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Abstract

When a real saddle equilibrium in a three-dimensional vector field undergoes
a homoclinic bifurcation, the associated two-dimensional invariant manifold of the
equilibrium closes on itself in an orientable or non-orientable way, provided the cor-
responding genericity conditions. We are interested in the interaction between global
invariant manifolds of saddle equilibria and saddle periodic orbits for a vector field
close to a codimension-two homoclinic flip bifurcation, that is, the point of transition
between having an orientable or non-orientable two-dimensional surface. Here, we
focus on homoclinic flip bifurcations of case B, which is characterized by the fact
that the codimension-two point gives rise to an additional homoclinic bifurcation,
namely, a two-homoclinic orbit. To explain how the global manifolds organize phase
space, we consider Sandstede’s three-dimensional vector field model, which features
inclination and orbit flip bifurcations. We compute global invariant manifolds and
their intersection sets with a suitable sphere, by means of continuation of suitable
two-point boundary problems, to understand their role as separatrices of basins of
attracting periodic orbits. We show representative images in phase space and on
the sphere, such that we can identify topological properties of the manifolds in the
different regions of parameter space and at the homoclinic bifurcations involved.
We find heteroclinic orbits between saddle periodic orbits and equilibria, which give
rise to regions of infinitely many heteroclinic orbits. Additional equilibria exist in
Sandstede’s model and we compactify phase space to capture how equilibria may
emerge from or escape to infinity. We present images of these bifurcation diagrams,
where we outline different configurations of equilibria close to homoclinic flip bifur-
cations of case B; furthermore, we characterize the dynamics of Sandstede’s model
at infinity.
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1 Introduction

Dynamical systems has been an active area of research since the work of Henri Poincaré
on celestial mechanics [35]. More recently, the bifurcation theory of dynamical systems
has become a tool for understanding different phenomena, as far ranging as the excitation
of neurons [10, 14, 19], turbulence in fluid flows [37, 43], and the dynamics of laser systems
[36, 45]; more applications can be found, for example, in [13, 42]. The models arising in
such applications are typically vector fields of the form

ẋ = f(x, µ), (1)

where x ∈ Rn is the state, µ ∈ Rm is a (multi)parameter and f : Rn × Rm → Rn is a
sufficiently smooth function. For any fixed value of µ, equation (1) defines a flow φt on
the phase space R

n for all t ∈ R. In bifurcation theory, one wants to understand how the
phase portrait of this flow φt changes topologically when µ is varied. One way for such
topological changes to occur is through changes of stabilities of equilibria and periodic or-
bits in phase space. These are known in the literature as local bifurcations ; and they have
been studied in detail by normal forms and desingularization techniques [13, 22, 34, 42].
Global bifurcations, on the other hand, are topological changes arising from interactions
between global invariant manifolds of saddle equilibria and saddle periodic orbits, which
can re-arrange to change the phase space globally. In particular, the existence of homo-
clinic or heteroclinic orbits, which are connecting orbits between saddle equilibria and/or
saddle periodic orbits, can have dramatic effects, for example, regarding the existence and
size of basins of attractions.

We are interested in gaining a better understanding of a special type of global bifurca-
tion that is know as homoclinic flip bifurcation; it can occur in vector fields of dimension
three or higher. This bifurcation concerns a real saddle equilibrium and a homoclinic
orbit, that is, a connecting orbit of the equilibrium back to itself, such that the associated
invariant manifolds are neither orientable or non-orientable; see Section 2.1 for details. To
study this bifurcation, we work with the three-dimensional vector field

Xs(x, y, z) :





ẋ = P 1(x, y, z) := ax+ by − ax2 + (µ̃− αz)x(2 − 3x),

ẏ = P 2(x, y, z) := bx+ ay − 3

2
bx2 − 3

2
axy − 2y(µ̃− αz),

ż = P 3(x, y, z) := cz + µx+ γxz + αβ(x2(1− x)− y2).

(2)

It was introduced by Sandstede in [39], who studied this model with additional z-dependent
terms in the equations for x and y, which are controlled by a parameter δ in [39] that
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we set to 0 in (2). We choose the parameters such that the origin 0 ∈ R3 is a saddle
equilibrium of system (2) whose linearization has two different negative and one positive
eigenvalues λss < λs < 0 < λu; see Section 2.2. The other case of a real saddle, that is, an
equilibrium with two positive and one negative eigenvalues can be reduced to this case by
reversing time. Since the origin is hyperbolic, the Stable Manifold Theorem [33] implies
the existence of an immersed two-dimensional stable manifold W s(0) and an immersed
one-dimensional unstable manifold W u(0); the stable manifold W s(0) is a surface foliated
by orbits that converge to 0 as t → ∞, and W u(0) consist of two orbits that converge to
0 as t → −∞.

We can choose α, µ and µ̃ such that a homoclinic bifurcation occurs: this means that
there exists an orbit Γhom that converges to 0 both as t → ∞ and as t → −∞; that is, one
of the branches of W u(0) lies entirely in W s(0). Consequently, under certain genericity
conditions that are outlined in section 2.1, the respective local part ofW s(0) closes back on
itself and is either topologically equivalent to a cylinder or a Möbius band, which classifies
the homoclinic bifurcation as orientable or non-orientable, respectively [4, 15, 20, 47].
Figure 1 shows two homoclinic orbits of system (2), together with the associated stable
and unstable manifolds of 0; they share the same parameter values except that α = 0.3
in column (a) and α = 0.65 in column (b). The top row shows a linear approximation of
W s(0) around the homoclinic orbit Γhom, which its computed as the span of the tangent
vectors of W s(0) around Γhom. The bottom row shows W s(0) in a larger region of phase
space. The stable manifold W s(0) is rendered in two shades of blue to illustrate the
orientability properties of the manifold. In Fig. 1 panel (a1) we see that W s(0), locally
near Γhom, is a topological cylinder; while in panel (b1), this local part of W s(0) is a
topological Möbius band. Indeed Fig. 1 illustrates how W s(0) closes on itself along the
strong stable manifold W ss(0) at the moment of an orientable homoclinic bifurcation in
column (a); and the non-orientable case in column (b).

Generically, homoclinic orbits as shown in Fig. 1 exist at codimension-one bifurca-
tions [22, 40]. We are interested in the case when one of the genericity conditions is not
valid, such that the homoclinic bifurcation has codimension-two. More precisely, we study
the case where W s(0) transitions from being orientable to being non-orientable. This
codimension-two point is called a homoclinic flip bifurcation and it may be an inclination
or an orbit flip bifurcation [18]. There are three different codimension-two unfoldings of
homoclinic flip bifurcation, called cases A, B and C, for both an inclination and an orbit
flip bifurcation; these have been studied theoretically with methods including return maps
[4, 15], Shilnikov variables [20] and Lin’s method [38]. The theoretical results describe
the unfoldings of the dynamics locally in a small tubular neighbourhood of the homoclinic
orbit. A “more global” approach, which relies on numerical computations, has been used
in [1] to understand how the global manifolds re-arrange phase space for the simplest case
A. Already for this case an extra bifurcating branch of heteroclinic folds was found that
had previously not been identified.

Compared with case A, cases B and C are richer with respect to the invariant objects
that are created and destroyed close to the homoclinic flip bifurcation. In case A a single
attracting (or repelling) periodic orbit is created. The unfolding of case B, on the other
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Figure 1: The stable manifold W s(0) of system (2) at a codimension-one homoclinic bifur-
cation in R3. Column (a) shows an orientable and column (b) a non-orientable homoclinic
orbit. The top row illustrates the tangent space of W s(0) around Γhom. The bottom
row shows a portion of W s(0) in phase space. Shown are W s(0) as a rendered surface
with one half colored dark-blue and the other half light-blue, the one-dimensional strong
stable manifold W ss(0) as a light blue curve and the unstable manifold W u(0) as a red
curve. Column (a) is for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.3, 1, 2, 0, 0) and column (b)
for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65, 1, 2, 0, 0).
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Figure 2: The stable manifolds W s(Γo) and W s(Γt), and unstable manifolds W u(Γo)
and W u(Γt) of periodic orbits Γo and Γt in system (2). Column (a) shows the ori-
entable and column (b) the non-orientable case. The top row shows W s(Γo) and
W s(Γt) in a small tubular neighborhood of Γo and Γt, respectively, while the middle
row shows the W u(Γo) and W u(Γt) in this same small tubular neighborhood. The
bottom row, shows a large portion of these manifolds and how they are interacting
with other one-dimensional manifolds in phase space. Shown are W s(Γo) and W s(Γt)
as cyan surfaces, W u(Γo) and W u(Γt) as orange surfaces, Γo and Γt as green curves,
Γa
o as a blue curve, W u(0) as a pink curve, and W s(q) as a cyan curve. Column

(a) is for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.3, 1, 2, 0.004, 0), and column (b) is for
(a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65, 1, 2,−0.004, 0).
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hand, involves saddle periodic orbits, a period doubling and an additional homoclinic
bifurcation curve; see Section 3 and Fig. 5. Finally, in the unfolding of case C it has
been proved that there exists a period-doubling cascade, region of horseshoe dynamics,
n-homoclinic orbits (for any n ∈ N) and strange attractors [4, 17, 18, 29, 30]. Additionally,
case C has been identified as an organizing center for the creation of spikes of periodic
orbits in the Hindmarsh-Rose model that describes the essential spiking behaviour of a
neuron [23].

We focus our attention on case B. It is the next step in understanding a more com-
plicated case, namely, case C, and also the main ingredient in the homoclinic-doubling
cascade that appears close to bifurcations of higher codimension [16]. As mentioned be-
fore, the unfolding of case B involves saddle periodic orbits; these have two-dimensional
stable and unstable manifolds that may or may not be orientable; this is illustrated in
Fig. 2 for parameter values close to case B for system (2). The first column shows an
orientable saddle periodic orbit Γo, and the second column a non-orientable (twisted) pe-
riodic orbit Γt. Figure 2 shows portions of the two-dimensional stable manifolds W s(Γo)
and W s(Γt), and unstable manifolds W u(Γo) and W u(Γt) of the saddle periodic orbits Γo

and Γt, respectively. The first row shows W s(Γo) and W s(Γt) as contained in a small tubu-
lar neighborhood with radius d = 0.01 around Γo and Γt. The second row shows W u(Γo)
and W u(Γt) in the same corresponding tubular neighborhood. The third row illustrates
a larger portion of these manifolds in phase space. Panels (a1) and (a2) illustrate that
both W s(Γo) and W u(Γo) are homeomorphic to a cylinder. In panel (a3), we see that
W s(Γo) is unbounded but remains a topological cylinder; one side of W u(Γo) accumulates
on an attracting periodic orbit denoted Γa

o and the other side is bounded by W u(0). Since
W s(Γo) is unbounded and orientable, it acts as a separatrix that bounds the basin of
attraction of Γa

o. In contrast, Fig. 2 (b1) and (b2) illustrate that W s(Γt) and W u(Γt) are
a topological Möbius band. The non-orientable nature of W s(Γt) and W u(Γt) is hard to
appreciate in panel (b3), but we can see that W s(Γt) spirals around the one-dimensional
stable manifold W s(q) of an additional equilibrium denoted q, and the unstable manifold
W u(Γt) is bounded by W u(0).

One of the biggest advantage of using numerical techniques to understand the be-
haviour of these manifolds is the possibility to study their interactions with other invariant
objects and to determine how they can organize phase space; this is shown in Fig. 3 for
the orientable case in panel (a) and the non-orientable case in panel (b). Here, we also
show the two-dimensional stable manifold W s(0) and the two-dimensional unstable man-
ifold W u(q) of q. Fig. 3(a) illustrates how W s(0) spirals towards the topological cylinder
formed by W s(Γo). Moreover, W s(Γo) does not interact with W u(q), which accumulates
onto Γa

o; indeed, W
u(q) lies in the basin of attraction of Γa

o and W s(0) does not. The non-
orientable case in Fig. 3(b) is quite different, Γa

o does not exist and W s(0) together with
W s(Γo) rolls around W s(q). As a consequence, W s(Γt) intersects W u(q) transversally,
implying the existence of a heteroclinic orbit from q to Γt.

The main purpose of this paper is to understand how the different manifolds of periodic
orbits and equilibria organize the phase space and basins of attraction close to a homoclinic
flip bifurcation of case B. For this reason, we choose parameter values in each open region
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of parameter plane, close to the homoclinic flip bifurcation point, to provide representative
figures of phase space; here we render each invariant object as in Fig. 3 and analize their
transition as a set of parameters is varied. For the purpose of understanding the nature
of the basins of attracting periodic orbits, we also provided figures of the intersection sets
of the stable manifolds with a suitable sphere. This allows us to describe such basins
when parameters are varied. As in case A, the existence of an additional saddle focus
equilibrium q in Sandstede’s model creates additional dynamics in phase space; these
include the existence of a fold curve of (structurally stable) heteroclinic orbits from q to 0
in parameter plane. New for case B is that the existence of q creates regions where there
are infinitely many heteroclinic orbits in phase space; these are consequence of structurally
stable heteroclinic orbits from q to Γt. We investigate the role and bifurcations of the
additional equilibrium q in system (2). Moreover, we analyze all equilibria in Sandstede’s
model and consider their bifurcations for parameters close to the homoclinic bifurcation.
We find that some equilibria disappear at infinity. Therefore, we utilize Poincaré com-
pactification [8, 12, 26] to characterize Sandstede’s model at infinity and to complete the
bifurcation diagram of these equilibria; see Appendix A for details.

