x̄2),

˙̄w = 1
4 w̄ (w̄2 − β w̄3 x̄− x̄2).

(4)

Remark 1 It is also possible to perform a standard directional Poincaré
compactification that gives all variables the same weight. However, we found
that this leads to highly non-hyperbolic dynamics in the chart with y > 0 so
that the dynamics at infinity is difficult to characterize. This issue would
then have to be resolved via a blow-up procedure with exponents that take
into account the weighting used to obtain system (4).

We are now ready to analyze the dynamics at infinity and decide whether
it contains equilibria or periodic orbits that could be involved in a suspected
heteroclinic connection. To this end, we set w̄ = 0 in system (4) and observe
that the (x̄, z̄)-plane is indeed invariant. The resulting system{

˙̄x = z̄ − 3
4 x̄

3,

˙̄z = −4x̄ − 1
4 x̄

2 z̄,
(5)

has a single equilibrium at (x̄, z̄) = (0, 0), which is, in fact, not hyperbolic.
This equilibrium is the equilibrium q∞ at infinity in system (2). To un-
derstand the dynamics at infinity, that is, on the (x̄, z̄)-plane, we convert to
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Figure 4: Dynamics at infinity for system (5), or system (4) with w̄ = 0,
shown in the (x̄, z̄)-plane in panel (a). Panel (b) shows the projection of
panel (a) onto the corresponding Poincaré half-sphere with ys > 0 in the
compactified (xs, ys, zs)-cordinates.

polar coordinates. More precisely, we consider the ellipsoidal transformation

(x̄, z̄) 7→ (r̄, θ̄), x̄ = r̄ cos θ̄, and z̄ = 2r̄ sin θ̄.

The vector field in these ellipsoidal polar coordinates becomes{
˙̄r = −1

4 r̄
3 cos2 θ̄

(
2 + cos 2θ̄

)
,

˙̄θ = −2 + 1
2 r̄

2 cos3 θ̄ sin θ̄.

Note that ˙̄r < 0 for all (r̄, θ̄) with r̄ > 0, and that ˙̄θ < 0 and close to −2 as
soon as r̄ is small enough. Hence, all trajectories in the (x̄, z̄)-plane converge
to q∞, which lies at the origin in this planar coordinate system; moreover,
locally near q∞, trajectories will spiral clockwise towards it. This behavior
is illustrated in Fig. 4, where we plot several trajectories in the (x̄, z̄)-plane
in panel (a) and project them back onto the Poincaré sphere in panel (b);
note that system (5) only describes the dynamics in the chart with ys > 0,
and only the corresponding half-sphere is shown.

In the full three-dimensional blown-up system (4), the point q∞ at
(x̄, z̄, w̄) = (0, 0, 0) is not a hyperbolic attractor. Therefore, we perform
an additional w̄-directional blow-up by applying the transformation

(x̄, z̄, w̄) 7→ (xB, zB, wB), x̄ = xBwB, z̄ = zBwB, and w̄ = wB,
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(a)

zB

xB

(b)

Figure 5: Dynamics near the equilibrium (x̄, z̄, w̄) = (0, 0, 0) of system (4).
The behavior in the (xB, zB)-plane, that is, the blow-up chart (6) with wB =
0, is shown in panel (a). It corresponds to the dynamics on a half-sphere
around the origin in the (x̄, z̄, w̄)-space, as is illustrated in panel (b); compare
also with Fig. 4(a).

to system (4). This gives the vector field
ẋB = α+ zB + γ w4

B zB + 1
2xBw

2
B (1− β xBw2

B − x2B),

żB = −4xB,

ẇB = 1
4w

3
B (1− βxBw2

B − x2B),

(6)

which further characterizes the dynamics at infinity on a local half-sphere
around q∞. Setting wB = 0 in system (6), we find that the invariant (xB, zB)-
plane is foliated by ellipses of the form 4x2B+(zB+α)2 = c2; see Fig. 5(a). The
trajectories in the (xB, zB)-plane correspond to trajectories on the blown-up
half-sphere with w̄ > 0 centered at (x̄, z̄, w̄) = (0, 0, 0). Figure 5(b) gives
an impression of how the previously identified dynamics at infinity interacts
with the blown-up half-sphere in the (xB, zB, wB)-space.

