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Abstract

We consider a smooth conformal n-manifold (M, g) with an embedded co-dimension 1 sub-

manifold (Σ, ḡ). Using a technique called tractor calculus, we investigate the relationship

between the connections of (M, g) and (Σ, ḡ).

We then build a family of third order differential operators Λ3. These operators are

conformally invariant when acting on functions of any conformal weight for any ambient

dimension n ≥ 4. This generalises a known operator which is conformally invariant only

on sections of weight w = 4−n
2

, also with n ≥ 4.
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Chapter 1

Introduction

Conform manifolds and conformally invariant differential operators have long been im-

portant to physics [9]. While much work has been invested in these fields over the past

few years, but there is still much to be explored. Conformal sub-manifold geometry in

particular has not yet been thoroughly investigated. Some very modern techniques have

recently been used to analyse the structure of conformal sub-manifolds [6]. Other investi-

gations have produced differential operator acting on a specified conformal weight [5]. The

number of terms comprising a conformally invariant differential operator increases quickly

with the order of the operator, making explicit calculations difficult. As such, there is

somewhat of a gulf between what is known about conformal sub-manifold geometry and

what can be calculated explicitly within it.

The recently developed method of tractor calculus can be used to construct conformally

differential operators [4], even in the conformally curved case. As well as being compact

and reliable, tractor calculus is in some way the canonical conceptual standpoint [2] for

conformal geometry. One minor disadvantage of tractor calculus is that operators so

constructed are not always of the preferred normal order. Further, it is not known in

general how to adjust the normal order of the differential operators in a conformally

invariant way [10].

This thesis concerns conformal n-manifolds where n ≥ 4 with an embedded co-

dimension 1 sub-manifold. Both manifolds in question are assumed to be smooth. We

begin with an investigation of the basic machinery of conformal differential geometry and

tractor calculus. This leads to a description of the relationship between the tractor connec-
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tion intrinsic to the sub-manifold and the projected part of the ambient connection. We

then construct a conformally invariant third order differential operator on a sub-manifold

for all ambient dimensions n ≥ 4. This operator acts on sections of arbitrary conformal

weight and specialises to known operators, such as the Yamabe operator, when acting on

sections of particular weights.

1.1 Conventions

Unless explicitly stated otherwise, this thesis will use the Penrose abstract index notation

[13]. Bundles and sections thereof will be denoted by E adorned with appropriate abstract

indices. The tangent bundle and co-tangent bundle are labeled Ea and Ea respectively.

Here a is not related to a specific frame but is instead a Penrose abstract index. A

contraction is implied in cases where upper and lower indices are matched. The term

uavac is the 1-form equal to the contraction of the vector field ua ∈ Ea into the first slot of

the 2-form vbc ∈ Ebc. Tensor products of spaces are represented by concatenated indices.

Further, if u and v are tensors each with a single index then the term u·v is understood

to mean uava or uavbgab as appropriate. This convention is extended to objects which are

not tensors but still have a single index, for instance (Υ ·∇)ϕ = Υa∇aϕ. This “inner

product” notation will not be used for tractor indices, nor will it be used if either tensor

involved in a contraction has more than one index.
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Chapter 2

Riemannian Manifolds

Throughout we shall assume that a manifold M is orientable and smooth with n ≥ 4 and

equipped with a Riemannian metric g.

2.1 Essential Riemannian Constructions

Definition 2.1. [12] A connection on a vector bundle V over a field F (either R or C

is an operator ∇ : Γ(V) → Γ(T ∗M⊗V) satisfying the following properties:

i.) ∇u(αV + W ) = α∇uV + ∇uW

ii.) ∇fu+vW = f∇uW + ∇vW

iii.) ∇ufW = df(u)⊗W + f∇uW (Leibniz rule)

where V, W ∈ Γ(V), u, v ∈ Γ(TM), α ∈ F, f ∈ C∞(M), and df is the Exterior Derivative

of f .

We will deal with vector bundles and connections over R. When introducing a con-

nection ∇ on a manifold (M, g) without specifying a vector bundle we imply that ∇ acts

on the tangent bundle of M , i.e., V = TM . The notation will be such that connections

(and indeed all other operators) will act on everything to the right.

Definition 2.2. A connection ∇ is said to be metric-compatible with a Riemannian

metric g(·, ·) if for all u, v, w ∈ Γ(TM) it satisfies the equation

ug(v, w) = g(∇uv, w) + g(v,∇uw)
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where we view the vector field u as a derivative on the left hand side.

In abstract indices, metric compatibility is the condition that ∇cgab = 0.

Definition 2.3. The torsion T (u, v) of a connection ∇ on M acting on the tangent

bundle TM is defined as

T (u, v) = ∇uv −∇vu − [u, v]

where u, v ∈ Γ(TM).

The bracket [·, ·] appearing in the definition is the Lie bracket of u and v, i.e., [u, v] is

the unique vector satisfying [u, v]f = u(v(f)) − v(u(f)) for all functions f ∈ C∞(M). A

connection ∇ is said to be torsion-free if T (u, v) ≡ 0.

Proposition 2.4. [7, 12] Given a Riemannian manifold (M, g), there exists a connection

which is both torsion-free and compatible with the metric g. Further, this connection is

unique and hence completely determined by the metric g.

The above proposition is well known, and is not difficult to prove using the Christoffel

symbols. The unique metric-compatible torsion-free connection guaranteed by proposition

2.4 is called the Levi-Civita connection, and will see extensive use throughout this

paper.

2.2 Curvature on Manifolds

Definition 2.5. Given a connection ∇ on a manifold (M, g) we define the curvature

tensor R : Λ2TM �→ End(TM) as

R(u, v)w =
(∇u∇v −∇v∇u −∇[u,v]

)
w

Proposition 2.6. If a connection ∇ acting on the tangent bundle of a manifold (M, g)

is torsion-free then the curvature tensor may be written using Penrose abstract indices as

Rab
c
dv

d = [∇a,∇b] v
c
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Proof. If ∇ is torsion-free then [u, v] = ∇uv −∇vu whereby

(
ua∇av

b
)∇b −

(
vb∇bu

a
)∇a =

(∇uv
b
)∇b − (∇vu

a)∇a

= ∇∇uv−∇vu = ∇[u,v]

Straightfoward calculation then yields

[∇u,∇v] −∇[u,v] = ua∇av
b∇b − vb∇bu

a∇a −∇[u,v]

= uavb (∇a∇b −∇b∇a) +
(
ua∇av

b
)∇b

− (
vb∇bu

a
)∇a −∇[u,v]

= uavb (∇a∇b −∇b∇a)

hence R c
ab du

avbwd = uavb (∇a∇b −∇b∇a)wc as required.

