Professor Tom ter Elst

PhD (Eindhoven)

Profile Image
Professor

Research | Current

  • Harmonic analysis
  • Operator theory
  • Geometric analysis
  • Subelliptic and degenerate operators
  • PDE

Teaching | Current

Projects:

  • The Dirichlet-to-Neumann operator (Reading and/or Project)
  • Form methods and elliptic operators (Reading)
  • Semigroup theory/Evolution equations (Reading)
  • p-Adic analysis (Reading)
  • Harmonic analysis (Reading)
  • Pseudo-differential operators (Reading)

Postgraduate supervision

Current PhD student: Chris Wong.

Past PhD students:

  • Gareth Gordon (2019)
  • Tan Do (2016)
  • Manfred Sauter (2013)
  • Howard Cohl (2010)
  • Camiel Smulders (2000)

Selected publications and creative works (Research Outputs)

As of 29 October 2020 there will be no automatic updating of 'selected publications and creative works' from Research Outputs. Please continue to keep your Research Outputs profile up to date.
  • ter Elst, A. F. M., & Ouhabaz, E. M. (2019). Dirichlet-to-Neumann and elliptic operators on C1+kappa-domains: Poisson and Gaussian bounds. JOURNAL OF DIFFERENTIAL EQUATIONS, 267 (7), 4224-4273. 10.1016/j.jde.2019.04.034
    URL: http://hdl.handle.net/2292/48159
  • ter Elst, A. F. M., Liskevich, V., Sobol, Z., & Vogt, H. (2017). On the Lp-theory of C₀-semigroups associated with second-order. Proceedings of the London Mathematical Society, 115 (4), 693-724. 10.1112/plms.12054
  • Disser, K., ter Elst, A. F. M., & Rehberg, J. (2017). On maximal parabolic regularity for non-autonomous parabolic operators. Journal of Differential Equations, 262 (3), 2039-2072. 10.1016/j.jde.2016.10.033
    URL: http://hdl.handle.net/2292/32383
  • Behrndt, J., & ter Elst AFM (2015). Dirichlet-to-Neumann maps on bounded Lipschitz domains. Journal of Differential Equations, 259 (11), 5903-5926. 10.1016/j.jde.2015.07.012
  • ter Elst, A. F. M., Sauter, M., & Vogt, H. (2015). A generalisation of the form method for accretive forms and operators. Journal of Functional Analysis, 269 (3), 705-744. 10.1016/j.jfa.2015.04.010
  • Rehberg, J., & ter Elst, A. F. M. (2015). Hölder estimates for second-order operators on domains with rough boundary. Advances in Differential Equations, 20 (3/4), 299-360. Related URL.
  • Arendt, W., & ter Elst, A. F. M. (2012). Sectorial forms and degenerate differential operators. Journal of Operator Theory, 67 (1), 33-72.
  • Arendt, W., Biegert, M., & ter Elst, A. F. M. (2012). Diffusion determines the manifold. Journal für die reine und angewandte Mathematik (Crelle's Journal), 667, 1-25. 10.1515/CRELLE.2011.131

Contact details

Office hours

Mo 2-3pm, Wed 11am-12pm

Primary office location

SCIENCE CENTRE 303 - Bldg 303
Level 2, Room 229D
38 PRINCES ST
AK CNTRL
AUCKLAND 1010
New Zealand

Web links