Professor Tom ter Elst

PhD (Eindhoven)

Profile Image


  • The Dirichlet-to-Neumann operator (Reading and/or Project)
  • Form methods and elliptic operators (Reading)
  • Semigroup theory/Evolution equations (Reading)
  • p-Adic analysis (Reading)
  • Harmonic analysis (Reading)
  • Pseudo-differential operators (Reading)

Research | Current

  • Harmonic analysis
  • Operator theory
  • Geometric analysis
  • Subelliptic and degenerate operators
  • PDE

Selected publications and creative works (Research Outputs)

  • ter Elst, A. F. M., Sauter, M., & Vogt, H. (2015). A generalisation of the form method for accretive forms and operators. Journal of Functional Analysis, 269 (3), 705-744. 10.1016/j.jfa.2015.04.010
  • Arendt, W., ter Elst, A. F. M., Kennedy, J. B., & Sauter, M. (2014). The Dirichlet-to-Neumann operator via hidden compactness. Journal of Functional Analysis, 266 (3), 1757-1786. 10.1016/j.jfa.2013.09.012
  • Arendt, W., Biegert, M., & ter Elst, A. F. M. (2012). Diffusion determines the manifold. Journal für die reine und angewandte Mathematik (Crelle's Journal), 667, 1-25. 10.1515/CRELLE.2011.131
  • Arendt, W., & ter Elst, A. F. M. (2011). The Dirichlet-to-Neumann operator on rough domains. Journal of Differential Equations, 251 (8), 2100-2124. 10.1016/j.jde.2011.06.017
  • ter Elst, A. F. M., Robinson, D. W., Sikora, A., & Zhu, Y. (2007). Second-order operators with degenerate coefficients. Proceedings of the London Mathematical Society, 95 (2), 299-328. 10.1112/plms/pdl017
  • Dungey, N., ter Elst, A. F. M., & Robinson, D. W. (2003). Analysis on Lie groups with polynomial growth. Boston, MA: Birkhauser Verlag. Pages: 320.
  • ter Elst, A. F. M., & Robinson, D. W. (1998). Weighted subcoercive operators on Lie groups. Journal of Functional Analysis, 157 (1), 88-163. 10.1006/jfan.1998.3259

Contact details

Office hours

Mo 2-3pm, Wed 11am-12pm

Primary location

SCIENCE CENTRE 303 - Bldg 303
New Zealand

Web links