The Bianchi identities follow from simple combinations of the Lie bracket identities

with various formulations of the curvature tensor.

Proposition 2.7. The first Bianchi identity

R
c

[ab d] = 0

holds for any torsion-free connection ∇ on TM .

Proof. If ∇ is torsion-free then ∇xy −∇yx = [x, y] for all x, y, z ∈ Γ(TM). Hence

∇u∇vw −∇u∇wv = ∇u[v, w] and ∇x[y, z] −∇[y,z]x = [x, [y, z]]

Careful application of the above formulae quickly leads to

R
c

[ab d]u
avbwd = R(u, v)w + R(w, u)v + R(v, w)u

= ∇u∇vw −∇v∇uw −∇[u,v]w + ∇w∇uv −∇u∇wv

−∇[w,u]v + ∇v∇wu −∇w∇vu −∇[v,w]u

= ∇u[v, w] + ∇w[u, v] + ∇v[w, u]

−∇[u,v]w −∇[w,u]v −∇[v,w]u

= [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0

where the final equality follows from the Jacobi identity.
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Proposition 2.8. The second Bianchi identity [12]

∇[eR
c

ab] d = 0

holds for any torsion-free connection ∇, where square brackets around abstract indices

indicate the completely anti-symmetric part over the enclosed indices.

Definition 2.9. The Riemannian Curvature is the curvature R c
ab d obtained from def-

inition 2.5 when ∇ is the Levi-Civita connection.

It is well known (see e.g. [8]) that the Riemann curvature decomposes into

Rabcd = Cabcd + Pacgbd − Pbcgad + Pbdgac − Padgbc (2.1)

where Cabcd is the completely trace-free Weyl curvature and Pab is the symmetric Weyl-

Schouten tensor, also referred to as the Rho-tensor. We will occasionally abuse notation

by writing gbcPab = P c
a without properly offsetting the indices a and c. This will not be

ambigious as the Weyl-Schouten tensor is symmetric.

A number of other tensors also feature in our calculations. The Ricci tensor Rbd is

obtained by contracting the Riemannian curvature over the first and third indices. The

scalar curvature R is obtained by further contracting the Ricci Tensor using the metric,

R = gbdR a
ab d. Applying these contractions to the above decomposition provides the

relations

Rbd = Jgbd + (n − 2)Pbd

and

R = 2(n − 1)J

These relations will find extensive use in later chapters. Also of use will be the following:

Proposition 2.10. The second Bianchi identity implies that for n ≥ 3 the following

holds:

∇cPac = ∇aJ
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Proof. The second Bianchi identity is that

∇eR
c

ab d + ∇aR
c

be d + ∇bR
c

ea d = 0

Using the property R c
be d = −R c

eb d, a contraction over the indices e and c gives

∇cR
c

ab d −∇aRbd + ∇bRad = 0

Next we introduce the decomposition of Rabcd and relations between Rbd, Pbd and J .

Contraction over the indices b and d using gbd produces

0 = gbd∇c (Pacgbd − Pbcgad + Pbdgac − Padgbc)

−2(n − 1)∇aJ + ∇d (Jgad + (n − 2)Pad)

= (2n − 4)∇cPac + (4 − 2n)∇aJ

from which the result follows.

2.3 Riemannian Sub-manifolds

Throughout we assume that Σ is an orientable sub-manifold of (M, g) with co-dimension

1. As such Σ may be equipped with a smooth unit vector field Na ∈ Γ(TM) satisfying

both N ⊥ Σ and Na∇bNa = 0 everywhere on Σ. The vector bundle TΣ may then be

identified with the sub-bundle of TM for which g(v, N) vanishes identically, i.e., Γ(TΣ)

consists of the sections of TM orthogonal to N .

Definition 2.11. The projection operator Πa
b is defined as

Πa
b = δa

b − NaNb

where the sub-manifold Σ has unit normal Na and δa
b is the Kronecker delta.

An arbitrary vector field va ∈ Γ(TM) along Σ decomposes as

va = va − NaNbv
b + NaNbv

b = Πa
bv

b + NaNbv
b

It is well known that a sub-manifold Σ ⊂ M has an intrinsic metric ḡ obtained by

restricting the ambient g to the relevant sub-bundles, as in

ḡ = g |TΣ, or ḡab = Πa′
a Πb′

b ga′b′
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along Σ. The last expression makes sense even when acting on ambient sections, which

allows ḡ to be extended outside of TΣ to a tensor acting on S2TM along Σ as described

above.

Proposition 2.12. The Levi-Civita connection ∇ of Σ takes the form

∇avb = Πa′
a Πb′

b ∇a′vb′

Proof. Since the projections are linear tensors, ∇ inherits linearity and the Leibniz prop-

erty from ∇ and so ∇ is indeed a connection on Σ. Metric compatibility follows as

∇cḡab = Πa′
a Πb′

b Πc′
c ∇c′ (ga′b′ − Na′Nb′)

= −Πa′
a Πb′

b Πc′
c ∇c′Na′Nb′

= −Πa′
a Na′Πb′

b Πc′
c ∇c′Nb′ − Πa′

a Πb′
b Nb′Π

c′
c ∇c′Na′ = 0

since ∇ is the Levi-Civita connection of (M, g) and Πa′
a Na′ = 0. It is similarly easy to

demonstrate that ∇ is torsion-free. It follows from proposition 2.4 that ∇ is unique and

determined by ḡ and is therefore the Levi-Civita connection for (Σ, ḡ).