The next step is to determine the property of system (6) for w̄ > 0.
First, we resort to numerical simulation and determine how initial con-
ditions with w̄ > 0 approach the (xB, zB)-plane. Figure 6 shows that
there are two types of behavior. Panel (a) shows two trajectories of sys-
tem (6) for (α, β) = (5.3, 2.0), obtained by integration in both forward and
backward time from the initial conditions (xB, zB, wB) = (1,−α, 0.05) and
(xB, zB, wB) = (1.3,−α, 0.05), respectively. The former initial condition
leads to a trajectory (orange) that converges in backward time in a spiral-
ing fashion to the equilibrium (xB, zB, wB) = (0,−α, 0) of (6). The other
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(a)
zB

xB

wB (b)

0.05

0.1

wB

-2.0 0.0 2.0 xB

Sc

Figure 6: Numerical simulations suggest the existence of a cylinder-shaped
separatrix Sc of system (6) between trajectories that converge to the equilib-
rium (xB, zB, wB) = (0,−α, 0), such as the orange trajectory, and those that
do not, such as the blue trajectory. Panel (a) shows the (xB, zB, wB)-space
near (0,−α, 0) and panel (b) the associated intersection sets with with the
plane defined by zB = −α.

trajectory (blue) first approaches the (xB, zB)-plane in backward time but
then diverges away from it; in particular, it does not reach the equilibrium
(xB, zB, wB) = (0,−α, 0). This is illustrated further in Fig. 6(b) in a local
cross-section defined by zB = −α. Notice that the two trajectories are very
close together before they separate in backward time at about w̄ = 0.08.

We conclude that there exists an invariant critical surface Sc that sepa-
rates the two qualitatively different regions in phase space where trajectories
converge to (xB, zB, wB) = (0,−α, 0) and where they do not. Furthermore,
Fig. 6 suggests that this difference in the backward-time limit of trajectories
is entirely due to the fact that ellipses near (xB, zB, wB) = (0,−α, 0) are
repelling in the w̄-direction, while beyond some distance, they are attracting
in the w̄-direction. The surface Sc is associated with the critical ellipse in
the (xB, zB)-plane that is neither repelling nor attracting in the w̄-direction,
and which goes through the point (xB, zB) ≈ (1.1547,−α) (magenta). Our
computations indicate that the critical surface Sc is effectively a straight
elliptical cylinder when w̄ is small.

Based on these careful observations, we approximate Sc as the straight
w̄-cylinder Cr around the wB-axis through the point (0,−α, 0). Rather than
insisting that Cr be invariant under the vector fieldXB defined by system (6),
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(a) (b)

Figure 7: The separatrix Sc (purple surface) as represented locally by the
cylinder Cr∗ , shown in the (x̄, z̄, w̄)-space of system (4). Panel (a) shows Sc
emerging from the blown-up half-sphere, while in panel (b), Sc is a cone that
emerges from the origin.

we impose the average zero-flux condition∫
Cr

XB · n̂Cr dCr = 0, (7)

where n̂Cr is the direction normal to Cr. The appropriate value for r can be
found by transforming system (6) to cylindrical coordinates by

(xB, zB, wB) 7→ (rB, θB, wB), xB = rB cos θB and zB = 2rB sin θB − α.

The integral can then be evaluated in a straightforward way as:∫
Cr

XB · n̂Cr dCr =

∫
dwB

∫ 2π

0
ṙB dθB

∣∣∣∣
rB=r

=

∫
1

8
πr w2

B (4− 3r2) dwB =
1

24
πr w3

B (4− 3r2).

Hence, there are two solutions in the radius r of the zero-flux condition (7),
namely, r = 0 and r∗ = 2

3

√
3. Note that r = 0 corresponds to the wB-axis

through the equilibrium at (0,−α, 0). We conclude that the critical cylinder
Cr∗ with r∗ = 2

3

√
3 ≈ 1.1547 is the local approximation of the separating

invariant surface Sc. This value agrees with our numerical simulations and
Cr∗ is a good first-order approximation of Sc.

Recall that the (xB, zB, wB)-coordinate system of (6) corresponds to a
directional blow-up of the equilibrium q∞ at infinity in the original coor-
dinates, which corresponds to the origin in the (x̄, z̄, w̄)-coordinates of the
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desingularized system (4). Figure 7 illustrates in two ways the separatrix
Sc (magenta surface) represented by the inverse image of the critical cylin-
der Cr∗ under the respective coordinate transformations. Panel (a) shows
how Sc emanates from a corresponding periodic orbit on the blown-up half-
sphere centered at the origin of the (x̄, z̄, w̄)-space. However, periodic orbits
only exist on the blown-up (half-)sphere and not in the (x̄, z̄, w̄)-space itself.
Deflating the blown-up sphere back to the origin, the local approximation
Cr∗ of Sc is the cone emanating from the origin in the (x̄, z̄, w̄)-space that is
shown in Fig. 7(b).