The computations in this paper are performed with the software package Auto [5, 7]
and its extension HomCont [3]. In particular, the global manifolds are computed with a
two-point boundary value problem (2PBVP) set-up; see [2, 21] for details.

The organization of this paper is as follows. In Section 2 we introduce notation and
background material; here, we also present the parameter values that we use to unfold the
two types of homoclinic bifurcations in system (2). In Section 2.2.1, we study the bifurca-
tion diagram of the equilibria via a compactified version of system (2). The codimension-
two inclination and orbit flip bifurcations for case B are the subjects of Sections 3 and
4, respectively. Section 5 contains the discussion of the results and an outlook for future
research. Appendix A give a brief summary of Poincaré compactification and an analytic
study of system (2) at infinity. Finally, Appendix B introduces the 2PBVP-formulation
for the computation of a two-dimensional manifold inside a tubular section, and for the
curves CC+/− along which the Floquet multipliers of a periodic orbit become complex
conjugates.

2 Notation and set-up

Recall that we consider system (2) as a representative example of a three-dimensional
vector field of the form (1) with a hyperbolic real saddle equilibrium at 0 ∈ R

3. We
choose parameters such that the Jacobian Df(0) of 0 has two stable and one unstable
eigenvalues, λss < λs < 0 < λu; we denote by ess, es and eu the respective associated
eigenvectors. The global stable and unstable manifolds of 0 are defined as

W s(0) := {x ∈ R
3 : φt(x) → 0 as t → ∞}, and

W u(0) := {x ∈ R
3 : φt(x) → 0 as t → −∞}.
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Figure 3: Interaction of the different manifolds of system (2) in R3. Shown are W s(0) as a
dark-blue surface, W ss(0) as a blue curve, W u(0) as a pink curve, W u(q) as a red surface,
W s(q) as a cyan curve, W s(Γo) and W s(Γt) as cyan surfaces, and W u(Γo) and W u(Γt)
as orange surfaces. Panel (a) is for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 3, 1, 2, 0.004, 0), and
panel (b) for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65, 1, 2,−0.004, 0); compare with Fig. 2.
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The Stable Manifold Theorem [33] guarantees that both W s(0) and W u(0) are immersed
manifolds that are as smooth as f and tangent at 0 to the linear eigenspaces Es(0) =
span{es, ess}, and Eu(0) = span{eu}, respectively. Furthermore, W s(0) has a one-
dimensional strong stable manifold W ss(0), defined as the subset of points on W s(0)
that converge to 0 tangentially to ess.

The stability and invariant manifolds of a periodic orbit Γ of system (2) are defined in
a very similar way. We denote its two nontrivial Floquet multipliers by Λ1,Λ2 ∈ C; they
are the eigenvalues of the variational equation along Γ over the period of Γ. Note that
there is also the trivial Floquet multiplier 1 associated with the tangent direction of Γ. In
a three-dimensional vector field Λ1 and Λ2 are always such that their real parts have the
same sign; moreover each has an associated eigenfunction that is referred as the Floquet
bundle [41].

If Λ1,Λ2 ∈ R and 0 < Λ1 < 1 < Λ2 then one speaks of an orientable saddle periodic
orbit, which we denote by Γo. Its stable and unstable manifolds W s(Γo) and W u(Γo),
respectively, are locally a cylinder [32, 41]; if Λ2 < −1 < Λ1 < 0, then the saddle periodic
orbit is non-orientable, denoted Γt, and W s(Γt) and W u(Γt) are locally a Möbius band
[32, 41]. The associated stable and unstable manifolds of a saddle periodic orbit are two-
dimensional immersed manifolds that are tangent to the Floquet bundle of the periodic
orbit associated with Λ1 and Λ2, respectively.

On the other hand, if Λ1,Λ2 ∈ C such that |Λi| < 1 for i = 1, 2 then we speak of an
attracting periodic orbit, which we denoted by Γa. This implies the existence of an open
set U ⊂ R3 that satisfies

∀t ≥ 0, φt(U) ⊂ U and
⋂

t>0

φt(U) = Γa. (3)

Furthermore, the basin of attraction B(Γa) of Γa is defined as the set of all points in
phase space that converge to Γa, that is, B(Γa) =

⋃
t≤0

φt(U). If |Λ1| < |Λ2| < 1 are
both real then we define the strong stable manifold W ss(Γa) of Γa as the set of points
that converge to Γa tangent to the Floquet bundle associated with Λ1; this strong stable
manifold W ss(Γa) is a two-dimensional immersed manifold. Using the same terminology
and notation, we denote the periodic orbit Γa

o and its strong stable manifold W ss(Γa
o) if

0 < Λ1 < Λ2 < 1 and they are orientable; and as Γa
t and W ss(Γa

t ) if −1 < Λ2 < Λ1 < 0
and they are non-orientable.

2.1 Homoclinic Flip Bifurcations

Let Γhom be a homoclinic orbit of 0, that is, Γhom ⊂ W s(0) ∩ W u(0) 6= ∅ converges
in forward and backward time to 0. The homoclinic orbit Γhom is of codimension one,
provided the following conditions hold [15, 20].

(G1) (Non-resonance) |λs| 6= λu;

(G2) (Principal homoclinic orbit) In positive time the homoclinic trajectory approaches
the origin tangent to the weakest stable direction es;
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(G3) (Strong inclination) The tangent space TWs(0) of the stable manifold, followed along
Γhom backward in time, converges to span{ess, eu}.

For any codimension-one homoclinic orbit, a portion of W s(0) folds over and closes up
along W ss(0); hence, the immersion of W s(0) in the three-dimensional phase space be-
comes orientable or non-orientable close to Γhom; see panels (a1) and (b1) in Fig. 1.

If precisely one of the genericity conditions is not fulfilled then the homoclinic orbit
is of codimension two, leading to different kinds of unfoldings. If (G1) fails, then one
speaks of a resonant homoclinic bifurcation [17]. We focus on the inclination flip (IF) and
orbit flip bifurcations (OF) that occur when conditions (G2) or (G3) fail, respectively.
In both cases, one speak of a homoclinic flip bifurcation, which is of codimension two,
if additional genericity conditions are satisfied. Then there exists a curve of homoclinic
orbits in any suitable two-parameter plane along which W s(0) changes from orientable to
non-orientable at the codimension-two flip bifurcation point [15, 20].

The unfolding of a flip bifurcation depends on the eigenvalues of 0. Three cases have
been identified for the inclination flip and the orbit flip bifurcations; they are denoted A,
B and C. The unfolding of these cases are geometrically the same for both IF and OF
but they satisfy different conditions. More specifically, the eigenvalue conditions and the
unfoldings for the respective cases are:

A. If |λs| > λu then a single attracting periodic orbit Γa is created, for both the orbit
flip and inclination flip bifurcations;

B. Suppose the following respective conditions for the inclination and orbit flip bifur-
cations are satisfied:

(IF) λu/2 < |λs| < λu and |λss| > λu, or
(OF) |λs| < λu and |λss| > λu.

Then the unfolding contains a homoclinic doubling bifurcation, a period-doubling
bifurcation and saddle-node bifurcation of periodic orbits.

C. Suppose the following respective conditions for the inclination and orbit flip bifur-
cation are satisfied:

(IF) |λs| < λu and |λss| < λu, or |λs| < λu/2 and |λss| > λu, or
(OF) |λs| < λu and |λss| < λu.

Then the unfolding contains k-homoclinic bifurcations [15], for any k ∈ N, and
a region with horseshoe dynamics exists. Two different bifurcation diagrams can
arise depending on extra genericity conditions regarding the geometry of the stable
manifold W s(0); details can be found [18].
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For both IF and OF, the unfolding and eigenvalue conditions for cases A and B were
proven for any smooth vector field of dimension n ≥ 3; see [20, 38]. On the other hand, for
case C it has been proved that regions of horseshoe dynamics, cascades of period-doubling
and homoclinic bifurcations, and strange attractors exist [4, 15, 16, 20, 29, 30]; however,
these results have only been proved for three-dimensional vector fields. Moreover, our
understanding of the exact nature of the unfoldings of case C it is not as complete as
cases A and B.

Since the eigenvalues of an equilibrium depend continuously on the parameters for
smooth vector fields, the transitions between cases A, B and C, for both inclination and
orbit flip bifurcations, are codimension-three phenomena caused by resonance, that is, a
violation of condition (G1); such a resonant homoclinic flip bifurcation was studied in
[17] and explored numerically in [31]. Furthermore, in [28] it was proven under certain
conditions that three-dimensional vector fields exhibiting an orbit flip bifurcation can be
approximated by ones having an inclination flip bifurcation; this result provides further
insight in the similarities between these two types of flip bifurcations.

We remark that the conditions for the homoclinic flip bifurcation of a hyperbolic equi-
librium have been studied for the non-hyperbolic case, namely, for the case of a transcritical
bifurcation [24]; the authors show that the non-hyperbolic equilibrium gives rise to new
heteroclinic orbits and that its unfolding is different from the hyperbolic case. Reference
[11] explores the creation of a Lorenz-like attractor in homoclinic loop configurations that
exhibit homoclinic flip bifurcations; this happens when two homoclinic orbits connect to
the same equilibrium, which in [11] is studied by looking at systems with reflectional
symmetry.

2.2 Sandstede’s Model

Sandstede [39] introduced a model vector field that exhibits codimension-two flip bifur-
cations and is particularly suitable for studying their unfoldings. The system has been
constructed in such a way that the different cases of both inclination and orbit flip bifurca-
tions occur, and the homoclinic orbits always involve the equilibrium 0. As mentioned in
the introduction, we set δ = 0 in the original model introduced in [39], such that the z-axis
is invariant. That is, we work with the vector field Xs(x, y, z) as defined by system (2).
Note that 0 is an equilibrium of Xs for all parameter values; furthermore, since δ = 0 (or
if µ = 0), the eigenvalues of 0 are given by

λ1,2 = a±
√
b2 + 4µ̃2 and λ3 = c,

and the eigenvector associated with λ3 points in the z-direction. Taking into account the
parameter ranges found in [31] for IF and OF of case B, we choose the following values
for the other parameters:

(IF) For (a, b, c, β, γ) = (0.22, 1,−2, 1, 2), there is an inclination flip at (α, µ, µ̃) = (αB, 0, 0)
where αB ≈ 0.4664012. At this point λ1 = 1.22, λ2 = −0.78 and λ3 = −2. Note
that λss = λ3, so for this and nearby parameter values W ss(0) is the z-axis. The
codimension-two bifurcation is unfolded by α and µ.
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(OF) For (a, b, c, β, γ) = (−0.5, 2.5,−1, 0, 0) , there is an orbit flip at (α, µ, µ̃) = (1, 0, 0).
At this point λ1 = 2, λ2 = −3 and λ3 = −1. The codimension-two bifurcation is
unfolded by µ and µ̃.

Note that the choice γ = 2 for the case IF differs from the values taken in [1, 31]. In [1],
the value γ = 0 was used, but for case B this value does not give an inclination flip. In
[31], the value γ = 3 was used, but it turns out that the choice γ = 3 is rather unfortunate
with respect to the existence of additional equilibria; we justify our choice of γ = 2 in the
next subsection.

2.2.1 Configuration of Equilibria

We start by determining the equilibria of system (2) and their stability. Because system (2)
is a polynomial vector field, we use Poincaré compactification to project the phase space
into the three-dimensional open ball B := B2(2) of radius 2. For the compactified model
of (2) the sphere S := S

2(2) bounding B represents the dynamics at infinity [12, 26, 27];
Appendix A gives more details on the compactification, and shows the respective compact-
ified vector field (8) of system (2) and discusses its behaviour at S. This compactification
allows us to consider all equilibria and continue them with Auto, even when they interact
with infinity.