Proposition 2.13. The action of the Levi-Civita connection ∇ on sections v ∈ Γ(TΣ)

may be decomposed into

∇av
b = Πa′

a ∇a′vb + N bvb′Lab′

where Lab is the second fundamental form, which with our conventions is given by

Lab = Πc
a∇cNb.

Proof.

∇av
b = Πa′

a Πb
b′∇a′vb′

= Πa′
a ∇a′vb − Πa′

a N bNb′∇a′vb′

= Πa′
a ∇a′vb + N bvb′Πa′

a ∇a′Nb′

= Πa′
a ∇a′vb + N bvb′Lab′

with Lab′ as provided above.
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Contracting over the second fundamental form with either the ambient metric or

intrinsic metric produces a multiple of the mean curvature, denoted H , as in

gacLac = ḡacLac = (n − 1)H (2.2)

The trace-free part of the second fundamental form will be denoted L(ab)0 , and is given

by

L(ab)0 = Lab −
1

n − 1
ḡabḡ

cdLcd

= Lab − ḡabH

The small circle following the bracketed indices indicates that the tensor is trace-free.
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Chapter 3

Conformal Geometry

3.1 Conformal Manifolds

Definition 3.1. [8] A conformal manifold is a pair (M, [g]) consisting of a manifold M

and an equivalence class [g] of Riemannian metrics on M under the equivalence relation

g ∼ g′ ⇔ g′ = e2wg, w ∈ E

The ray bundle of metrics G over M is then a principal bundle with fibres isomorphic

to R+. For each representation ρ : R+ �→ End(R) we obtain an associated vector bundle.

We denote as ρw the representation of G on R which maps λ ∈ R+ to the endomorphism

r �→ λ−w/2r, where r ∈ R. The associated vector bundle, to be denoted E [w], is then

described as

E [w] = G ×ρw R = G ×ρ R/∼w (3.1)

A section σ ∈ E [w] is called a density. The relation ∼w is given by

(gλ, r) ∼w (g, (ρ(λ))−1r) = (g, λw/2r)

for g ∈ G, λ ∈ R+ and r ∈ R. A density σ ∈ E [w] is thus equivalent to a homogeneous

function σ : G �→ R which satisfies

σ(gλ, x) = λw/2σ(g, x)

for every x ∈ M .
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There is a tautological mapping g : G �→ S2T �M which takes (gx, x) �→ gx where

x ∈ M . This mapping is homogeneous, since g(λ2gx, x) = λ2gx. Given a function

σ̃ : G �→ R homogenious of degree 1, we have σ̃(gxλ
2, x) = λσ̃(gx, x) with x ∈ M . Clearly

σ̃−2g is then homogeneous of weight zero, and is therefore equivalent to a Riemannian

metric g on M . Thus g is equivalent to a section gab ∈ Eab⊕E [2], which will be called the

conformal metric. Any Riemannian metric g ∈ [g] can be recovered by gab = σ−2gab

for some non-vanishing σ ∈ E [1]. A section σ ∈ E [1] is called a conformal choice of scale,

for it is equivalent to selecting a Riemannian metric g ∈ [g].

Tensor indices can be lowered or raised in a conformally invariant way using the

conformal metric gab ∈ Eab[2] or gab ∈ Eab[−2] respectively, albeit at the expense of

adjusting the weight of the tensor involved. For example if ua ∈ Ea[w] then ub = gabua ∈
E b[w−2]. Unless otherwise stated, all further raising and lowering of tensor indices will be

performed using the conformal metric gab. Additionally, the notation (M, g) and (M, [g])

will be used interchangeably, since both structures give conformal manifolds.

Definition 3.2. For a particular choice of metric, the action of the corresponding Levi-

Civita connection on a weighted section ρ ∈ E [w] is defined to be

∇ρ = σwd(σ−wρ)

where d is the exterior derivative on M .

This is well defined since the exterior derivative d acts on the function σ−wρ which is

unweighted.

3.2 Basic Conformal Transformations

It is essential to know how a conformal rescaling affects the action of the Levi-Civita

connection. The Christoffel symbols can be used to verify that the Levi-Civita connection

∇̂ for a rescaled metric ĝ = e2wg acts on one-forms and vector fields [8] as

∇̂au
b = ∇au

b + Υau
b − Υbua + δb

aΥ·u (3.2)

∇̂aub = ∇aub − Υaub − Υbua + gabΥ·u (3.3)

where Υ = dw. The conformal transformations for the action of the Levi-Civita connec-

tion on tensors with more than one index can be obtained from these using the Leibniz
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rule. There is also a non-trivial conformal rescaling involved when a connection acts on a

weighted section.

Proposition 3.3. A conformal rescaling g → ĝ = e2fg of the metric results in the

transformation of ∇ acting on ρ ∈ E [w] as

∇̂aρ = ∇aρ + wρΥa

where Υa = dfa

Proof. Let σ ∈ E [1] be the choice of conformal scale such that gab = σ−2gab. Then

ĝab = e2fgab implies that ĝab = σ̂−2gab is satisfied when σ̂ = e−fσ. Since both ewf and

σ−wρ are both functions M �→ R, we can derive

d(σ̂−wρ) = d(ewfσ−wρ)

= ewfd(σ−wρ) + σ−wρwewfdf

using the Leibniz rule and the chain rule, so that

∇̂ρ = σ̂wd(σ̂−wρ)

= e−wfσw
(
ewfd(σ−wρ) + σ−wρwewfdf

)
= σwd(σ−wρ) + wρdf

= ∇ρ + wΥρ

completes the proof.

This result can be also be combined with equations 3.2 and 3.3 using the Leibniz

rule to obtain expressions for the conformal transformation of a connection acting on any

weighted tensor. For instance, for ub ∈ Eb[w],

∇̂aub = ∇aub + (w − 1)Υaub − Υbua + gabΥ·u (3.4)

Understanding the conformal behavior of higher order operators will also be required.