4 BVP set-up for computing a codimension-one
connection to infinity

All trajectories inside the separatrix Sc converge, in backward time, to
q∞, which is the origin in the (x̄, z̄, w̄)-space. Hence, Sc acts as a kind
of two-dimensional unstable manifold of the non-hyperbolic point q∞ at in-
finity. For special choices of the parameters α and β in system (2), the
one-dimensional stable manifold W s(0) of the origin in the original (x, y, z)-
coordinates lies in the surface Sc. We refer to this well-defined phenomenon
of codimension one as a heteroclinic connection between 0 and q∞, and we
denote it by Het∞. It is our hypothesis that the curves Hn of n-homoclinic
orbits, which have increasingly longer excursions towards infinity, accumu-
late in the (α, β)-plane on the corresponding curve Het∞; see Fig. 3.

Hence, the task is to find the heteroclinic connection Het∞ and to con-
tinue it in the (α, β)-plane. To this end, we employ the approach known as
Lin’s method [23, 26] to set up a two-point boundary value problem (BVP)
for two orbit segments such that their concatenation is the sought-after con-
necting orbit in W s(0) ∩ Sc. The essence of Lin’s method is to choose a
codimension-one plane Σ that separates the two invariant objects involved,
here 0 and q∞, and to consider an orbit segment in W s(0) up to Σ and an
orbit segment in Sc up to Σ. For parameters that are not at the bifurcation
value, these two orbit segments exhibit a gap in Σ. Lin’s theorem states that
this orbit pair and, hence, the gap are uniquely determined when the differ-
ence between their end points in Σ is constrained to lie in a fixed subspace
called the Lin space [26]. The associated signed Lin gap in the Lin space is
then a well-defined test function with zeros that correspond to connecting
orbits; such zeros can be found via the continuation of the corresponding
orbit segements as solutions of an overall BVP [23]. Once a zero is found,
the associated connecting orbit can be followed in systems parameters.

The challenge, here, is that one of the equilibria lies at infinity and we
have an approximation for Sc in blown-up coordinates. Note that systems (2)
and (6) are homeomorphic in the open sets where they coincide [28]. This
allows us to define Σ with respect to both coordinate systems. We then
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consider one orbit segment that is a solution of system (2) with one end
point near the saddle 0 and lying in its stable eigenspace (which is the
linear approximation of W s(0)) and the other lying in Σ; and a second orbit
segment that is a solution of system (6) with one end point near the point
(x̄, ȳ, z̄) = (0, 0, 0) representing q∞ lying in the linear approximation Cr of
Sc and the other lying in Σ. The respective coordinate transformations allow
us to ‘glue’ the original (x, y, z)-coordinates of system (2) to the (xB, zB, wB)-
coordinates of the blown-up system (6), so that we can define and determine
the Lin gap.

We use this adapted Lin’s method to find an initial connecting orbit in
W s(0) ∩ Sc, along with the relevant bifurcation value for β, where we keep
α = 5.3 fixed. We define

Σ := {(x, y, z) | x = 0} ' {(xB, zB, wB) | xB = 0},

which is a suitable choice that works in both coordinate systems for w̄ 6= 0
because x = x̄/w̄3 and x̄ = xBwB with wB = w̄.

To define the orbit segment u in (x, y, z)-coordinates that lies in W s(0)
up to Σ we define the BVP

u̇ = T0X(u), (8)

u(1) = δ0 es, (9)

u(0)∗ n = 0. (10)

Here, X denotes the vector field (2) and T0 is the total integration time
between the first and last point on the orbit segment; it enters (8) in explicit
form so that the orbit segment u(t) is defined for t ∈ [0, 1]. Boundary
conditon (9) requires that the end point u(1) lies at a small distance δ0 from
the saddle 0 along its stable eigenvector es (which has been normalized to
have length 1). This ensures that u(1) lies in W s(0) to good approximation,
provided δ0 is sufficiently small; we fix δ0 = 10−4 as an appropriate value
throughout. Finally, the dot product in boundary conditon (10) involves
the unit vector n = (1, 0, 0) normal to Σ, which ensures that the start point
u(0) lies in Σ. We remark that the stable eigenvector es in (9) needs to
be continued as well when system parameters are changed; we achieve this
by solving the BVP of the corresponding stable eigenvector problem [23]
together with (8)–(10).