Figure 4 shows the corresponding bifurcation diagrams of the equilibria of system (2),
as determined by using its compactification (8), for both the inclination and orbit flip
cases. Specifically, panel (a) shows the inclination flip case IF in the (α, γ)-plane of the
compactified model (8) for (a, b, c, β, µ, µ̃) = (0.22, 1,−2, 1, 0, 0), and panel (b) the orbit
flip case OF in the (µ̃, γ)-plane for (a, b, c, α, β, µ) = (−0.5, 2.5,−1, 1, 0, 0). Starting with
IF in panel (a), we focus on the region near γ = 3. The origin is always an equilibrium
and the squares indicate the number and stability of the additional equilibria. A blue
square corresponds to an equilibrium with at least two stable eigenvalues; otherwise the
square is red. Squares with a cross refer to saddles and solid squares to sinks (blue) or
sources (red). System (2) and its compactification are symmetric under the transformation
(z, α) → (−z,−α) when µ = 0; hence, there is no need to show the negative values of α
in Fig. 4. The blue curve represents a saddle-node bifurcation, labeled SN, that gives rise
to a sink and a saddle; similarly, the red curve SN gives rise to a source and a saddle.
The line γ = 3 (brown) represents a degenerate transcritical bifurcation at infinity, labeled
DT∞. Along the bifurcation curve DT∞, an equilibrium reaches infinity, namely, at the
non-hyperbolic equilibrium (0, 0, 2) ∈ S. After the equilibrium crosses the curve DT∞,
its z-coordinate and all its eigenvalues change sign, that is, it reappears at (0, 0,−2) with
the opposite stability. The curves labeled SN meet in a degenerate cusp point DCP∞ on
DT∞. The curves IF (pink) and HB (green) are bifurcations of homoclinic or periodic
orbits. Since µ = 0 there exists a homoclinic orbit irrespective of the choices for α and γ
[39]. The homoclinic orbit is orientable for small α and changes type at the inclination
flip curve IF, which is the pink curve; the homoclinic orbit is non-orientable for values
of α to the right of IF. The Hopf bifurcation HB gives rise to an orientable attracting
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Figure 4: Bifurcation diagram of equilibria for system (2). Panel (a) shows the (α, γ)-
plane with (a, b, c, β, µ, µ̃) = (0.22, 1,−2, 1, 0, 0) and panel (b) the (µ̃, γ)-plane with
(a, b, c, α, β, µ) = (−0.5, 2.5,−1, 1, 0, 0). Each equilibrium is represented by a square,
where color and filling indicates its eigenvalue configuration as explained in the legend.
Shown are saddle-node bifurcations SN as red and blue curves, inclination flip IF and or-
bit flip bifurcations OF as pink curves, Hopf bifurcation HB as a light-green curve, torus
bifurcation T as a dark-green curve, transcritical bifurcation GT as a yellow curve, and
nongeneric transcritical bifurcation at infinity DT∞ as a brown curve; the point DCP∞

is a nongeneric cusp point at infinity. An attracting periodic orbit Γa
o exist between HB

and IF in panel (a), and between HB and OF in panel (b).
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periodic orbit Γa
o that merges with the orientable homoclinic orbit and disappears in the

homoclinic flip bifurcation IF.
We choose to focus on the same situation that was studied in [1], namely, where there is

a single extra saddle-focus equilibrium q ∈ R3, with a two-dimensional unstable manifold
W u(q) and a one-dimensional stable manifold W s(q). For this reason, we fix γ = 2 and
vary α > 0, which is equivalent to the situation shown along the horizontal line γ = 2.8
in Fig. 4(a).

Figure 4 (b) shows that there is a similar configuration of equilibria for parameters µ̃
and γ for theOF case. We again find a degenerate transcritical bifurcationDT∞ at infinity
at γ = 1.5, two curves of Hopf bifurcation HB and two saddle-node bifurcation curves SN.
We also find a curve of torus bifurcation T (dark-green curve) and a generic transcritical
bifurcation GT (light-green). There exists a curve OF of orbit flip bifurcations at µ̃ = 0
in the (µ̃, γ)-plane. However, the homoclinic orbit that goes through these orbit flip
bifurcations cannot be found in this parameter plane.

For the case OF, we again consider the situation where system (2) has an additional
equilibrium q with the same properties as described before. For this reason, we can study
the orbit flip bifurcation by setting γ = 0, which is equivalent to the horizontal line γ = 1.3
in Fig. 4 (b).

3 Inclination flip of case B

We denote the inclination flip IF of type B by BI. On the level of the codimension-one
homoclinic bifurcation, BI marks the transition from an orientable homoclinic bifurcation
to a non-orientable one by breaking condition (G3). Figure 5 shows the unfolding of BI

in the (α, µ)-plane for system (2) with the other parameters as stated in Section 2.2. The
bifurcation curves that emanate from the codimension-two point are a codimension-one
orientable homoclinic bifurcation Ho (brown curve), a codimension-one non-orientable
homoclinic bifurcation Ht (brown curve), a saddle-node bifurcation of periodic orbits
SNP (cyan curve), a period-doubling bifurcation PD (red curve) and a codimension-one
homoclinic bifurcation 2Ho (blue curve), as proven in [20]. We also find an additional
curve of fold bifurcation of heteroclinic orbits F and curves CC± (purple curves) that
represent the moment that the Floquet multipliers of an attracting periodic orbit becomes
complex conjugates. These curves divide the (α, µ)-plane in to open regions, which are
labeled by red numbers.

Starting from region 1, where an orientable attracting periodic orbit Γa
o exists, we move

to region 2 through Ho. This homoclinic orbit creates an orientable saddle periodic orbit
Γo in region 2, which disappears with Γa

o in the SNP bifurcation as we cross in to region
3. The transition between regions 3 and 4 is the Ht bifurcation. As in region 2, the
homoclinic orbit becomes a saddle periodic orbit Γt in region 4, but this saddle periodic
orbit is non-orientable. As we move to region 5, the periodic orbit Γt undergoes the PD
bifurcation and becomes the non-orientable attracting periodic orbit Γa

t ; furthermore, an
orientable saddle periodic orbit 2Γo with twice the period of Γt is created. Next, the
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Figure 5: Bifurcation diagram in the (α, µ)-plane near an inclination flip bifurcation BI of
system (2) for other parameters as given in section 2.2. The inset shows only the curves
of the theoretical unfolding of case B [20]. Shown are the homoclinic bifurcations Ho

and Ht as brown curves, the homoclinic bifurcation 2Ho as a blue curve, the saddle-node
bifurcation SNP of periodic orbit as a cyan curve, the period doubling bifurcation PD as
a red curve, the fold bifurcation F of heteroclinic orbits as green curve, and the loci CC±

as purple curves.

transition between regions 5 and 6 is characterized by the disappearance of 2Γo in 2Ho

(blue curve) as it becomes an homoclinic orbit. As shown in Fig. 5. The curve F delimits
region 6 and marks the creation of a pair of heteroclinic orbits from q to 0 that exists in
regions 4, 5 and 6. These heteroclinic orbits represent the transverse intersection between
W s(0) and W u(q), which becomes tangent at F so that the two heteroclinic orbits merge
and then disappear in region 1′. Region 1′ is topologically equivalent to region 1 but the
attracting periodic orbit Γa

t is non-orientable instead of orientable for Γa
o in region 1. The

transition from region 1′ to region 1 occurs via a crossing of the curves CC− and CC+

where the Floquet multipliers of Γa
t (Γa

o) in region 1′ (1) change from being real positive
(negative) to complex conjugate. In region 1∗, bounded by CC+ and CC−, the periodic
orbit does not have a strong stable manifold. Appendix B gives details on the computation
of the curves F, CC+ and CC−.

Our goal is now to characterize the topological properties of the global manifolds
in a neighborhood of the inclination flip bifurcation. We use the bifurcation diagram
in Fig. 5 as a reference to describe the changes in the organization of the manifolds of
system (2) in phase space, as α and µ vary between the different regions in the (α, µ)-
plane. Table 1 provides an overview of the representative values of α and µ we selected
from each region. We also illustrate the manifolds for representative parameter points
approximately on Ho, Ht,

2Ho, F and at BI; these values are given in Table 2. We
first present their phase portrait in R3, where the orbit segments that forms the two-
dimensional stable (unstable) manifolds are computed by restricting one end point to lie
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Region 1 2 3 4 5 6 1’
α 0.300 0.300 0.650 0.650 0.650 0.650 0.650
µ −0.004 0.004 0.004 −0.004 −0.007 −0.010 −0.014

Table 1: Chosen representative parameter values for the different open regions in Fig. 5.

Curve Ho BI Ht
2Ho F

α 0.3000000 0.4664012 0.6500000 0.6500000 0.6500000
µ 0 0 0 -0.0079047 −0.0134990

Table 2: Chosen representative parameter values at selected bifurcations in Fig. 5.

in the sphere S
∗ := {x ∈ R

3 : ‖x− c‖ = R} with c := (cx, cy, cz) = (0.5, 0, 0) and R = 0.6.

3.1 Manifolds in the open regions near BI

Figure 6 shows phase portraits in each region and at the bifurcations 2Ho and F. Specif-
ically, we show the equilibria 0 and q along with their stable and unstable manifolds, as
well as the periodic orbits and their manifolds when they exist. In the following, we cycle
around BI through the bifurcation diagram in Fig. 5, starting from region 1, and describe
the transitions on the level of the invariant manifolds in phase space.

3.1.1 Manifolds in region 1

Region 1 is characterized by the existence of an orientable attracting periodic orbit Γa
o.

The corresponding phase portrait in panel 1 of Fig. 6 shows how one branch of W u(0) (red
curve) spirals towards Γa

o (green curve). The two-dimensional stable manifold W s(0) (blue
surface) folds over W u(0) and trajectories on W s(0) escape towards infinity in backward
time. Furthermore, the two-dimensional unstable manifold W u(q) (red surface) accumu-
lates on Γa

o. In fact, Γa
o is the boundary of W u(q). Since the Floquet multipliers of Γa

o are
positive, its strong stable manifold W ss(Γa

o) (purple surface) is a topological cylinder. We
note that the one-dimensional stable manifold W s(q) (cyan curve) lies in the interior of
W ss(Γa

o). Therefore, none of the other stable manifolds outside of W ss(Γa
o) can accumulate

onto W s(q) in backward time.

3.1.2 Manifolds in region 2

The bifurcation curve Ho, between region 1 and 2, creates the homoclinic orbit Γhom.
As we transition to region 2, the orbit Γhom becomes the orientable saddle periodic orbit
Γo (dark-green curve) in panel 2 of Fig. 6. It has two-dimensional stable and unstable
manifolds W s(Γo) (cyan surface) and W u(Γo) (orange surface), respectively. Since Γo is an
orientable saddle periodic orbit, both W s(Γo) and W u(Γo) are orientable, but W u(Γo) is
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Figure 6: Phase portraits of system (2) in the different regions 1-6 and at the bifurcations
Ho and F of the (α, µ)-plane in Fig. 5. Shown are W s(0) as a dark-blue surface, W ss(0)
as a blue curve, W u(0) as a pink curve, W u(q) as a red surface, W s(q) as a cyan curve,
W s(Γo) andW s(Γt) as cyan surfaces, W u(Γo) andW u(Γt) as orange surfaces, and W ss(Γa

t )
and W ss(Γa

o) as purple surfaces. The (α, µ)-values for each panel are given in Tables 1
and 2.
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Figure 7: Intersection of global manifolds in region 4. Panel (a) shows the intersections
of the manifolds with the plane Σ; points in Σ have the same y-coordinate as q. Shown
are W s(0) as blue curves, W s(Γo) as a cyan curve, W u(Γt) as an orange curve, W u(q) as
red curves and the point p ∈ Γt ∩ Σ as a green dot. Panel (b) shows (scaled) time series
in x of representative heteroclinic orbits from q to 0, respectively.

bounded by Γa
o and W u(0), while W s(Γo) is unbounded. As shown in panel 2 of Fig. 6, the

one-dimensional manifold W u(0) no longer accumulates on Γa
o, but one branch folds over

W s(0) before both branches move off to infinity. Furthermore, W s(0) now accumulates
(in backward time) onto W s(Γo). Note that W s(0) intersects W u(Γo) transversally; this
implies the existence of a heteroclinic cycle-to-point connecting orbit from Γo to 0, which
exists in the open region 2 in Fig. 5.

3.1.3 Manifolds in region 3

The transition between regions 2 and 3 occurs at the saddle-node bifurcation of periodic
orbits SNP. At SNP, the periodic orbits Γo, Γ

a
o and their manifolds W s(Γo) and W ss(Γa

o)
merge, and disappear as we transition in to region 3. Consequently, W s(0) now spirals
towards q and accumulates on W s(q) in backward time; see panel 3 of Fig. 6. The
manifold W u(0) is now the boundary of W u(q) and the manifolds W s(0) and W u(q)
intersect transversally in region 3; this implies the existence of a heteroclinic orbit γ1
(white curve) from q to 0.