Lemma 3.4. Let σ ∈ E [w]. The Riemannian Laplacian transforms under a conformal

rescaling of the metric according to

Δ̂σ =
[
Δ + (n + 2w − 2)Υ·∇ + w∇·Υ + w(w + n − 2)Υ·Υ

]
σ

13



Proof. Using the above results for ∇̂aϕ with φ ∈ E [w] and ∇̂bϕa for ϕa ∈ Ea[w], expanding

Δ̂ yields

gab∇̂b∇̂a = gab∇̂b (∇a + wυa)σ

= gab
[
(∇b∇a + (w − 1)Υb∇a − Υa∇b + gbaΥ·∇)

+ (w∇bΥa + (w − 1)wΥbΥa − wΥaΥb + wgabΥ·Υ)
]
σ

= gab
[
∇b∇a + (w − 1)Υb∇a + (w − 1)Υa∇b + gbaΥ·∇
+w (∇bΥa) + w(w − 2)ΥaΥb + wgabΥ·Υ

]
σ

=
[
Δ + (n + 2w − 2)Υ·∇+ w∇·Υ + w(w + n − 2)Υ·Υ

]
σ

completing the proof.

3.3 Transformation of Curvature Tensors

Higher order operators involve terms other than the Levi-Civita connection for a particular

metric. Establishing the conformal scaling of such terms is then beneficial to verify the

conformal invariance of the higher order operators. Calculating the conformal scaling of

the curvature terms starts with the expansion of

R̂ c
ab dv

d =
(
∇̂a∇̂b − ∇̂b∇̂a

)
vc

This requires the rules of 3.2 and 3.3 to be combined using the Leibniz rule. After the

terms have been expanded and collected one obtains [8]

R̂abcd = Rabcd − gbd

(
∇aΥc − ΥaΥc +

1

2
Υ·Υgac

)
+ gad

(
∇bΥc − ΥbΥc +

1

2
Υ·Υgbc

)

−gac

(
∇bΥd − ΥbΥd +

1

2
Υ·Υgbd

)
+ gbc

(
∇aΥd − ΥaΥd +

1

2
Υ·Υgad

)
This form provides the easiest comparison with the decomposition of Riemannian cur-

vature into Weyl curvature and Weyl-Schouten tensor parts; it is clear that the Weyl-

Schouten tensor transforms conformally as

P̂ab = Pab −∇aΥb + ΥaΥb − 1

2
gabΥ·Υ (3.5)

and also that the Weyl curvature Cabcd is conformally invariant. The application of gab to

equation 3.5 shows that the J scalar field transforms by

Ĵ = J −∇·Υ +
2 − n

2
Υ·Υ
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In addition to curvature terms, the following differential operator will appear in calcula-

tions of higher order differential operators on conformal manifolds.

Definition 3.5. [4] The Yamabe operator � is defined to act on densities φ ∈ E [w] as

�φ = (Δ + wJ)φ

The Yamabe operator is defined separately for each metric g ∈ [g]. It follows from

previous results that

�̂φ =
(
� + (n + 2w − 2)

(
Υ·∇ +

w

2
Υ·Υ

))
φ

It follows that the Yamabe operator is conformally invariant when acting on weighted

sections φ ∈ E [2−n
2

].

3.4 Conformal properties of Sub-manifolds

Let (M, g) denote a conformal n-manifold and Σ a sub-manifold of co-dimension 1 with

a unit normal field Na. For each choice of conformal scale g we obtain a Riemannian

manifold (M, g) and an associated Riemannian sub-manifold (Σ, ḡ) by restriction, i.e.,

ḡ = g |TΣ along Σ as in section 2.3.

A rescaling of the ambient metric ĝ = e2wg will induce a rescaling of the sub-manifold

metric given by ˆ̄g = e2w̄ḡ where w̄ = w |Σ. The class of metrics [ḡ] obtained from [g] in this

way give Σ a conformal structure. Terms arising from a conformal scaling intrinsic to Σ

will involve the one-form Υ
a

= dw
a

= Πa
bΥ

b along Σ, where dw
a

is the exterior derivative

of Σ applied to w̄ = w |Σ. In particular, all the statements of sections 3.2 and 3.3 will

have versions that apply to (Σ, ḡ), with Υ and n replaced by Υ and n − 1 respectively,

for instance

�̂ = � + (n + 2w − 3)
(
Υ·∇ +

w

2
Υ·Υ

)
We can also obtain a conformally invariant counterpart to the Riemannian normal vector

Na. For a given Riemannian metric g = σ−2g, we define the conformal normal vector

Na ∈ E [−1]a to be the solution of σNa = Na. Note that Na is independent of the choice of

g ∈ [g]. Note that σ is a parallel section for the Levi-Civita connection ∇ corresponding
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to g and so may be effectively suppressed in calculations; all computations based in

Riemannian geometry of section 2.3 using Na may be imported into the conformal setting

by replacing Na and g with Na and g respectively. As such, from this point onwards Na

will refer to the conformal normal vector field. It follows that we may obtain conformal

versions of Na ∈ Ea[1], a conformal projection Πa
b ∈ Ea

b [0] (using the conformal normal),

H ∈ E [−1], and Lab ∈ Eab[1]. Such results may still transform under conformal rescalings

of the metric, for instance:

Proposition 3.6. A sub-manifold Σ with conformal unit normal vector field Na ∈ Ea[1]

has a second fundamental form Lab which transforms conformally as

L̂ab = Lab + ḡabΥ·N

Proof. Using equation 3.4 with w = 1 gives

L̂ab = Πc
a∇̂cNb

= Πc
a (∇cNb − NcΥb + gcbΥ·N)

= Πc
a∇cNb + ḡabΥ·N

completing the proof.

Several equations that result from simple contractions of the second fundamental form

will be used throughout later chapters.

Corollary 3.7. The mean curvature H ∈ E [−1] transforms as Ĥ = H + Υ·N .

Corollary 3.8. The trace-free second fundamental form L(ab)0 is conformally invariant.

The conformal invariance of one tensor in particular will be relevant later.

Proposition 3.9. The tensor

P ac − Πa′
a Πc′

c Pa′c′ − HL(ac)0 −
1

2
ḡacH

2

is conformally invariant.

Proof. We begin with the conformal transformation of the projected ambient Weyl-Schouten

tensor.