Similarly, the orbit segment u in (xB, zB, wB)-coordinates in Sc up to Σ
is defined by the BVP

u̇B = TBXB(uB), (11)

uB(0) = (23
√

3 cos θB,
4
3

√
3 sin θB − α, δB), (12)

uB(1)∗ n = 0. (13)
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In (11) the vector field (6) is denoted XB, and TB is the total integration
time. Boundary condition (12) requires that the start point uB(0) lies in the
cylinder Cr∗ , which has been parameterized by the angle θB ∈ [0, 2π] and
the distance δB in the wB-direction; we set δB = 0.1 throughout. Boundary
conditon (13) again ensures that the end point uB(1) lies in Σ, because
n = (1, 0, 0) is also the unit normal to Σ in (xB, zB, wB)-coordinates.

To find first orbit segments u and uB that satisfy (8)–(10) and (11)–
(13), respectively, we fix β = 1.8 and proceed as follows (recall that α =
5.3 and γ = 0.5 are fixed). For u we require initially only (8) and (9),
and start a continuation in the integration time T0 from T0 = 0; note that
this constitutes solving the initial value problem from the point δ0 es by
continuation. During this computation we monitor the dot product and
record whenever u satisfies condition (10), that is, u(0) lies in Σ. Similarly,
for uB we require only (11) and (12); we start with θB = 0 and continue in
TB from TB = 0, while recording whenever (13) is satisfied and uB(1) lies
in Σ. We remark that both conditions (10) and (13) are satisfied for many
values of T0 and TB, respectively, because the trajectories that contain u
and uB intersect Σ many times.

We choose orbit segments u and uB that have end points in Σ which lie
suitably close to each other and couple them by defining the Lin space and
associated Lin gap. To this end, we define and then fix the unit vector

Ψ :=
u(0)− ũB(1)

||u(0)− ũB(1) ||

given by the initial chosen end points of u and uB; here ũB(1) is the end
point of uB(1) in the original (x, y, z)-ccordinates of the section Σ. The
vector Ψ is generically transverse to Sc ∩ Σ, spans the Lin space Z, and
defines the Lin gap η via the boundary condition

ũB(1) = u(0) + ηΨ. (14)

Note that the new parameter η is the signed distance between the two end
points of the orbit segments along the Lin space Z ⊂ Σ, which is fixed once
chosen in this way.

We now consider the combined boundary value problem given by (8)–
(12) and (14), which is automatically satisfied by the chosen orbit segments
u and uB and uniquely defines the Lin gap η. When u and uB are continued
in β, where θB ∈ [0, 2π], T0 > 0, TB > 0, and η ∈ R are free parameters
(but crucially Z ⊂ Σ remains fixed), the Lin gap η is monitored. When β
changes, the orbit segment u as well as the θ-dependent orbit segment uB

vary. In light of the Lin condition (14), the angle parameter θB is adjusted
automatically in such a way that the end point uB(1) only varies along the
direction Ψ, either away from or towards u(0). When a zero of η is detected
then we have found the value of β at which the heteroclinic connection Het∞
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Figure 8: Set-up with Lin’s method to compute a connecting orbit from
q∞ to 0 with two orbit segments that meet in the common Lin section Σ
(green plane), illustrated in compactified Poincaré coordinates. Panel (a)
shows the initially chosen orbit segments u (cyan) to 0 and uB (magenta)
from q∞ for β = 1.8 that define the Lin space Z (which appears curved in
this representation); note that the Lin gap η is initially nonzero. Panel (b)
shows the situation for β = 2.08874 where η = 0 and u and uB connect in
Σ to form the heteroclinic connection; here, α = 5.3.

occurs; the corresponding heteroclinic orbit that connects q∞ with 0 is given
as the concatenation of u and uB.