3.1.4 Manifolds in region 4

Regions 3 and 4 are separated by a curve Ht of codimension-one non-orientable homoclinic
bifurcations. The homoclinic orbit Γhom becomes the non-orientable saddle periodic orbit
Γt in region 4. The stable manifold W s(0) accumulates onto W s(Γt) (cyan surface) in
backward time. In contrast to region 2, the non-orientable stable manifold W s(Γt) is
not a separatrix but spirals towards q and accumulates in backward time onto W s(q).
Furthermore, we see intersections between the different manifolds in region 4, although it
is hard to appreciate their structure.
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To illustrate the nature of these manifold interactions we consider their intersection
sets with the plane Σ := {(x, y, z) ∈ R3 : y = qy}, where qy is the y-component of q.
Figure 7(a) shows the intersection sets of W s(0), W u(q), W s(Γt) and W u(Γt) with Σ in a
neighborhood of one of the two points p ∈ Γt ∩ Σ. Locally near p, there is a single curve
(cyan) representing W s(Γt)∩Σ and another single curve (orange) representing W u(Γt)∩Σ.
Since W u(q) ∩Σ intersects W s(Γt) ∩Σ and W u(Γt) ∩Σ intersects W s(0) ∩Σ, there exist
structurally stable heteroclinic orbits from q to Γt and from Γt to 0, respectively. As a
consequence of the λ-lemma [33, 46], the intersection sets W s(0)∩Σ (blue) and W u(q)∩Σ
(red) give rise to several curves in the neighborhood of p that accumulate onto W s(Γt)∩Σ
and W u(Γt)∩Σ, respectively. Therefore, there exist transversal intersections between the
sets W u(q)∩Σ andW s(0)∩Σ, which imply the existence of structurally stable heteroclinic
orbits from q to 0. Panels (b1)–(b3) of Fig. 7 show the evolution of the x-variable with
respect to time for three heteroclinic orbits from q to 0 in region 4; observe how they
differ in the number of big excursions before converging to 0, these excursions correspond
to intersection points in Σ close to p. The λ-lemma guarantees the sets W u(q) ∩ Σ and
W s(0)∩Σ intersect in an arbitrary small neighborhood of p; therefore there exist infinitely
many intersection points. Only a finite number of these intersection points corresponds to
a single heteroclinic orbit from q to 0; hence, there are indeed infinitely many heteroclinic
orbits from q to 0 in region 4.

We remark that the manifolds W u(q) and W s(0) shown in panel 4 of Fig. 6 are only
computed up to the first two of their infinitely many layers that intersect S∗; hence, the
accumulation of these manifold with the respective invariant manifolds of Γo is not visible
in panel 4 of Fig. 6.

3.1.5 Manifolds in region 5

When crossing from region 4 to region 5 a period-doubling bifurcation PD occurs. The
saddle periodic orbit Γt becomes a non-orientable attracting periodic orbit Γa

t , and an
orientable saddle periodic orbit 2Γo with twice the period of Γa

t emanates from the period-
doubling bifurcation into region 5.

Panel 5 in Fig. 6 shows that W s(2Γo) (cyan) and W s(0) accumulate onto q and W s(q)
in backward time. The periodic orbit Γa

t is attracting in region 5, but its strong stable
manifold W ss(Γa

t ) (purple) can be viewed as the continuation of W s(Γt). The portion of
W ss(Γa

t ) relative toW
s(2Γo) suggests that the basin of attraction B(Γa

t ) of Γ
a
t is bounded by

W s(2Γo). Indeed, one side of W
u(2Γo) accumulates onto Γa

t , while the other side intersects
W s(0). Hence, the situation is very similar to that in region 4: there exists one transversal
heteroclinic orbit from 2Γo to 0, and there exist infinitely many heteroclinic orbits from
q to 0. Furthermore, a two-dimensional submanifold of W u(q) lies in the open set B(Γa

t );
hence this submanifold accumulates on Γa

t and its boundary corresponds to an intersection
of W u(q) and W s(2Γo), that is, there exist transversal heteroclinic orbits from q to 2Γo.
Also, as in region 4, the one-dimensional unstable manifold W u(0) is contained in part of
the closure of both W u(2Γo) and W u(q).
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3.1.6 Manifolds in region 6

The boundary between region 5 to 6 is the curve 2Ho of codimension-one orientable
homoclinic bifurcation. The moment of the homoclinic bifurcation is illustrated in panel
2Ho of Fig. 6. The limit of the saddle periodic orbit 2Γo is the orientable codimension-
one homoclinic orbit 2Γhom at 2Ho. Note that 2Γo and its manifolds have disappeared,
and so have the heteroclinic orbits connecting 2Γo with 0 and q. Hence there are no
longer infinitely many codimension-zero heteroclinic orbits from q to 0. We find that
W s(0) interacts non-trivially with W u(q) in two transversal heteroclinic orbits from q to
0 that persist through the homoclinic bifurcation 2Ho. They bound the two-dimensional
submanifold W u(q) that accumulates on Γa

t . Since these two heteroclinic orbits can be
viewed as the continuation of the two heteroclinic orbits from q to 2Γo in region 5. The
other infinitely many heteroclinic orbits from q to 0 all disappear at once in the homoclinic
bifurcation 2Ho.

The homoclinic orbit 2Γhom disappears but the non-orientable attracting periodic orbit
Γa
t and the two transversal heteroclinic orbits from q to 0 persist in region 6. In particular,

these two heteroclinic orbits still bound the portion ofW u(q) that is attracted by Γa
t . Note

that the branch of W u(0) that formed 2Γhom now spirals towards Γa
t . It is worth noting

that the phase space in region 6 is topologically equivalent to that of region 3 for case A
in [1].

3.1.7 Manifolds in region 1’

At the curve F, which is the transition from region 6 to region 1′, the two-dimensional
manifolds W s(0) and W u(q) lose their two intersection orbits in a quadratic tangency;
see panel F of Fig. 6. Hence, the two heteroclinic orbits merge to become the heteroclinic
orbit γ∗, representing the last moment where W u(0) is part of the boundary of W u(q).

In region 1′, the manifoldsW s(0) andW u(q) do no longer interact with each other, and
W u(q) accumulates entirely on Γa

t . The nontrivial Floquet multipliers of Γa
t in region 1′

become equal at the curve CC−; they are then complex conjugates with negative real part
close to CC− in region 1∗. Hence, there is not a well-defined strong stable manifold of Γa

in region 1∗. As we approached region 1 from region 1∗, the Floquet multipliers of Γa cross
the imaginary axis and become complex conjugates with positive real part close to the
curve CC+. At this curve, the non-trivial Floquet multipliers are both the same positive
real number. They then become two distinct positive real values in region 1, so that Γa

o

has a well-defined strong stable manifold again. This transition through CC− and CC+

allows the twisted periodic orbit Γa
t to become the orientable Γa

o that then disappears with
Γo at the bifurcation SNP [32]. Our numerical computations indicate that the two curves
CC+ and CC− are not tangent to the homoclinic bifurcation curve at BI but approach
this codimension-two point at a non-zero angle; see Fig. 5. Since the manifolds in regions
1′ and 1∗ are qualitatively the same as in region 1, except for the properties of the strong
stable manifold W ss(Γa), we do not show the respective phase portraits in Fig. 6.
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3.2 Intersections of the invariant manifolds with a sphere

It is a challenge to extract the precise nature of the phase portraits in the panels of Fig. 6
in terms of the re-organization of the basins of attracting periodic orbits. Therefore, we
now study the intersection sets of the respective invariant manifolds with the sphere S∗

of radius R = 0.6 centered at c = (cx, cy, cz) = (0.5, 0, 0). Since S∗ is a compact set,
all intersection sets of the manifolds of system (2) must be bounded. We consider the
intersection sets:

Ŵ s(0) := W s(0) ∩ S
∗ , Ŵ ss(0) := W ss(0) ∩ S

∗ , Ŵ s(q) := W s(q) ∩ S
∗,

Ŵ s(Γo) := W s(Γo) ∩ S
∗ , Ŵ s(Γt) := W s(Γt) ∩ S

∗ and Ŵ ss(Γa
o/t) := W ss(Γa

o/t) ∩ S
∗.

In particular, the intersection sets of all two-dimensional manifolds that are transverse to
S∗ are curves, while the one-dimensional manifolds intersect S∗ in points. We also deter-
mine the regions on S∗ that correspond to the intersection sets of the basin of attraction
B(Γa) of Γa; we denote this set B̂(Γa) and color it yellow in the subsequent figures.

It is convenient to represent these intersection sets in the plane; to this end, we use
stereographic projection onto the (x, z)-plane via the transformation

(x′, y′, z′) ∈ S
∗ 7→

(
R(x′ − cx)

R + (y′ − cy)
,

R(z′ − cz)

R + (y′ − cy)

)
∈ R

2. (4)

This transformation translates c to 0, and then projects a point on the (translated) sphere
S∗ along the line through (0,−R, 0) to a point on the tangent plane of the sphere at
(0, R, 0), that is, the plane parallel to the (x, z)-plane through (0, R, 0). Figure 8 shows
the intersection sets with S∗ in each region close to the inclination flip. As in the previous
section, Fig. 8 starts with the situation for region 1 and cycles through the bifurcation
diagram of the inclination flip bifurcation. However, now we show also the situation at
region 1′. The left column of Fig. 8 shows stereographic projections of the intersections
sets of the manifolds in each region close to the inclination flip as computed with Auto

[5, 7]. The right column shows topological sketches of these projections to illustrate and
accentuate important features.

3.2.1 Intersection sets in regions 1 to 3

In region 1 the intersection set Ŵ s(0) (blue curve) on S∗ is a single closed curve; due to

the fact that W s(0) is a topological cylinder. The region enclosed by Ŵ s(0) contains the

two points of Ŵ s(q) (dark blue). The orientable attracting periodic orbit Γa
o that exists

in region 1 does not intersect S∗. Moreover, the intersection set Ŵ ss(Γa
o) (purple curve) of

its strong stable manifold intersects S∗ in two closed curves. The boundary of the basin
B(Γa

o) is formed by W s(0) and W s(q); hence, ∂B̂(Γa
o) = Ŵ s(0) ∪ Ŵ s(q). Note that its

closure B̂(Γa
o) is topological single closed disk.

Panel Ho of Figure 8 shows the homoclinic bifurcation at the boundary between re-
gions 1 and 2, where Ŵ s(0) closes back on itself along Ŵ ss(0). The basin B̂(Γa

o) is now
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Figure 8: Stereographic projections of the intersection sets of the invariant manifolds
with S

∗ in the regions and at bifurcations of the bifurcation diagram in Fig. 5 near the
inclination flip BI; the first column shows the computed manifolds of system (2) and the

second column are topological sketches. Shown are Ŵ s(0) as dark-blue curves, Ŵ ss(0) as

light-blue dots and Ŵ s(q) dark-blue dots, Ŵ s(Γo), W
s(2Γo) and Ŵ s(Γt) as cyan curves,

Ŵ ss(Γa
o/t) as purple curves and B̂(Γa

o/t) as a shaded yellow region. For respective parameter
values see Tables 1 and 2.
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Ŵ ss(0) Ŵ ss(0)
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Figure 8: Continued.
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Ŵ s(q)
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Ŵ s(2Γo)
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Figure 8: Continued.
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Ŵ ss(0) Ŵ ss(0)

1’
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Figure 8: Continued.
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disconnected and B̂(Γa
o) is topologically equivalent to two disjoint disks. Furthermore, not

all of Ŵ s(0) is part of ∂B̂(Γa
o) any longer.

In region 2 the homoclinic orbit Γhom becomes the orientable saddle periodic orbit Γo.
Instead of Ŵ s(0), the intersection set Ŵ s(Γo) now forms the outer part of the boundary

set of B̂(Γa
o), that is, ∂B̂(Γ

a
o) = Ŵ s(Γo)∪Ŵ

s(q). Note that Ŵ s(0) accumulates on Ŵ s(Γo),
which consists of two topological circles, reflecting that W s(Γo) is also a cylinder. The

accumulation of Ŵ s(0) on Ŵ s(Γo) is a consequence of the λ-lemma; the structurally stable

heteroclinic orbit from Γo to 0 forces Ŵ s(0) to spiral around Ŵ s(Γo). We remark that, as
the λ-lemma is local in nature, this accumulation may be lost if a bigger sphere is chosen
and Ŵ s(Γo) becomes tangent to the sphere.

The transition from region 2 to region 3 is via a saddle-node bifurcation (SNP) of

periodic orbits, where Γo and Γa merge and disappear. As a consequence, Ŵ s(Γo), Ŵ
ss(Γa

o)

and B̂(Γa
o) are no longer present in Fig. 8 panel 3. The intersection set Ŵ s(0) now

accumulates on Ŵ s(q), which reflects the existence of a structurally stable heteroclinic
orbit from q to 0.