Πa′
a Πc′

c P̂a′c′ = Πa′
a Πc′

c Pa′c′ − Πa′
a Πc′

c (∇a′Υc′) − Πa′
a Πc′

c Υa′Υc′ −
1

2
gacΥ·Υ

16



Since Υa = Πa′
a Υa′ we obtain

P̂ ac − Πa′
a Πc′

c P̂a′c′ = P ac − Πa′
a Πc′

c Pa′c′ + Πa′
a Πc′

c ∇a′
(
Υc′ − Υc′

)
+

1

2
ḡac

(
Υ·Υ − Υ·Υ)

= P ac − Πa′
a Πc′

c Pa′c′ + Υ·NLac +
1

2
ḡac (Υ·N)2

The other terms in the relevant tensor transform according to

−ĤL(ac)0 −
1

2
ḡacĤ

2 = −HL(ac)0 − Υ·NL(ac)0 −
1

2
ḡac (H + Υ·N)2

= −HL(ac)0 −
1

2
ḡacH

2 − Υ·NLac −
1

2
ḡac (Υ·N)2

whereby the tensor of the proposition is seen to be conformally invariant.
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Chapter 4

Tractor Calculus

Using the expansions of chapter 3 to verify that an operator or tensor is conformally

invariant requires checking equations with large numbers of terms. A different simpler

method involves building larger structures out of smaller conformally invariant objects

called tractors. Composition of conformally invariant objects yields yet more conformally

invariant objects, and in this way checking conformal invariance is greatly simplified.

In addition, the calculus of tractors allows the construction of new operators which are

automatically conformally invariant.

4.1 The Tractor Bundle

Definition 4.1. [4, 8, 11] Given a particular metric g we define a tractor V A to be a

section of E [1]⊕Ea[−1]⊕E [−1], i.e.,

[V A]g =

⎛
⎜⎜⎜⎜⎝

σ

μa

ρ

⎞
⎟⎟⎟⎟⎠

which transforms under a conformal rescaling fo the mertic g → ĝ as

[V A]ĝ =

⎛
⎜⎜⎜⎜⎝

σ

μa + Υaσ

ρ − Υbμ
b − 1

2
Υ·Υσ

⎞
⎟⎟⎟⎟⎠

The space of all tractors over a conformal manifold (M, g) will be denoted by T.
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The Tractor bundle is in fact isomorphic to the bundle of 2-jets J 2E [1] [2].

Capital letter subscripts and superscripts will denote tractor indices, while lower case

letters will be reserved for tensor indices. The only exception is the term ∇N which refers

to the normal derivative ∇N = Na∇a.

Definition 4.2. A rescaling operator Ξg→ĝ is an automorphism of E [1]⊕Ea[−1]⊕E [−1]

given by

Ξg→ĝ :

⎛
⎜⎜⎜⎜⎝

σ

μa

ρ

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

σ

μa + Υaσ

ρ − Υbμ
b − 1

2
Υ·Υσ

⎞
⎟⎟⎟⎟⎠

with g and ĝ being metrics from the conformal class satisfying ĝ = e2wg, and Υ = dw.

It is clear that for any tractor

Ξg→ĝ

[
V A

]
g

=
[
V A

]
ĝ

The rescaling operators provide a concise notation which which to state and prove the

most fundamental properties of the tractor bundle. For instance, it can easily be shown

that the set of all rescaling operators form an Abelian groupoid.

Proposition 4.3. The tractor bundle may be equipped with the conformally invariant

tractor metric h(·, ·) described by

h(V A, V ′A) = σρ′ + σ′ρ + μaμ
′a (4.1)

Proof. The invariance of the metric follows from the Polarisation of the conformally in-

variant quadratic 2σρ + μaμ
a. It remains to show the quadratic is indeed invariant:

2σ̂ρ̂ + μ̂aμ̂
a = 2σ(ρ − Υbμ

b − 1

2
ΥbΥbσ) + (μa + Υaσ)(μa + Υaσ)

= 2σρ − 2Υbμ
bσ − ΥbΥbσ

2 + μaμa + Υaμaσ + μaΥaσ + ΥaΥaσ
2

= 2σρ − 2Υ·μσ − Υ·Υσ2 + μ·μ + Υ·μσ + μ·Υσ + Υ·Υσ2

= 2σρ + μ·μ

which demonstrates the conformal invariance of both the quadratic and the metric.
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The tractor metric facilitates the raising and lowering of a tractor index just as a

conformal (or Riemannian) metric allows the raising and lowering of a tensor index;

henceforth indices of all types will be raised and lowered as required using the appropriate

metric.

4.2 Injecting Operators

For a particular Riemannian metric the tractor bundle decomposes as

EA = E [1]⊕Ea[−1]⊕E [−1]

There is, associated with each Riemannian metric, a set of operators which facilitate

computation using this decomposition of the tractor bundle EA.

Definition 4.4. Let σ ∈ E [1], μa ∈ Ea[−1], and ρ ∈ E [−1]. Choose a metric g and define

the injecting operators Y A, ZA
a , and XA for this metric as those as those taking the

actions

[
Y Aσ

]
g
=

⎛
⎜⎜⎜⎜⎝

σ

0

0

⎞
⎟⎟⎟⎟⎠ ,

[
ZA

a μa
]
g
=

⎛
⎜⎜⎜⎜⎝

0

μa

0

⎞
⎟⎟⎟⎟⎠ , and

[
XAρ

]
g
=

⎛
⎜⎜⎜⎜⎝

0

0

ρ

⎞
⎟⎟⎟⎟⎠

The notation XA does not explicitly mention the Riemannian connection g providing

the injecting operators. In cases where injecting operators corresponding to different

Riemannian metrics are present in the same equations, the operators Y A, ZA
a , and XA

will correspond to the metric g while the operators Ŷ A, ẐA
a , and X̂A are those relevant

to the rescaled metric ĝ.