Figure 8 illustrates the set-up with Lin’s method, shown in projection
onto compactified Poincaré coordinates that represent R3 inside the unit
sphere (not shown) centered at the origin 0. The plane in Fig. 8 is the
common Lin section Σ defined by x = xB = 0. Notice that the chosen orbit
segment u intersects Σ three times, that is, we choose to work with the third
intersection of the trajectory from 0. Similarly, the chosen orbit segment uB

intersects Σ many times. The orbit segment uB in Fig. 8 was chosen so that
its end point uB(1) in Σ is sufficiently close to the end point u(0). The Lin
space Z ⊂ Σ, which appears curved in the compactified Poincaré coordinates
of Fig. 8, remains fixed during the subsequent continuation of the BVP (8)–
(12) and (14) in β. Panel (b) shows the situation when the Lin gap η has
been closed and the connecting orbit found as the concatenation of u and
uB.

As soon as a heteroclinic connection Het∞ is detected as a zero of η,
it can be continued with the BVP (8)–(12) and (14) in α and β, where
θB ∈ [0, 2π], T0 > 0, and TB > 0 are free parameters but η = 0 is now kept
fixed. This continuation leads to the curve Het∞ in the (α, β)-plane that
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Figure 9: Bifurcation diagram of system (2) with the additional curve
Het∞ (magenta) of heteroclinic bifurcation involving the point q∞ at in-
finity. Panel (b) shows the overall bifurcation diagram in the (α, β̂)-plane,
panel (c) is an enlargement near the point Cin, and panel Het∞ shows how
W s(0) spirals towards infinity in the (x, y, z)-space to form the heteroclinic
connection for α = 5.3 and β = 2.08874; see Fig. 1 for details on the other
bifurcation curves.

is shown in Fig. 9 together with the other curves of the bifurcation diagram
from Fig. 1. As panels (a) and (b) of Fig. 9 show, the curve Het∞ has the
same general shape as the curves Hn of n-homoclinic bifurcation (shades
of cyan) for n = 2, 3, . . . , 6: it also emanates from the codimension-two flip
bifurcation point Cin, has monotonically decreasing β̂ and has a fold for a
very similar value of β̂. Indeed, we conclude from Fig. 1 that the curves Hn

accumulate on the curve Het∞ as n tends to infinity.
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Figure 10: To the left of the curve Het∞ in the (α, β̂)-plane, the stable
manifold of W s(0) approaches, but does not connect to q∞, because it lies
outside Sc (a). To the right of Het∞, it lies inside Sc and so connects to
q∞. The illustration in compactified Poincaré coordinates is for α = 5.3
with β = 2.9 in panel (a) and β = 2.8 in panel (b).

Panel Het∞ of Fig. 9 illustrates that the heteroclinic connection from
0 to q∞ is characterized by the one-dimensional manifold W s(0) spiraling
away (in backward time) from 0 towards infinity to approach q∞ along the
cone/cylinder Sc. Indeed, this is the limiting case between the two generic
situations that are illustrated in Fig. 10. Either W s(0) lies outside Sc and
does not reach q∞, as in panel (a), or it lies inside Sc and spirals onto q∞,
as in panel (c). The former situation occurs to the left of the curve Het∞

in the (α, β̂)-plane of Fig. 9, while W s(0) connects generically to q∞ to the
right of Het∞.

5 BVP set-up for computing a generic connection
from a saddle periodic orbit to infinity

The Lin’s method set-up from the previous section can be adapted to com-
pute other types of connecting orbits to infinity. We demonstrate this here
with the example of a heteroclinic connection from the orientable saddle pe-
riodic orbit Γo, which bifurcates from the curve Ho and exists for β̂ > 0,
to the point q∞. More specifically, we compute an orbit in the intersection
set W s(Γo) ∩ Sc, which exists generically, because W s(Γo) and Sc are both
two dimensional manifolds. As before, we concatenate two orbit segments: u
from a common section Σ to Γo and uB from q∞ to Σ, which are again found
as solutions to the overall BVP (8)–(12) and (14). The difference is that the
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Figure 11: Set-up with Lin’s method to compute a connecting orbit from
q∞ to a saddle periodic orbit Γo (green curve) with two orbit segments that
meet in the common Lin section Σ (green plane), illustrated in compactified
Poincaré coordinates for α = 6.2 and β = 1.6. Panel (a) shows the initially
chosen orbit segments u (cyan) to Γo and uB (magenta) from q∞ that define
the Lin space Z (which appears curved in this representation); note that the
Lin gap η is initially nonzero. Panel (b) shows the situation where η = 0
and u and uB connect in Σ to form the heteroclinic connection.

vector es in boundary condition (9) is now a vector in the stable Floquet
bundle of Γo. The periodic orbit Γo and its stable Floquet bundle can be
computed and continued with the BVP set-up presented in [23], yielding the
vector es (for any value of the system parameters).