3.2.2 Intersection sets in regions 4 and 5

Panel Ht of Figure 8 is at the transition between regions 3 and 4, characterized by a
codimension-one non-orientable homoclinic orbit. As for the orientable homoclinic orbit,
shown in panel Ho, the intersection set Ŵ s(0) connects back on itself at Ŵ ss(0), but now

Ŵ s(0) does not bound two open regions. Instead, two segments of Ŵ s(0) accumulate on

the intersection points Ŵ s(q), due to the persistence of the heteroclinic orbit from q to 0.
In region 4, the homoclinic orbit Γhom becomes in the periodic orbit Γt. Compare

Ŵ s(Γo) in panel 2 with Ŵ s(Γt) in panel 4 of Fig. 8; for the former, Ŵ s(Γo) is composed
of two closed curves, while for the latter, W s(Γt) intersects S∗ in a single curve that

accumulates on Ŵ s(q) as a consequence of the existence of a heteroclinic orbit from q to

Γt. The intersection set Ŵ s(0) consist of many curve segments; there is a segment that

accumulates on a single point in Ŵ s(q), while the other curve segments connect the two

intersection points Ŵ s(q). In Section 3.1.4, we proved the existence of infinitely many
heteroclinic orbits in region 4; as such, there must be infinitely many curve segments
of Ŵ s(0) accumulating on Ŵ s(q). This is a consequence of the λ-lemma when applied
to the time-one map of the flow of system (2). Since S∗ is transverse to W s(q), each

transverse heteroclinic orbit from q to 0 creates at least one intersection curve Ŵ s(0)

whose endpoints are Ŵ s(q). Furthermore, this set of curves accumulates onto Ŵ s(Γt). In

panel 4 of Fig. 8 we only show three of these infinitely many intersection curves of Ŵ s(0);
the existence of infinitely many curves is indicated by dashed blue curves; the three dots
illustrates their accumulation on Ŵ s(Γt).

In region 5, the period-doubling bifurcation PD creates 2Γo and Γa
t . Note that 2Γo

is an orientable periodic orbit, yet its intersection set Ŵ s(2Γo), composed of two open

curves, is markedly different from Ŵ s(Γo) in region 2. This is due to the existence of the
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two heteroclinic orbits from q to 2Γo that force the two curves in Ŵ s(2Γo) to accumulate

on Ŵ s(q); see panel 5 of Fig. 8. The closure Ŵ s(2Γo) is a topological circle that bounds

B̂(Γa
t ), namely, ∂B̂(Γa

t ) = Ŵ s(2Γo) = Ŵ s(2Γo) ∪ Ŵ s(q). Hence, the manifold W s(2Γo),

together with W s(q), plays a similar role as W s(Γo) in region 2. The set Ŵ s(0) does
not change qualitatively in the transition from region 4 to region 5, in the sense that
all segments are in one-to-one correspondence with their counterparts in region 4. The
only difference is that Ŵ s(0) now accumulates of Ŵ s(2Γo); more precisely, due to the

period-doubled nature of 2Γo, there are two sets of segments in Ŵ s(0) that accumulate on

different curves of Ŵ s(2Γo).

3.2.3 Intersection sets in regions 6 and 1’

Panel 2Ho of Fig. 8 shows how the intersection set Ŵ s(0) meets itself transversally at

Ŵ ss(0) in this bifurcation. As 2Γo becomes 2Γhom, the infinitely many curves of Ŵ s(0)

in region 4 disappear and only two curves that connect Ŵ ss(0) and Ŵ s(q) exist. In

addition, ∂B̂(Γa
t ) ⊂ Ŵ s(0) ∪ Ŵ s(q), that is, W s(0) becomes the new separatrix in phase

space. AlthoughHo and
2Ho are both codimension-one orientable homoclinic bifurcations,

their intersection sets are not homeomorphic, as seen in the respective panels of Fig. 8;
there exists a non-trivial intersection between W u(q) and W s(0) at 2Ho.

In region 6, the intersection set Ŵ s(0) bounds B̂(Γa
t ), note that B̂(Γa

t ) is a topological

annulus. The intersection set Ŵ s(0) is composed of two disjoint curves that spiral into

the intersection points Ŵ s(q); hence the intersection set B̂(Γa
t ) is not a simply connected

set, which indicates the persistence of the two heteroclinic orbits from q to 0.
At the fold curve F, the unstable manifold W u(q) intersects W s(0) tangentially in

the heteroclinic orbit γ∗; see panel F of Fig. 5. On the level of the intersection sets in
panel F of Fig. 8, the set Ŵ s(0) is formed by one segment that accumulates on both

sides on a single point in Ŵ s(q). At this bifurcation, W s(0) cannot cross W u(q), as they

are in tangency, and B̂(Γa
t ) becomes a simply connected set in region 6. Hence, B̂(Γa

t ) is
homeomorphic to a closed disk, as is the case in region 1.

In region 1′, W s(0) no longer intersects W u(q) and this is reflected on the level of

intersection sets as a disconnection of Ŵ s(0) from both points in Ŵ s(q). Instead Ŵ s(0)

encloses Ŵ s(q) and bounds B̂(Γa
t ). The only difference with region 1 is the topological dif-

ference between Ŵ ss(Γa
t ) and Ŵ ss(Γa

o), which are associated with a non-orientable and an
orientable attracting periodic orbit, respectively. As the transition through CC− involves
the disappearance of Ŵ ss(Γa

t ), because there is no well-defined strong stable manifold in

region 1∗, the two topological circles of Ŵ ss(Γa
o) appear only after crossing CC+ into

region 1. During these transitions, the other intersection curves and basin of attraction
do not change qualitatively.
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Ŵ ss(0) Ŵ ss(0)

BI

W s(q)

Wu(q)
0

q

Γhom

W s(0)

Wu(0)
W ss(0)

z

y

x
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Figure 9: Transition along the homoclinic bifurcation through the inclination flip bifur-
cation BI of system (2). Shown are different manifolds in R3 (left column) and their
respective stereographic projections (right column). The color code is in Fig. 6 and the
parameter values are given in Table 2.
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3.3 Transition of the homoclinic orbit through the inclination

flip

We now focus specifically on the curve of homoclinic bifurcations and illustrate the transi-
tion through the codimension-two homoclinic flip bifurcation point BI. As illustrated in,
e.g., [31], the two-dimensional manifold W s(0) can violate genericity condition (G3) in
two different ways, which depend on the eigenvalues of the equilibrium; namely, whether
|λss| > 2|λs| is fulfilled or not. Despite this difference, both mechanisms unfold in the same
way. Condition |λss| < 2|λs| was considered in [1] in the transition through the inclination
flip point AI of case A. Here, we illustrate the transition through the inclination flip point
BI of case B for the case that |λss| > 2|λs|.

Figure 9 shows the transition through BI on the level of the invariant manifolds in the
left column, and their respective intersection sets with S∗ in the right column. We show
again the stereographic projections of the intersection sets at Ho and Ht for comparison
purposes. At the codimension-one orientable homoclinic bifurcation in panel Ho, the
branch of W u(0) that spirals towards Γa

o in region 1 now forms the homoclinic orbit Γhom,
while the manifold W u(q) accumulates onto Γa

o. Note that Γhom returns to 0 along a
direction that is clearly transverse to W ss(0) (light-blue curve) and W s(0) closes back
on itself along W ss(0). Furthermore, W s(0) is topologically a cylinder; compare with

Fig. 1(a1). On the level of intersection sets, Ŵ s(0) closes on Ŵ ss(0), so that the basin of

attraction B̂(Γa
o) is a disconnected set. At the codimension-two point BI, the middle of

Fig. 9, the surface W s(0) closes back on itself at W ss(0) in such a way that it makes a
quadratic tangency with itself at W ss(0); the bottom panel of Fig. 2. in [31] is misleading
in this respect. Hence, if we follow the tangent plane of W s(0) along Γhom as t → −∞,
it does not contain the strong stable eigenvector of 0; this violates genericity condition
(G3). As a result, W s(0) meets and closes along a single branch of W ss(0). Additionally,
the attracting periodic orbit Γa

o is now the homoclinic orbit Γhom, making it the boundary

of W u(q) in phase space. On the level of intersection sets, both parts of Ŵ s(0) have

a tangency with itself at only one of the intersection points of Ŵ ss(0). Finally, at the
codimension-one non-orientable homoclinic bifurcation in panel Ht, the stable manifold
W s(0) makes half a twist before closing along (both branches) of W ss(0), so that the
homoclinic orbit is non-orientable. An interesting difference between Ho and Ht is the
existence of the heteroclinic orbit γ1 in panel Ht, caused by the transverse intersection of
W s(0) and W u(q). In fact, the long excursion of γ1 around q becomes Γhom at BI. On

the level of the intersection sets, Ŵ s(0) consists of two curves that accumulates on Ŵ s(q),
as a consequence of the existence of γ1.

By looking at the stereographic projection in the right column of Fig. 9, we can see
a clearer difference between the two conditions. Condition |λss| < 2|λs|, as considered in
[1] for the case A, leads to a limit at the moment of the inclination flip, where one end

of the intersection set Ŵ s(0) spirals into one of the points in Ŵ s(q); this is similar to the

right segment in Ht; the other end closes back on Ŵ s(0), but along the weak direction of
W s(0); see Fig. 13 of [1]. In contrast, condition |λss| > 2|λs| as considered here for case B,
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Homoclinic Ho Bo Ht
2Ho F

µ -0.150000000 0.0 0.150000000 0.150000000 0.150000000
µ̃ -0.062331201 0.0 0.062381076 0.069351963 0.070562587

Table 3: Chosen representative parameter values at selected bifurcations in Fig. 11.

Region 1 2 3 4 5 6
µ −0.150 −0.150 0.150 0.150 0.150 0.150
µ̃ −0.060 −0.065 0.060 0.065 0.069 0.070

Table 4: Chosen representative parameter values for the different open regions in Fig. 11.

leads to a limit at the moment of the inclination flip, at which the intersection set Ŵ s(0)

closes tangentially at only one of the intersection points of Ŵ ss(0).

4 Orbit flip of case B

A codimension-two orbit flip bifurcation occurs when condition (G2) is violated, that is,
the homoclinic orbit Γhom is a subset of the strong stable manifold W ss(0). Even though
the mechanism is different from that of the inclination flip, the orbit flip also results in
a change from an orientable to a non-orientable codimension-one homoclinic bifurcation;
moreover, the theoretical unfoldings of both codimension-two points are the same [38]. We
now demonstrate that both bifurcations also have the same topological organization on the
level of the manifolds involved. Here, we consider case B, meaning that, the equilibrium
0 satisfies the eigenvalue conditions as given in Section 2.1.

We start by the transition of the homoclinic orbit through the orbit flip bifurcation Bo.
Figure 10 shows the phase portraits and the intersection sets with S

∗ at the bifurcations
Ho, Bo and Ht at the parameter values given as in Table 3. Note that the panels Ho

and Ht are topologically equivalent to the respective panels in Fig. 9 for the inclination
flip, but panel Bo is different. At the moment of the orbit flip, the one-dimensional strong
stable manifold W ss(0) intersects S∗ in a single point, because the other branch of W ss(0)

is Γhom. Hence, only one end of Ŵ s(0) closes back on itself. The other end spirals into

one point of Ŵ s(q), but at an algebraic rather than an exponential rate; we indicate this
accumulation by a light-blue shading. Note that the relative position of the points in
Ŵ ss(0) swaps before and after the orbit flip; see panels Ho and Ht in Fig. 10. Unlike
the case IF, the case OF does not have multiple ways of breaking condition (G2) that
depends on additional eigenvalue conditions. Furthermore, the results that we find for the
transition for the orbit flip of type B are topologically equivalent to those found for case
A [1].

We now present the unfolding of the orbit flip bifurcation Bo with respect to the
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Figure 10: Transition along the homoclinic bifurcation through the orbit flip bifurcation
Bo of system (2). Shown are different manifolds in R3 (left column) and their respective
stereographic projections (right column). The color code is in Fig. 6 and the parameter
values are given in Table 3.
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Figure 11: Bifurcation diagram in the (µ, µ̂)-plane, where µ̂ = 10(µ̃ − 0.4157µ), near an
orbit flip bifurcation Bo of system (2) for other parameters as given in section 2.2. The
color code and nomenclature of the regions is the same as given in Figs. 5.

parameters µ and µ̃. Figure 11 shows the bifurcation diagram locally near the codimension-
two orbit flip point Bo in the (µ, µ̂)-plane; here we use the coordinate transformation
µ̂ := 10(µ̃− 0.4157µ) to improve the visualization. Close to Bo, the bifurcation diagram
is topologically equivalent to the bifurcation diagram of the inclination flip; see Fig. 5. In
particular, we also find the fold F of heteroclinic orbits, and the curves CC+ and CC−

in the same relative positions with respect to the other bifurcation curves. As we did for
the inclination flip in Section 3, we use the bifurcation diagram in Fig. 11 as a reference
to describe the re-organization of the global manifolds in phase space for system (2) with
parameters as given in Section 2.2. Representative points from each region we selected in
the (µ, µ̃)-plane are listed in Table 4.

For each point we compute the respective intersection sets with S∗, where we also
illustrate the manifolds for points on the codimension-one bifurcation curves 2Ho and
F. The parameter values µ and µ̃ for at the bifurcation points are given in Table 3.
Figure 12 shows the selected stereographic projections of the intersection sets of the stable
manifolds with S∗ at all ten representative points. The insets are enlargements illustrating
the behaviour of Ŵ s(0) close to one of the points of Ŵ ss(0). As can be checked readily,
the stereographic projections in each panel are topologically equivalent to the respective
topological sketches in Fig. 8 for the inclination flip. This means that the interactions
between the manifolds in phase space for the inclination flip are qualitatively the same
as for the orbit flip case. In particular, we have the same conclusions about the number
of heteroclinic orbits between equilibria and for saddle periodic orbits in regions 4 and 5.
Moreover, the role of the separatrix in phase space of the basin of the attracting periodic
orbit switches between the stable manifolds of the origin and saddle periodic orbits in
precisely the same way.
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Ŵ s(q)

Ŵ s(0)
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Ŵ ss(0)
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Ŵ ss(0)
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Figure 12: Stereographic projections of the intersection sets of the invariant manifolds
with S∗ in the regions and at bifurcations of the bifurcation diagram in Fig. 11 near the
orbit flip Bo. The insets show enlargements around one of the points of Ŵ ss(0). The color
code and nomenclature of the regions is the same as given in Figs. 5 and 8. For respective
parameter values see Tables 4 and 3.