The injecting operators are weighted tractors or tensor-tractors themselves, with Y A ∈
EA[−1] since Y A maps densities of conformal weight 1 to elements of EA. Likewise,

ZA
a ∈ EA

a [1] and XA ∈ EA[1]. Definition 4.1 indicates how the injecting operators of

different metrics are related; XA is independent of the metric, whereas rescaling the

metric leads to new injecting operators ZA
a and Y A given by

ẐA
a = ZA

a + ΥaX
A

Ŷ A = Y A − ΥbZA
b − 1

2
ΥbΥbX

A (4.2)
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It is clear that given a metric g an arbitrary unweighted tractor V A ∈ EA may be expressed

as V A = Y Aσ + ZA
a μa + XAρ for some suitable choice of σ ∈ E [1], μa ∈ Ea[−1], and

ρ ∈ E [−1]. Further, it is clear from the tractor metric that Y AXA = XAYA = 1 and

ZA
a ZAb = gab are the only non-trivial inner products between the injecting operators. The

injecting operators for a metric g can then also be used to recover the components of a

tractor V A with respect to g;

V AXA = σ

recovering the first component of the tractor V A. Similarly the ρ component can be

extracted by a contraction of V A into Y A, and μa can be obtained via inner products with

a collection of ZA
a φa terms, with suitably many linearly independent terms φa ∈ Ea[−1].

In light of this we may write the tractor metric entirely in terms of the injecting operators.

Proposition 4.5. The tractor metric may be expressed as

h(V A, UB) = (XAYB + YAXB + Za
AZBa) V AUB

that is, hAB = XAYB + YAXB + Za
AZBa.

We also say that a metric g (or the injecting operators of a metric) “splits” a tractor

V A into components σ, μa and ρ, indicating that we perform the decomposition

V A = σY A + μaZA
a + ρXA

according to the Riemannian metric g.

4.3 Connections on Tractors

Definition 4.6. [2] The tractor connection is defined to be the operator ∇ which acts

on a tractor V A as

[∇bV
A
]
g

=

⎛
⎜⎜⎜⎜⎝

∇bσ − μb

∇bμ
a + δa

b ρ + P a
b σ

∇bρ − Pcbμ
c

⎞
⎟⎟⎟⎟⎠
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It should be noted that the symbol ∇ is used to denote a Levi-Civita connection, the

conformally invariant tractor connection, and the coupled connection in the case where

a section carries both tractor and tensor indices. This overloaded notation will simplify

arguments, particularly when the nature of a section’s indices is unknown.

The tractor/coupled Laplacian, Δ = gab∇a∇b, will also be used.

Lemma 4.7. The tractor connection acts on the injecting operators as:

∇bY
A = ZA

a P a
b

∇bZ
A
a = −XAPab − gabY

A

∇bX
A = ZA

b

Proof. Choosing a metric g yields

∇bV
A = ∇b

(
Y Aσ + ZA

a μa + XAρ
)

Writing definition 4.6 in terms of the injecting operators yields

∇bV
A = Y A (∇bσ − μb) + ZA

a (∇bμ
a + δa

b ρ + P a
b σ) + XA (∇bρ − Pcbμ

c)

whereas expansion using the Leibniz rule produces

∇bV
A = σ∇bY

A + Y A∇bσ + μa∇bZ
A
a + ZA

a ∇bμ
a + ρ∇bX

A + XA∇bρ

These expressions for ∇bV
A will agree when

−Y Aμb + ZA
a δa

b ρ + ZA
a P a

b σ − XAPabμ
a = σ∇bY

A + μa∇bZ
A
a + ρ∇bX

A

and so from the independence of the section σ, μa and ρ we obtain the decomposition

into the required results.

Corollary 4.8. The tractor contractions XA∇bXA, XA∇bYA, Y A∇bXA, Y A∇bYA and

ZA
a ∇bZAc vanish identically.

Lemma 4.9. The tractor Laplacian acts on the injecting operators as:

ΔY A = ZA
a ∇aJ − P abPabX

A − JY A

ΔZA
a = −XA∇aJ − 2P b

aZA
b

ΔXA = −JXA − nY A
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Proof. The results follow from repeated application of lemma 4.7:

ΔY A = ∇b∇bY
A

= ∇bP a
b ZA

a

= ZA
a ∇bP a

b + P a
b ∇bZA

a

= ZA
a ∇aJ + P a

b (−P b
aXA − δb

aY
A)

= ZA
a ∇aJ − P abPabX

A − JY A

which completes the calculations for ΔY A. For ΔZA
a we require proposition 2.10 that

∇bP a
b = ∇aJ . We obtain

ΔZA
a = gbc∇c∇bZ

A
a

= gbc∇c

(−PabX
A − gabY

A
)

= −gbc
(
XA∇cPab + Pab∇cX

A + gab∇cY
A
)

= −gbc
(
XA∇cPab + PabZ

A
c + gabP

d
c ZA

d

)
= −XA∇cP

c
a − P c

aZA
c − P d

a ZA
d

= −XA∇aJ − 2P c
aZA

c

The term ΔXA is calculated as

ΔXA = gbc∇c∇bX
A

= gbc∇cZ
A
b

= gbc
(−PbcX

A − gbcY
A
)

= −JXA − nY A

This concludes the required calculations.

4.4 Tractor Operators

Following [3, 8] we define the tractor operator DA : E�[w] �→ EA�[w − 1] as taking the

action

DAϕ =

⎛
⎜⎜⎜⎜⎝

(n + 2w − 2)wϕ

(n + 2w − 2)∇aϕ

−(Δ + wJ)ϕ

⎞
⎟⎟⎟⎟⎠ (4.3)
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on ϕ ∈ E�[w], where 
 represents any combination of tractor indices. The DA operator will

be essential to the construction of invariant operators. The availability of some well known

lemmas regarding the action of DA on the injecting operators will simplify calculations

later.