A suitable initial orbit segment u is found by choosing and fixing δ0
and then, as before, continuing the initial value problem (8) and (9) in the
integration time T0 from T0 = 0, while recording whenever condition (10) is
satified. The initial orbit uB is found exactly as before, and the vector Ψ, the
Lin space Z and the Lin gap η are subsequently defined as in Section 4. The
overall BVP (8)–(12) and (14) is then automatically satisfied and we use it to
continue the two orbit segments u and uB to close the Lin gap η. Because the
connecting orbit is generic, the continuation for this problem does not involve
a system parameter, but uses the fact that the two-dimensional manifold
W s(Γo) is a δ0-family of trajectories. Here, θB ∈ [0, 2π], T0 > 0, TB > 0,
η ∈ R, and the parameter δ0 are free parameters.

Figure 11 illustrates the set-up in compactified Poincaré coordinates;
compare with Fig. 8. Panel (a) of Fig. 11 shows the orientable periodic orbit
Γo, the equilibrium q∞, the section Σ and the initially chosen orbit segments
u and uB that define the Lin space Z ⊂ Σ. The Lin gap η is then closed by
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continuation in δ0, yielding the connecting orbit as the concatenation of u
and uB as shown in Fig. 11(b); note that the system parameters α, β and γ
remain unchanged during this computation.

6 Conclusions

We studied a quadratic vector field, adapted from that of [3], that exhibits
a homoclinic flip bifurcation of the specific inward-twisted type Cin. We
found that the two-parameter bifurcation diagram near this special point
features an accumulation of curves of secondary n-homoclinic bifurcations.
Numerical evidence that this phenomenon involves an increasing number
of loops which move closer to infinity motivated us to set up a numerical
scheme based on Lin’s method to find the limiting behavior in the form of
a heteroclinic connection to infinity. To this end, the orbit segment in the
finite part of phase space was formulated in original coordinates, while the
second orbit segment to infinity was defined in different coordinates near
infinity. Both are then glued together along the Lin space in a section that
is well-defined in both coordinate systems. Closing the Lin gap along the
Lin space by continuation of the two coupled orbit segments yielded a first
connecting orbit of codimension one between the origin and a point at infin-
ity. A subsequent continuation gave the associated curve in the parameter
plane, which was indeed found to act as the accumulation set for the curves
of n-homoclinic orbits.

Compared to previous uses of a Lin’s method set-up to define suitable
boundary value problems for finite connecting orbits, a novel element is
the use of blown-up coordinate charts near infinity. Blow-up techniques for
polynomial vector fields allow one to study equilibria and other invariant
objects at and near infinity. When these are of saddle type in the geometric
sense — meaning that they have attracting and repelling directions, but
need not be hyperbolic or even semi-hyperbolic — the question arises how
they interact with invariant objects in the finite part of phase space, such as
equilibria and periodic orbits. Indeed, connections to infinity are a distinct
possibility. As we showed, such heteroclinic phenomena involving infinity
may provide important information regarding limits of finite global objects.

Our Lin’s method set-up is quite flexible and more widely applicable;
this was demonstrated by computing a connecting orbit from a finite saddle
periodic orbit to a point at infinity. Hence, it constitutes a new tool for the
study of global properties of polynomial vector fields. The system studied
here is a case in point, and its further bifurcation analysis is the subject of
ongoing research. Note that this quadratic vector field is presently the only
system that is known to exhibit a homoclinic flip bifurcation of the inward-
twisted type of case C; hence, it has the role of a model vector field for this
specific bifurcation, much in the spirit of Sandstede’s model [32, 33] which
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features effectively all other types of flip bifurcations. The investigation of
the outward-twisted type in the latter model shows that a flip bifurcation of
case C gives rise to a very complicated global bifurcation structure. In light
of its different local structure, we expect to find a different, yet comparably
complicated overall bifurcation structure in the wider vicinity of the orbit flip
of the inward-twisted type of case C. Moreover, homoclinic flip bifurcations
of all cases have been identified as organizing centers in other vector fields
from the literature, specifically in mathematical models of neurons [4, 5, 27].
Their global bifurcation structure may well involve heteroclinic bifurcations
with infinity. Hence, we believe that the numerical approach for the identi-
fication and continuation of connecting orbits to infinity will have a role to
play in their study.
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