5 Discussion

We presented a study of invariant manifolds of equilibria and saddle periodic orbits in
the vicinity of a codimension-two homoclinic flip bifurcation of case B. We characterized
the regions with different equilibria configurations for system (2) for both inclination and
orbit flip bifurcations of case B by means of Poincaré compactification [8, 12] and focussed
on the parameter region for which there is only one additional saddle focus equilibrium q.
We computed the unfoldings of both inclination and orbit flip bifurcation points in two-
parameter planes and presented representative phase portraits. In this way, we illustrated
the role of the two-dimensional stable manifold W s(0) of the real saddle equilibrium at the
origin 0 and its interaction with other manifolds for the overall organization of phase space
in the vicinity of the codimension-two bifurcations; in particular, this study included the
invariants manifolds of q, which lies outside the tubular neighborhood of the homoclinic
orbit. Similar to case A, presented in [1], we found a fold F of heteroclinic orbits from
q to 0 for case B of the homoclinic blip bifurcation. Furthermore, the presence of saddle
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Figure 12: Continued.
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periodic orbits in case B has implications for the interaction of the manifolds of 0 and q:
in certain parameter regions, there exist infinitely many heteroclinic orbits from q to 0
close to a homoclinic flip bifurcation; this phenomenon does not occur for case A. Note
that these heteroclinic orbits are distinguished by their numbers of large excursions; in
particular, large excursions in periodic orbits can be identified with spiking behaviours as
studied in the Hindmarsh-Rose model that describes the essential spiking behaviour of a
neuron [23].

Our approach was to compute W s(0) as a global object in phase space to study how it
re-arranges itself as the system undergoes different bifurcations. Moreover, we determined
the two-dimensional stable and unstable manifolds of the saddle periodic orbits that co-
exist in certain regions of parameters space and studied their interaction with W s(0). We
also computed the intersection sets of the stable manifolds with a suitable sphere S∗, chosen
such that it contains all compact invariant objects close to 0. In particular, knowledge
of the intersection sets on S∗ allowed us to clarify the properties of basins of attraction.
Our numerical results confirm that the local two-parameter unfoldings of both inclination
and orbit flip bifurcations of case B are the same, even on the level of the interacting
global manifolds including those of q; the only difference lies in the phase portraits at the
codimension-two points Bo and BI.

Our findings can be summarized as follows:
Results (manifold structure near flip bifurcation of case B). Consider system (2) near

an inclination flip or an orbit flip homoclinic bifurcation of case B at the origin, such that
there also exists a nearby unstable saddle-focus q. For an inclination and orbit flip the
bifurcation diagram is topologically equivalent to the ones shown in Fig. 5 and Fig. 11;
where regions and bifurcations are labelled according to section 3. The configurations of
the manifolds in phase space and their intersection sets with S∗ are as follows,

BI At the codimension-two inclination flip point BI, the intersection set Ŵ s(0) on S
∗

is a closed curve tangent to itself at one of the two points in Ŵ ss(0). The stable
manifold W s(0) in R3 closes back on itself along a single branch of W ss(0). More
precisely, we find that W s(0) has a quadratic tangency with itself at W ss(0). The
unstable manifold W u(q) accumulates on Γhom.

Bo At the codimension-two orbit flip point Bo, the intersection set Ŵ s(0) closes on itself

at only one point of Ŵ ss(0), because the second intersection point Ŵ ss(0) becomes

the homoclinic orbit and does not intersect S∗. The segment Ŵ s(0) on the other side

of Ŵ ss(0) accumulates on Ŵ s(q). The homoclinic orbit bounds the two-dimensional
manifold W u(q) and part of W s(0) accumulates on W s(q).

1 In region 1 the intersection set Ŵ s(0) of the stable manifold of 0 encloses the basin

of attraction B̂(Γa
o) of the orientable attracting periodic orbit Γa

o; here, B̂(Γa
o) is a

connected set and its closure is homeomorphic to a disk, and Ŵ ss(Γa
o) is the union

of two topological circles. The stable manifold W s(0) is the boundary of the basin
of attraction of Γa

o, and the unstable manifold W u(q) is bounded by the attracting
periodic orbit Γa

o.
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Ho Along the orientable homoclinic curve Ho, the intersection set Ŵ s(0) closes on itself

at Ŵ ss(0) and encloses the region B̂(Γa
o). The closure of B̂(Γa

o) is now homeomor-
phic to two disks. The stable manifold W s(0) closes along W ss(0) and creates a
homoclinic orbit Γhom that forms the boundary of W u(q).

2 In region 2 there exists a saddle periodic orbit Γo. The intersection set Ŵ s(0) spirals

towards Ŵ s(Γo). The closure of B̂(Γa
o) is homeomorphic to two disk that are each

bounded by a topological circle in Ŵ s(Γo). The stable manifold W s(Γo) is the bound-
ary of B(Γa

o), and W u(q) is contained in B(Γa
o) and accumulates on Γa

o. Furthermore,
W u(Γo) intersects W s(0) in a structurally stable heteroclinic orbit.

SNP At the curve of saddle-node of periodic orbit SNP, the periodic orbits Γa
o and Γo

merge into a non-hyperbolic periodic orbit and disappear in region 3.

3 In region 3, the segment of the intersection set Ŵ s(0) spirals towards Ŵ s(q). There
exists a structurally stable heteroclinic orbit γ1 from q to 0, and W u(q) is bounded
by the unstable manifold W u(0).

Ht Along the non-orientable homoclinic curve Ht, the homoclinic orbit Γhom exists, the
intersection set Ŵ s(0) closes on itself at Ŵ ss(0), and segments of it accumulate on

Ŵ s(q). The stable manifold W s(0) closes along W ss(0), while it intersects W u(q)
transversally.

4 In region 4 there exists the periodic orbit Γt. The intersection set Ŵ s(0) consists

of infinitely many curves that spiral towards Ŵ s(q) and accumulate on Ŵ s(Γt),

which also spirals towards Ŵ s(q). There exists one structurally stable heteroclinic
orbit from Γt to 0 and one from q to Γt. Furthermore, there are infinitely many
structurally stable heteroclinic orbits from q to 0. The unstable manifold W u(0)
bounds both W u(Γt) and W u(q).

PD Along the period-doubling bifurcation curve PD, the periodic orbit Γt is non-hyperbolic.
It turns into an attracting periodic orbit Γa

t and creates the period-doubled periodic
orbit 2Γo in region 5.

5 In region 5, the intersection set Ŵ s(2Γo) consists of two curves that spiral towards

Ŵ s(q) and enclose B̂(Γa
t ). In a neighborhood of these curves, there are infinitely

many curves Ŵ s(0) that spiral towards Ŵ s(q). Furthermore, Ŵ ss(Γa
t ) also spirals

towards Ŵ s(q). The stable manifold W s(2Γo) is the boundary of the basin of attrac-
tion of Γa

t . There exist a structurally stable heteroclinic orbit from 2Γo to 0 and two
from q to 2Γo. Also, there are infinitely many structurally stable heteroclinic orbits
from q to 0. Moreover, the part of W u(q) bounded by the two heteroclinic orbits
from q to 2Γo accumulates on Γa

t , while the other part is bounded by W u(0).

2Ho Along the curve 2Ho the periodic orbit 2Γo disappears and the homoclinic orbit 2Γhom

is created. The intersection set Ŵ s(0) consists of curves that close along Ŵ ss(0) or
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spiral towards Ŵ s(q). In the process, Ŵ s(0) encloses B̂(Γa
t ). The stable manifold

W s(0) is the boundary of B(Γa
t ). Furthermore, infinitely many heteroclinic orbits

from q to 0 disappear at once, and only two are preserved.

6 In region 6 the intersection set Ŵ s(0) forms the boundary of B̂(Γa
t ) and the closure

of their union is homeomorphic to an annulus.

F Along the fold F of heteroclinic orbits, the intersection set Ŵ s(0) encloses B̂(Γa
t ) but

only one curve of Ŵ s(0) goes to Ŵ s(q). Moreover, the closure of B̂(Γa
o) is again a

topological disk. The stable manifold W s(0) is tangent to W u(q) at the heteroclinic
orbit γ∗; this tangency is quadratic.

1′ In region 1′, the intersection set Ŵ s(0) no longer accumulates on Ŵ s(q); the situ-

ation is topologically equivalent to that in region 1 except that Ŵ ss(Γa
t ) accumulates

on Ŵ s(q). In phase space, W u(q) accumulates on Γa
t , and the heteroclinic orbits

between q and 0 have disappeared.

CC− At the curve CC−, the nontrivial Floquet multipliers of Γa are both the same negative
real number, meaning that the periodic orbit Γa

t becomes Γa. There does not exist a
well-defined strong stable manifold W ss(Γa).

1∗ in region 1∗ the Floquet multipliers of Γa are complex conjugate and their real part
becomes positive when approaching the curve CC+

CC+ At the curve CC+, the nontrivial Floquet multipliers of Γa are both the same positive
number. In the transition to region 1, the periodic orbit Γa becomes Γa

o and there
exists a well-defined strong stable manifold W ss(Γa

o).

As discussed before, the existence of q induces new phenomena in the unfolding of
an homoclinic flip bifurcation, even though it does not lie in a tubular neighbourhood of
the homoclinic orbit. It is worth noting that we found parameter regimes of system (2)
with none or several additional equilibria. Of particular interest is the situation where no
additional equilibria exist; since W s(q) plays an important role in the overall organization
of the two-dimensional global manifolds, we conjecture that a one-dimensional manifold
from infinity then takes on the role of W s(q). The compactified version of system (2)
should help with answering this question.

In ongoing work we intend to understand the nature of the global manifolds close to
the most challenging case of a homoclinic flip bifurcation of case C. Its unfolding features
infinitely many codimension-one homoclinic bifurcations and period-doubling cascades;
this creates horseshoe-regions in the parameter plane that are bounded by tangencies of
different manifolds.
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Figure 13: Sketches of the transformations for Poincaré compactification of R. Panel
(a) shows how the central projection sends R (purple curve) to the upper (red) and the
lower (blue) hemispheres of the circle, denoted S+ and S−, respectively. In panel (b), the
stereographic projection from the south pole is applied to send S± back to the intervals
on the real line, as indicated by the corresponding colors.

A Poincaré Compactification

To describe Poincaré compactification [8, 12] of the three-dimensional vector field (2).
We first describe the Poincaré compactification for a one-dimensional system on R. As
is illustrated in Fig. 13(a), the one-dimensional phase space (purple curve) is identified
with the tangent space of the one-dimensional sphere, the circle S ⊂ R2, at its north pole
(0, 1) ∈ R

2. Each point r ∈ R (green dot) is related via inverse central projections f± to
antipodal points f±(r) ∈ S, one on the upper half sphere S+ (red dot) and one on the
lower half sphere S− (blue dot). In a second step, shown in Fig. 13(b), The south-pole
projection g is used to map the northern hemisphere S+ to the interval (−2, 2) and the
equator S0 to its boundary {−2, 2}. Note that g maps S− \ {(0,−1)} to the two open
intervals (−∞,−2) and (2,∞), which constitutes a second transformation of R that is not
compact. For our purposes, it makes sense to work with S+ only.

To understand how a vector field X defined in R is transformed by the maps f± we
refer to the following commutative diagram:

R
f±

−−−→ S±

X

y
yXS±

TR = R
Df±

−−−→ TS±

Here, TR and TS± are the respective tangent bundles of R and S±, the map Df± is
the Jacobian of f±, and the two vector fields XS+ and XS− defined on S+ and S− are
conjugate to X , respectively. Consequently, we can write the transformed vector field XS±

as XS± = Df± ◦X ◦ f−1
± . It is possible to extend the domain of definition of XS± to the

whole of S provided X is polynomial; when doing this, the dynamics at the equator of S
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are invariant and represent the dynamics at infinity of X . Let ρ(X) be the extension of
XS± in S. We have that g generates the vector field X = Dg ◦ ρ(X) ◦ g−1 on R, where
the flow on (−2, 2) is conjugate to the flow of X and {−2, 2} represents the dynamics at
infinity. This procedure can be generalized to higher dimensions, the best-known case is
the compactification to the Poincaré-disk of polynomial vector fields on R2 [8, 12]. We are
interested here in R3, which has been studied for certain models [25, 26, 27, 44] through
the use of coordinate charts.