Lemma 4.10. Let ϕ ∈ E�[w]. The tractor DA operator has the following action on the

injecting operators XA, Y A, and ZA
a :

DAYAϕ = (n + w − 2)Jϕ − Δϕ

DAZa
Aϕ = (n + 2w − 2)∇aϕ

DAXAϕ = (n + 2w + 2)(n + w)ϕ (4.4)

Proof. The DA operator when acting on a section ϕ ∈ E [w] can be expressed using the

injecting operators as

DAϕ = (n + 2w − 2)wY Aϕ + (n + 2w − 2)ZA
a ∇aϕ − XA (Δ + wJ)ϕ

Lemmas 4.7 and 4.9 will be applied and terms vanishing in the tractor metric contraction

will be omitted. For ϕ ∈ E [w], the term YAϕ will have conformal weight w − 1 and so

DAYAϕ =

[
(n + 2(w − 1) − 2)ZA

a ∇a − XA (Δ + (w − 1)J)

]
YAϕ

= (n + 2w − 4)ZA
a

(
Zb

AP a
b

)
ϕ − (w − 1)Jϕ − XAΔYAϕ

= (n + w − 3)Jϕ −
(

XAYAΔϕ + XA (ΔYA)ϕ

)
= (n + w − 3)Jϕ − Δϕ − XA (−JYA) ϕ

= (n + w − 4)Jϕ − Δϕ

Similarly, Za
Aϕ has conformal weight w − 1. Lemma 4.9 shows that ΔZa

A = −XA∇aJ −
2P a

c Zc
A so that XAΔZa

A vanishes. Therefore

XAΔZa
Aϕ = 2XA (∇cZ

a
A) (∇cϕ)

= 2XA
(−P a

c − δa
c Y

A
)
(∇cϕ)

= −2∇aϕ
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Substituting this into DAZa
Aϕ gives

DAZa
Aϕ =

[
(n + 2w − 4) (w − 1)Y A + (n + 2w − 4) ZA

b ∇b

−XA (Δ + (w − 1)J)

]
Za

Aϕ

= (n + 2w − 4)∇aϕ − XAΔZa
Aϕ

= (n + 2w − 2)∇aϕ

Lastly XAϕ is of weight w + 1 so application of DA yields

DAXAϕ =

[
(n + 2w)(w + 1)Y A + (n + 2w)ZA

a ∇a

−XA (Δ + (w + 1)J)

]
XAϕ

= (n + 2w)(w + 1)ϕ + (n + 2w)nϕ − XA
(−nY A

)
ϕ

= ((n + 2w)(w + 1) + (n + 2w)n + n)ϕ

= (n + 2w + 2)(w + n)ϕ

completing the required calculations.
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Chapter 5

Tractors on Sub-manifolds

A sub-manifold Σ ⊂ M obtains a conformal structure (Σ, ḡ) from (M, g) as in section 3.4,

and the tractor bundle of (Σ, ḡ) will be referred to as the intrinsic tractor bundle. This

chapter will link the tractors intrinsic to (Σ, ḡ) to ambient tractors on (M, g) for ambient

dimensions n ≥ 4.

5.1 Decomposing Ambient Tractors

Given a particular metric ḡ, the tractor bundle for the conformal sub-manifold (Σ, ḡ)

decomposes as sections of E [1]⊕Ea
Σ[−1]⊕E [−1]. Branson & Gover [3] show that the

ambient tractor bundle along Σ decomposes as EA |Σ= EA
Σ ⊕NA. Here we provide an

explicit form for the embedding EA
Σ ↪→ EA |Σ and a parameterisation of the “normal”

component NA.

Definition 5.1. [2] The normal tractor NA is defined as

[
NA

]
g

=

⎛
⎜⎜⎜⎜⎝

0

Na

−H

⎞
⎟⎟⎟⎟⎠

where Σ is a co-dimension 1 sub-manifold with unit normal vector field Na ∈ Ea[1] and

mean curvature H ∈ E [−1].

It is easy to show that the normal tractor is conformally invariant and has unit length.

Using the tractor metric hAB we obtain a decomposition EA |Σ= EA
‖ ⊕span(NA) along Σ
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with the condition that V A ∈ EA
‖ iff V ANA = 0. The following proposition verifies that

EA
Σ
∼= EA

‖ and that NA = span(NA).

Proposition 5.2. Let g and ḡ be choices of conformal scale on (M, g) and (Σ, ḡ) such

that ḡ = g |Σ along Σ. The mapping � defined by

[
UA

]
ḡ

=

⎛
⎜⎜⎜⎜⎝

σ

νa

τ

⎞
⎟⎟⎟⎟⎠ �→ �

[
UA

]
ḡ

=

⎛
⎜⎜⎜⎜⎝

σ

Πa
bν

b + HNaσ

τ − 1
2
H2σ

⎞
⎟⎟⎟⎟⎠

for UA ∈ EA
Σ is a well defined tractor isomorphism from EA

Σ to EA
‖ .

Proof. First it will be shown that � is an isomorphism between the tensor product spaces

EA
Σ = E [1]⊕Ea

Σ[−1]⊕E [−1] and EA
‖ viewed as a subspace of E [1]⊕Ea[−1]⊕E [−1], i.e., that

� is an isomorphism of the spaces EA
Σ and EA

‖ with respect to the Riemannian metrics g

and ḡ = g |Σ along Σ. Simple calculation yields

NA � UA = Na

(
Πa

bν
b + HNaσ

) − Hσ = 0

so indeed � : EA
Σ �→ EA

‖ . The mapping � is clearly injective; since EA
Σ and EA

‖ are both of

dimension n + 1 and � is linear, � is also surjective and hence an isomorphism between

E [1]⊕Ea
Σ[−1]⊕E [−1] and the image of � in E [1]⊕Ea[−1]⊕E [−1]. Finally we show that

� transforms correctly so that it is well defined as an operator on tractors. Conformally

rescaling �[UA]g gives

Ξg→ĝ �
[
UA

]
ḡ

=

⎛
⎜⎜⎜⎜⎝

σ

Πa
bν

b + HNaσ + Υaσ

τ − 1
2
H2σ − ΥbΠ

b
cν

c − HΥ·Nσ − 1
2
Υ·Υσ

⎞
⎟⎟⎟⎟⎠

Alternatively, rescaling UA on (Σ, ḡ) gives

[
UA

]
ˆ̄g

=

⎛
⎜⎜⎜⎜⎝

σ

νa + Υ
a
σ

τ − Υ·ν − 1
2
Υ·Υσ

⎞
⎟⎟⎟⎟⎠
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which � maps to

�
[
UA

]
ˆ̄g

=

⎛
⎜⎜⎜⎜⎝

σ

Πa
b

(
νa + Υ

a
σ
)

