Maths 362 Lecture 1

Topics for today:
Partial derivatives and Taylor series (review of material from Maths 253)

Reading for this lecture: Greenberg Sections 13.3, 13.5

Suggested exercises: Greenberg Section 13.5: 1, 2, 9, 11

Reading for next lecture: Greenberg Sections 14.2-14.4

Today's handout: Course guide
Why study vector calculus?

The Navier-Stokes equations model fluid flow:

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}
\]

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0
\]

Here \(\mathbf{v} \) is velocity of fluid (vector), \(p \) is pressure (scalar). First equation is Newton’s law for fluid, second equation is conservation of mass.
Revision of some calculus for functions of several variables

Partial derivatives: Let \(f(x,y) \) be a function of variables \(x \) and \(y \) defined for \((x,y) \) near a point \((x_0, y_0) \).

Fix \(y=y_0 \). Then \(f(x,y)=f(x,y_0) \) is a function of \(x \) alone.

The \(x \)-derivative of this function at \(x_0 \) (if it exists) is called the partial derivative of \(f \) with respect to \(x \) at \((x_0,y_0) \), and is written

\[
\frac{\partial f}{\partial x} \quad \text{or} \quad f_x
\]

There is a similar definition for the partial derivative w.r.t. \(y \).
Example 1: Find partial derivatives w.r.t. x and y for $f(x,y)=x^3y^5$.

Example 2: Find the first partial derivatives of $f(x,y,z)=xy^2z^3$.
Partial derivatives may themselves be functions of the variables and we can take partial derivatives of these functions to get **second partial derivatives**:

\[
\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}
\]

\[
\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy} \quad \text{etc.}
\]

Example 3: Find the second partial derivatives of \(f(x, y) = x^3 y^5 \).
The order of differentiation may matter. For example, maybe

\[f_{xy} \neq f_{yx} \]

for a particular function \(f \).

However, if all the first and second partial derivatives exist and are continuous near \((x_0, y_0)\) then

\[f_{xy} = f_{yx} \]
Taylor’s formula and Taylor series

Let $f(x)$ be a function of one variable x, with $f'(x)$, $f''(x)$, … etc all existing. Then Taylor’s formula is:

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \ldots + \frac{1}{n!}f^{(n)}(a)(x-a)^{n-1} + R_n(x).$$

$R_n(x)$ is the remainder term:

$$R_n(x) = \frac{f^{(n)}(\xi)(x-a)^n}{n!}$$

with ξ being a point in $[x,a]$.

Taylor’s formula tells us we can approximate $f(x)$ by a polynomial of degree $(n-1)$ with error bounded by $R_n(x)$.

Example 4: Find the Taylor formula up to terms of order two, for the expansion about $a = -1$ of

$$f(x) = \frac{1}{1 + x^2}.$$
If the function f is infinitely differentiable then we can let $n \to \infty$ in the Taylor formula to get the **Taylor series**:

$$\text{TS } f|_a = \sum_{j=0}^{\infty} \frac{f^{(j)}(a)}{j!} (x - a)^j.$$

The Taylor series represents f if the series converges in some interval of x and if the function to which it converges is equal to f on some interval of x.
Taylor’s formula and Taylor series can be defined for functions of more than one variable in a similar way.

For example, the Taylor series for \(f(x,y) \) about \((a,b)\) is:

\[
f(x,y) = f(a, b) + f_x(x - a) + f_y(y - b) + \frac{1}{2!} \left[f_{xx}(x - a)^2 + 2f_{xy}(x - a)(y - b) + f_{yy}(y - b)^2 \right] + \ldots.
\]

where all the derivatives are evaluated at \((a,b)\).
Example 5: Find the Taylor expansion about (1,3,-2) for the function $f(x,y,z) = x^3yz$.
Important ideas from today:

• partial derivatives
• second partial derivatives
• Taylor’s formula for functions of one or more variables
• remainder terms
• Taylor series for functions of one or more variables