A.1 Compactification of R3

Recall that system (2) is defined as the polynomial vector field

Xs(x, y, z) :





ẋ = P 1(x, y, z) := ax+ by − ax2 + (µ̃− αz)x(2 − 3x),

ẏ = P 2(x, y, z) := bx+ ay − 3

2
bx2 − 3

2
axy − 2y(µ̃− αz),

ż = P 3(x, y, z) := cz + µx+ γxz + αβ(x2(1− x)− y2),

for (x, y, z) ∈ R3. We wish to apply a conjugacy transformation such that Xs is topologi-
cally equivalent to a vector field X when restricted to the open ball B2(2) ⊂ R3 of radius
2. As the first step, we extend the system into R

4, that is, we transform system (2) such
that it is defined on the unit hypersphere S3. Then the two-dimensional sphere

S
2

R4 :=
{
(x1, x2, x3, x4) ∈ S

3 : x4 = 0
}
⊂ R

4

is the equator that contains the dynamics at infinity of system (2). Analogous to the
one-dimensional case, we use the inverse central projections f± : R3 → S3

± defined by
f±(x1, x2, x3) = ±(x1, x2, x3, 1)/(1 + x2

1 + x2
2 + x2

3)
1/2; note that the radius x2

1 + x2
2 + x2

3

plays the exact same role as r2 in the one-dimensional example. We perform a conjugacy
transformation to the vector field Xs on R3 so that we obtain the vector fields Xs

S±
=

Df± ◦Xs ◦ f−1
± defined on the tangent bundle TS3

±. It turns out that both Xs
+ and Xs

−

can be expressed as

Xs
S±
(y) = y4




1− y21 −y1y2 −y1y3

−y1y2 1− y22 −y2y3

−y1y3 −y2y3 1− y23

−y1y4 −y2y4 −y3y4




◦Xs

(
y1
y4
,
y2
y4
,
y3
y4

)
, (5)

where y = (y1, y2, y3, y4) ∈ S3
±.

System (5) is not well defined on the hyperplane y4 = 0. We can salvage this issue via
multiplication by a factor yk−1

4 , where k is the maximal degree of the polynomials that de-
fine Xs. Since k = 3 for system (2), we define the corresponding Poincaré compactification
on S3 as

ρ(Xs)(y) = y24X
s
S±
(y), (6)
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that is, ρ(Xs) is defined on S3
± as well as the equator. We can think of (6) as a vector field

on R4, for which S3 is an invariant manifold. Note that, if k were even, the dynamics of
ρ(Xs)(y) on the hemisphere S3

− would only be conjugate to Xs by reversing time.

A.2 Projection back to R3

As illustrated for the one-dimensional vector field in Fig. 13(b), we now project S
3 \

{0, 0, 0,−1} ⊂ R4 back to R3. We define g : S3 \ {0, 0, 0,−1} → R3 as

g(y1, y2, y3, y4) =
2

y4 + 1
(y1, y2, y3) ,

which corresponds to the stereographic projection from the south pole (0, 0, 0,−1) to the
hyperplane tangent to S3 at the north pole (0, 0, 0, 1). The set g(S3

+) is contained in the
three-dimensional sphere S

2(2) ⊂ R
3 with radius two. Its Jacobian is given by

Dg(y) =
2

y4 + 1




1 0 0
−y1
y4 + 1

0 1 0
−y2
y4 + 1

0 0 1
−y3
y4 + 1




,

and the composition with Df± becomes

Dg ◦Df±(y) = 2
y4

(y4 + 1)2




−y21 + y4 + 1 −y1y2 −y1y3

−y1y2 −y22 + y4 + 1 −y2y3

−y1y3 −y2y3 −y23 + y4 + 1


 . (7)

Let p̄ = (x̄, ȳ, z̄) ∈ R3 be a point in the new compactified phase space. The inverse of
g transforms p̄ to the point

(y1, y2, y3, y4) =
4

|| p̄ ||2 +4

(
x̄, ȳ, z̄,

4− || p̄ ||2

4

)
∈ S

3 \ {0, 0, 0,−1},

i.e., ||g−1(p̄) ||= 1. In these coordinates, (7) becomes

Dg ◦Df(p̄) =
4− || p̄ ||2

|| p̄ ||2 +4




−x̄2 + ȳ2 + z̄2 + 4

4
−
x̄ȳ

2
−
x̄z̄

2

−
x̄ȳ

2

x̄2 − ȳ2 + z̄2 + 4

4
−
ȳz̄

2

−
x̄z̄

2
−
ȳz̄

2

x̄2 + ȳ2 − z̄2 + 4

4




.
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Then the vector field Xs = Dg ◦ ρ(Xs) ◦ g−1 = y24 Dg ◦Df± ◦Xs ◦ f−1
± ◦ g−1, defined on

R3, can be expressed as

Xs(p̄) =

(
4− || p̄ ||2

|| p̄ ||2 +4

)2

Dg ◦Df ◦Xs

(
4x̄

4− || p̄ ||2
,

4ȳ

4− || p̄ ||2
,

4z̄

4− || p̄ ||2

)
. (8)

Note that the solid sphere of radius two is invariant under system (8) and its interior is
conjugate to the original system (2) on R

3.
In particular, system (8) can be used to track the different equilibria of system (2) in

Auto as they move through infinity, to compute the bifurcation diagrams in Fig. 4.

A.3 Analytical study of infinity

In its general form, system (8) is too complex to study the dynamics at infinity, that is,
on the boundary S2(2) of the compactified phase space. Instead, we study the dynamics
at infinity for the differentiable vector field ρ(Xs) as given by (5). To this end, we analyze
the dynamics on specific coordinate charts of S3 and its equator S2

R4 [26, 27]. We consider
three different local charts, namely, (Ui, φi) for i = 1, 2, 3, where Ui = {y ∈ S3 : yi > 0} and
φi : Ui → R3; the transformations φi correspond to the central projections with respect to
the tangent planes at the points (1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 1, 0), respectively, which
are similar to the projections f−1

± used in Section A.1. The three-dimensional vector
fields in these projections contain subsets of the equator S2

R4 that correspond to invariant
planes. Hence, the problem of studying the dynamics at infinity can be simplified to a
study of two-dimensional vector fields [25, 26, 27, 44]. For ease of notation, we use the
variables x̃, ỹ, z̃ and w̃ interchangeably in the different charts. Specifically, w̃ represents
the proximity to infinity, that is, w̃ = 0 corresponds to the projection of the dynamics
infinity in the corresponding chart.

We show the construction for U1, that is, the half of S
3 with y1 > 0. Similar to f±, the

inverse central projection with the hyperplane tangent to S
3 at (1, 0, 0, 0) adds 1 as the

first component and normalizes the vector. Hence, its inverse φ1(y) for y ∈ U1 is defined
as φ1(y) = (y2/y1, y3/y1, y4/y1) =: (ỹ, z̃, w̃) ∈ R3, and the corresponding Jacobian is given
by

Dφ1(y) =
1

y1




−
y2
y1

1 0 0

−
y3
y1

0 1 0

−
y4
y1

0 0 1




.
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then the composition with Df± becomes

Dφ1 ◦Df(y) =
1

y1




−
y2
y1

1 0

−
y3
y1

0 1

−
y4
y1

0 0




. (9)

Rewriting (9) with respect (ỹ, z̃, w̃), we have

Dφ1 ◦Df(ỹ, z̃, w̃) = w̃



−ỹ 1 0
−z̃ 0 1
−w̃ 0 0


 . (10)

Finally, we use the fact that y4 = w̃/(1 + ỹ2 + z̃2 + w̃2)1/2 and (10) to represent the
vector field on U1, that is, X

s
U1

= Dφ1 ◦ ρ(X
s) ◦ φ−1

1 , as

Xs
U1
(ỹ, z̃, w̃) =

w̃2

1 + ỹ2 + z̃2 + w̃2
Dφ1 ◦Df ◦Xs =

w̃3

1 + ỹ2 + z̃2 + w̃2



−ỹP 1 + P 2

−z̃P 1 + P 3

−w̃P 1


 , (11)

where P j = P j(1/w̃, ỹ/w̃, z̃/w̃) for j = 1, 2, 3. The dynamics on the chart U2 with φ2(y) =
(y1/y2, y3/y2, y4/y2) =: (x̃, z̃, w̃) ∈ R3, where y ∈ U2, are given by

Xs
U2
(x̃, z̃, w̃) =

w̃2

1 + x̃2 + z̃2 + w̃2
Dφ2◦Df ◦Xs =

w̃3

1 + x̃2 + z̃2 + w̃2



−x̃P 2 + P 1

−z̃P 2 + P 3

−w̃P 2


 , (12)

where P j = P j(x̃/w̃, 1/w̃, z̃/w̃) for j = 1, 2, 3. Finally, the dynamics on the chart U3 with
φ3(y) = (y1/y2, y3/y2, y4/y2) =: (x̃, z̃, w̃) ∈ R3, and y ∈ U3, are given by

Xs
U3
(x̃, ỹ, w̃) =

w̃2

1 + x̃2 + ỹ2 + w̃2
Dφ3◦Df ◦Xs =

w̃3

1 + x̃2 + ỹ2 + w̃2



−x̃P 3 + P 1

−ỹP 3 + P 2

−w̃P 3


 , (13)

where P j = P j(x̃/w̃, ỹ/w̃, 1/w̃) for j = 1, 2, 3.
Note that the denominator term in each of the factors for (11) ,(12) and (13) is strictly

positive. Hence, this term can be viewed as a time rescaling that does not alter the
dynamics of the vector fields; therefore, it can be omitted. As mentioned before, w̃ = 0
is an invariant plane for (11), (12) and (13) that represents infinity. After substitution of
the corresponding polynomials and simplification of the expressions, we set w̃ = 0 in (11),
(12) and (13), which leads to the following three vector fields that represent the dynamics
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of system (2) at infinity in the corresponding charts:

Xs
U∞
1
(ỹ, z̃) :

{
˙̃y = −3αỹz̃,
˙̃z = −α(3z̃2 + β).

(14)

Xs
U∞
2
(x̃, z̃) :

{
˙̃x = 3αx̃2z̃,
˙̃z = −αβx̃3.

(15)

Xs
U∞
3
(x̃, ỹ) :

{
˙̃x = αx̃2(βx̃2 + 3),
˙̃y = αβx̃3ỹ.

(16)

Systems (14), (15) and (16) highlight that the dynamics at infinity only depends on the
parameters α and β, which are the coefficients of higher powers of the polynomials in
system (2). We observe that the three systems each have an integral of motion, namely,

HU1
(ỹ, z̃) = ln

(
ỹ2

|3z̃2 + β|

)
, (17)

HU2
(x̃, z̃) = βx̃2 + 3z̃2 and (18)

HU3
(x̃, ỹ) = ln

(
|βx̃2 + 3|

ỹ2

)
. (19)

Given the parameter chosen in Section 2.2, we are interested in how the dynamics at
infinity changes as β is varied and α > 0.

Note that, for a complete characterization of S2

R4 , one would also have to study the
charts (Vi, σi) with i = 1, 2, 3, where Vi = {y ∈ S

3 : yi < 0} and σi : Vi → R
3 are the

central projections to the tangent planes (−1, 0, 0, 0), (0,−1, 0, 0) and (0, 0,−1, 0). We do
not study these charts, because the inverse central projections f± map to antipodal points
and the maximum degree of our polynomials is odd; therefore, the charts Ui and Vi are
conjugate to each other via the transformation p ∈ Ui → −p ∈ Vi, for i = 1, 2, 3.

A.3.1 Dynamics at infinity when β < 0

Figure 14 illustrates the dynamics of system (2) at infinity when β < 0. The first row
shows phase portraits of systems (14), (15) and (16) on the charts correspondingly labeled
panels (U1), (U2) and (U3), respectively. Panel (a) shows how these phase portraits are
glued together on a cube and panel(b) representative computed trajectories of system (8)
on S2(2) for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65,−1, 2, 0, 0).

In the local chart U1, there are two equilibria, at (ỹ, z̃) = (0,±
√

−β/3), and their

Jacobian matrix is diagonal with eigenvalues ∓3α
√
−β/3) and ∓6α

√
−β/3, respectively;

the eigenvectors are (1, 0) for the first and (0, 1) for the second eigenvalue, which is the
strong direction. Note that ỹ = 0 is invariant, so that the strong (un)stable manifolds
are straight lines that coincide. Since the lines z̃ = ±

√
−β/3 are also invariant, both

equilibria have linear weak (un)stable manifolds as well; we denote these straight lines by
l±. The curves l± connect the points (0, 2, 0) and (0,−2, 0) in the phase space of (8).
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Figure 14: Dynamics of system (2) at infinity when β < 0; the first row shows different
coordinate charts that fit together as neighboring faces on a cube in panel (a). The sphere
in panel (b) shows computed trajectories (green) on S2(2) for the compactified system (8)
for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65,−1, 2, 0, 0).
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In the local chart U2, as we see from equation (18), solutions of system (15) are tangent
to the family of hyperbolas with asymptotes z̃ = ±x̃

√
−β/3 when β < 0. The curves

l± correspond to these asymptotes in the local chart U2. They are the only trajectories
that converge to the origin, which is the point (0, 2, 0) of S2(2). The z̃-axis is a family of
non-hyperbolic equilibria of system (15) with one stable direction when x̃ < 0 and one
unstable direction when x̃ > 0.

The phase portrait of system (16) in the chart U3 with β < 0 is similar to that of
system (14) after the transformation (ỹ, z̃) 7→ (−ỹ, x̃) and rotation by −π

2
; panel (U3)

of Fig. 14 shows that the x̃-axis is invariant and corresponds to the strong manifolds
of the two equilibria (±

√
−3/β, 0); also, the vertical lines x̃ = ±

√
−3/β are invariant

and correspond to the projections of l± under φ3. However, due to the factor x̃2 in the
equations, the z̃-axis is a set of non-hyperbolic equilibria just as for system (15).

The cube and sphere in the second row of Fig. 14 show how the curves l± connect the
two nodes in the chart U1 with the equilibrium (0, 0) in the chart U3.

A.3.2 Dynamics at infinity when β = 0

Systems (14)-(16) for β = 0 become

Xs
U∞
1
(ỹ, z̃) :

{
˙̃y = −3αỹz̃,
˙̃z = −3αz̃2,

Xs
U∞
2
(x̃, z̃) :

{
˙̃x = 3αx̃2z̃,
˙̃z = 0,

Xs
U∞
3
(x̃, ỹ) :

{
˙̃x = 3αx̃2,
˙̃y = 0.

The corresponding phase portraits are shown in the first row of Fig. 15; in the different
charts U1, U2 and U3. Panel (U1) of Fig. 15 shows a sketch of the phase portrait (14)
for β = 0. Note that the ỹ-axis consists of non-hyperbolic equilibria and the z̃-axis is
invariant. In fact, its first integral of motion (17) can be simplified to

HU1
(ỹ, z̃) =

ỹ

z̃
,

which means that any straight line through the origin is invariant. We can think of the
origin as a saddle-node equilibrium; indeed, as β < 0 increases towards 0, the two equilibria
from Fig. 14 move closer together and eventually, at β = 0, merge at the origin. Similarly,
the lines l± meet at the ỹ-axis for β = 0 and become a family of non-hyperbolic equilibria.

Panel (U2) of Fig. 15 shows a sketch of the phase portrait (15) for β = 0 and illustrates
that the dynamics in the local chart U2 are reduced to one-dimensional dynamics. The
x̃- and z̃-axes are families of degenerate equilibria, and the horizontal lines are invariant.
The non-hyperbolic equilibria on the z̃-axis are degenerate saddle-node points.

The dynamics in system (16) on U3 are also reduced to one-dimensional dynamics. The
ỹ-axis is a set of degenerate saddle-node equilibria and the horizontal lines are invariant.
In contrast to the limit argument used for the chart U1, the two hyperbolic equilibria that
exist for β < 0 do not disappear in a saddle-node bifurcation at β = 0; instead they go
to infinity in U3. More precisely, these equilibria disappear at a saddle-node bifurcation
on the local chart U1 and its antipodal chart V1, which both cannot be seen in the local
chart U3.
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Figure 15: Dynamics of system (2) at infinity when β = 0; the first row shows different
coordinate charts that fit together as neighboring faces on a cube in panel (a). The sphere
in panel (b) shows computed trajectories (green) on S2(2) for the compactified system (8)
for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65, 0, 2, 0, 0).
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Figure 16: Dynamics of system (2) at infinity when β > 0; the first row shows different
coordinate charts that fit together as neighboring faces on a cube in panel (a). The sphere
in panel (b) shows computed trajectories (green) on S2(2) for the compactified system (8)
for (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65, 1, 2, 0, 0).

Fig. 15(a) shows how the different charts can be glued together to form a cube. As
shown in Fig. 15(b), we also computed trajectories of system (8) on its invariant sphere
S
2(2); here, (a, b, c, α, β, γ, µ, µ̃) = (0.22, 1,−2, 0.65, 0, 2, 0, 0). Note that the horizontal

trajectories in the charts U2 and U3 are translated to curves on S2(2) that connect the
poles at (2, 0, 0) and (−2, 0, 0). The great circles x̄ = 0 and z̄ = 0 both consist of degenerate
equilibria.

A.3.3 Dynamics at infinity when β > 0

Figure 16 shows the corresponding phase portraits of system (2) with β > 0 on the charts
at infinity in the correspondingly labeled panels (U1), (U2) and (U3), respectively. On U1

there are no equilibria when β > 0 and the z̃-axis is invariant under the flow. The first
integral of motion (17) defines the family of radical functions ỹ = ±

√
ec(3z̃2 + β), for
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c ∈ R. While, on the chart U2, the first integral of motion (18) for system (15) defines a
family of ellipses that are oriented clockwise and the z̃-axis is a family of non-hyperbolic
equilibria. Finally, on the chart U3, system (16) has a family of non-hyperbolic equilibria
on the ỹ-axis. As in the local chart U1, its first integral of motion (19) defines the family
of radical functions ỹ = ±

√
ec(βx̃2 + 3), for c ∈ R; where the x̃-coordinate increases with

time.
Panel (a) of Fig. 16 shows how these projections fit together on a cube for β > 0.

Panel(b) shows computed trajectories of system (8) on S2(2). In particular, note how each
trajectory in U1 is translated to a curve that connects equilibria (0, ȳ, z̄) and (0, ȳ,−z̄).
The local charts U2 and U3 imply that the z̄-coordinate of the trajectories with x̄ > 0
decreases with time, while it increases for trajectories with x̄ < 0; this agrees with the
orientation computed for the trajectories on S2(2).

B Boundary value problem formulations

More often than not, it is impossible to compute Floquet multipliers of a given saddle
periodic orbit explicitly, let alone approximate the corresponding eigenbundles and global
stable and unstable manifolds. We employ continuation of a suitable two-point boundary
value problems (2PBVP) with the software package Auto [5, 7] to solve these problems
for a three-dimensional system of the form (1). The idea behind 2PBVP continuation is
to represent the object of interest as a one-parameter family of finite-time orbit segments
of system (1) that satisfy suitable boundary conditions; see [6], for general background of
this approach.

As discussed in [1, 21] any trajectory of (1) over the finite-time interval [0, T ] can
be represented as an orbit segment u : [0, 1] → Rn over the interval [0, 1] that satisfies
equation

u̇ = Tf(u, µ), (20)

which is a time-rescaled version of system (1) with (original) integration time T > 0.
During the continuation, we impose additional boundary conditions at u(0) and u(1).

We refer to [9] for an in-depth discussion of the 2PBVP formulation needed to calculate
the Floquet multipliers of a saddle periodic orbit and their respective tangent bundles. The
2PBVP formulation and computation of two-dimensional stable and unstable manifolds
of saddle periodic orbits (as well as equilibria) and their intersection sets with a sphere
can be found in [2, 21].

In the following sections, we present the 2PBVP formulation for the following:

1. The intersection set of the stable manifold of a saddle periodic orbit with a tubular
neighborhood; this is used for the computation of the local stable and unstable
manifolds of the saddle periodic orbits in Fig. 2.

2. The computation and continuation of a periodic orbit at the moment when two
Floquet multipliers change from being real to complex conjugate; this allows us to
find the curves CC+ and CC− in Figs. 5 and 11.
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B.1 The intersection set of the manifold of a saddle periodic

orbit with a tubular section

The orientation of a two-dimensional stable manifold of a saddle periodic orbit can be
illustrated by computing a first local portion. The approach described here finds this
portion as the manifold computed up to its first intersection with a tubular section of
small radius d ≥ 0 around the periodic orbit; see rows 1 and 2 of Fig. 2. Our formulation
also works particularly well if the Floquet multiplier associated with the manifold is close
to 0 in magnitude.

Let Γ be a saddle periodic orbit in R3 and assume that we wish to compute a first
portion of its two-dimensional stable manifold W s(Γ). We extend the system from three
equations to six, so that we effectively consider two different orbit segments of (1):

{
v̇Γ = TΓf(vΓ(t), µ),

u̇ = Tf(u(t), µ),

vΓ ∈ Γ,
u ∈ R3.

(21)

The segment vΓ(t) is meant to represent Γ. Hence, TΓ is the period and we impose the
boundary condition:

vΓ(1)− vΓ(0) = 0. (22)

The idea is that u(t) represents a solution trajectory with integration time T that is
contained in W s(Γ). Since u(t) converges to Γ as t goes to infinity, we stipulate that u(1)
lies close to Γ, in an approximate one-dimensional fundamental domain Fδ of the linear
approximation of W s(Γ). Every (approximated) trajectory in W s(Γ) intersects Fδ exactly
once, and this domain is parametrized by the variation of δ in a closed interval; see [2] for
details. The parameterized boundary condition:

u(1) ∈ Fδ (23)

introduces a free parameter δ on top of the (free) parameters TΓ and T .
The tubular section with radius d around Γ is defined as

Td
Γ :=

{
x ∈ R

3 : min
y∈Γ

||x− y ||R3= d

}
,

where || · ||R3 is the Euclidean norm in R3. We are interested in orbit segments u of (21)
that satisfy (22) and (23), and also u(0) ∈ Td

Γ. The family of all such orbit segments forms
the first portion of W s(Γ) and its end points u(·) form the intersection set W s(Γ) ∩ Td

Γ,
which is a one-dimensional curve. We parametrize this set on Td

Γ via the points on Γ
that achieve the minimum d for the point u(0), that is, we use the orbit segment vΓ of
system (21) to track W s(Γ) ∩ Td

Γ. We impose the following two boundary conditions:

〈f(vΓ(0), µ) , u(0)− vΓ(0)〉 = α, (24)

||vΓ(0)− u(0)||R3 = d, (25)
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where 〈 , 〉 is the dot product. When α = 0, condition (24) implies that u(0) lies in the
plane normal to Γ at vΓ(0); this is a necessary condition for vΓ(0) to achieve the minimal
distance of u(0) to Γ. Condition (25) defines the radius of the tubular section, that is, it
ensures that u(0) lies on Td

Γ. The sequence of steps to follow in Auto is:

1. Pre-compute from another run a periodic solution vΓ(t) with period TΓ and its
respective fundamental domain Fδ.

2. Extend the system with the 2PBVP-formulation (21) to (25), and define a first
solution u = u(0) = u(1) ∈ Fδ with T = 0.

3. Continue in α and let d vary until α = 0. This step rotates vΓ(0) along Γ until
||u(0)− vΓ(0) ||R3 is minimal. Here, T = 0 and d are fixed, and TΓ is a continuation
parameter.

4. Fix α = 0 and continue in d until a suitable distance is reached. Here, both T and
TΓ are free, but TΓ will remain almost contant and T increases.

5. Fix d and continue in δ while T and TΓ vary. The δ-family of orbit segments com-
puted in this run forms W s(Γ) with the local part of u(0) ∈ Td

Γ.

If Γ is orientable, W s(Γ) ∩ Td
Γ consists of two closed curves; if Γ is non-orientable, on the

other hand, W s(Γ) ∩ Td
Γ is a single closed curve that is found in one continuation run

during which vΓ(0) rotates along Γ twice.

B.2 BVP formulation for the computation of the curves CC+

and CC−

The strong stable manifold of an attracting periodic orbit Γa disappears when its Floquet
multipliers change from being real to complex conjugate. The curve CC+ and CC− rep-
resent the moment that two real positive or negative Floquet multipliers become complex
conjugate, respectively. We use the 2PBVP formulation presented in [9] to compute the
Floquet multipliers and their respective bundles, and follow these steps in Auto:

1. Continue the periodic orbit Γa with one of its Floquet multipliers and associated
eigenbundle in a system parameter µ1. Here, the period T a

Γ of Γa varies.

2. The moment when the Floquet multiplier becomes complex is detected in Auto as
a fold point. One has to be careful, because Auto also marks an actual saddle-
node bifurcation of periodic orbits as a fold point, which occurs when the Floquet
multiplier is 1.

3. Compute the locus of the fold point by continuing in µ1 and a second system pa-
rameter µ2. Here, the period T a

Γ and the value of the Floquet multiplier are free
parameters.

The set of points µ1 and µ2 computed in step 3 represents the curve CC+ or CC−.
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manifolds of Poincaré maps by continuation. SIAM J. Appl. Dyn. Syst., 4(4):1008–
1041, 2005.

[10] G. B. Ermentrout and D. H. Terman. Mathematical Foundations of Neuroscience.
Springer-Verlag New York, 2010.

http://www.cmvl.cs.concordia.ca/


INVARIANT MANIFOLDS NEAR HOMOCLINIC ORBITS 53

[11] A. Golmakani and A. J. Homburg. Lorenz attractors in unfoldings of homoclinic-flip
bifurcations. Dynam. Systems, 26(1):61–76, 2011.
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