+ ĤNaσ

τ − Υ·ν − 1
2
Υ·Υσ − 1

2
Ĥ2σ

⎞
⎟⎟⎟⎟⎠

It remains to show that the second and third components agree in the expressions for

�
[
UA

]
ˆ̄g

and Ξg→ĝ �
[
UA

]
ḡ

above. Since Ĥ = H + Υ·N and Υa = Υ
a
+ Υ·NNa,

Πa
b

(
νb + Υ

b
σ
)

+ ĤNaσ = νa + Υ
a
σ + HNaσ + Υ·NNaσ

= νa + HNaσ + Υaσ

demonstrating the equality of the second components. For the third component we note

Υ·ν = ΥbΠ
b
cν

c and then

1

2
Υ·Υσ +

1

2
Ĥ2σ =

1

2
Υ·Υσ +

1

2
H2σ + HΥ·Nσ +

1

2
(Υ·N)2σ

=
1

2
Υ·Υσ +

1

2
H2σ + HΥ·Nσ

completes the proof of equality.

The tractor bundle of a conformal manifold (M, g) may also be dealt with using the

injecting operators Y A, ZA
a and XA. The sub-manifold (Σ, ḡ) will have separate injecting

operators Y
A
, Z

A

a and X
A

which can also be used to describe � : EA
Σ ↪→ EA |Σ as detailed

in the following proposition;

Corollary 5.3. The injecting operators Y A, ZA
a and XA of the manifold (M, g) are related

to the injecting operators Y
A
, Z

A

a and X
A

of the sub-manifold (Σ, ḡ) by:

Y
A

= Y A + ZA
a NaH − 1

2
H2XA

Z
A

a = Πb
aZ

A
b

X
A

= XA

Proof. The result follows simply from rewriting proposition 5.2 in terms of the injecting

operators.

We will also need to move in the other direction:
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Corollary 5.4. Suppose V A = σY A + μaZA
a + ρXA ∈ EA such that V ANA = 0, i.e.,

V A ∈ EA
‖ . The isomorphism �−1 : EA |Σ �→ EA

Σ identifies V A ∈ EA
‖ with the tractor

UA ∈ EA
Σ described using the intrinsic metric ḡ as

[
UA

]
ḡ

=

⎛
⎜⎜⎜⎜⎝

σ

Πa
bμ

b

ρ + 1
2
H2σ

⎞
⎟⎟⎟⎟⎠

Proof. Using proposition 5.2 the tractor UA is split by the ambient metric g as

[
UA

]
g

=

⎛
⎜⎜⎜⎜⎝

σ

Πa
bμ

b + HNaσ

ρ + 1
2
H2σ − 1

2
H2σ

⎞
⎟⎟⎟⎟⎠

Immediately σ and ρ are recovered for the first and third slots respectively. Further

calculation yields

Πa
bμ

b + HNaσ = μa − Na (N ·μ − Hσ)

By hypothesis N ·μ − Hσ vanishes, so μa is recovered for the second slot.

Corollary 5.3 may be rearranged to express �−1 in terms of the injecting operators of

(M, g) and (Σ, ḡ).

In future the isomorphism � will not be explicitly mentioned, with EA
‖ and EA

Σ being

identified as the same tractor bundle. The metric subscript will indicate whether a tractor

is expressed with ambient injecting operators of (M, g) as in [V A]g, or else as with injecting

operators intrinsic to (Σ, ḡ) as in [V A]ḡ.

5.2 Sub-Manifold Tractor Connections

A conformal sub-manifold (Σ, ḡ) has two natural but distinct tractor connections. There

is the intrinsic tractor connection ∇ which is provided by definition 4.6, treating (Σ, ḡ) as

a conformal manifold independent of (M, g). On (Σ, ḡ) the connection ∇ takes the form

[∇cU
A
]
ḡ

=

⎛
⎜⎜⎜⎜⎝

∇cσ − νc

∇cν
a + Πa

cτ + P
a

cσ

∇cτ − P cbν
b

⎞
⎟⎟⎟⎟⎠
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for UA ∈ EA
Σ . The presence of P

a

c indicates that the assumption n ≥ 4 is required,

although an extension to n = 3 is possible.

Proposition 5.5. Let V A = Y Aσ + ZA
a μa + XAρ ∈ EA with V ANA = 0. The action of

the intrinsic connection ∇cV
A is described using ambient injecting operators as

[∇cV
A
]
g

=

⎛
⎜⎜⎜⎜⎝

∇cσ − ḡcbμ
b

∇cΠ
a
bμ

b + Πa
c (ρ + 1

2
H2σ) + P

a

cσ + HNa(∇cσ − ḡcbμ
b)

∇cρ + σH∇cH − P bcμ
b + 1

2
H2ḡbcμ

b

⎞
⎟⎟⎟⎟⎠

Proof. Corollary 5.4 indicates that

[
V A

]
ḡ

=

⎛
⎜⎜⎜⎜⎝

σ

Πa
bμ

b

ρ + 1
2
H2σ

⎞
⎟⎟⎟⎟⎠

Application of the intrinsic connection ∇ leads to

[∇cV
A
]
ḡ

=

⎛
⎜⎜⎜⎜⎝

∇cσ − ḡcbμ
b

∇cΠ
a
bμ

b + Πa
c(ρ + 1

2
H2σ) + P

a

cσ

∇c(ρ + 1
2
σH2) − P bcμ

b

⎞
⎟⎟⎟⎟⎠

The ambient expression for this is obtained using proposition 5.2

[∇cV
A
]
g

=

⎛
⎜⎜⎜⎜⎝

∇cσ − ḡcbμ
b

∇cΠ
a
bμ

b + Πa
c (ρ + 1

2
H2σ) + P

a

cσ + HNa(∇cσ − ḡcbμ
b)

∇c(ρ + 1
2
σH2) − P bcμ

b − 1
2
H2(∇cσ − ḡbcμ

b)

⎞
⎟⎟⎟⎟⎠

which is equivalent to the result.

In addition to ∇, there is also a connection on (Σ, ḡ) which is obtained from the

ambient connection ∇ on (M, g) via the embedding Σ ⊂ M ;

Definition 5.6. The projected ambient tractor connection is the connection ∇̃ on

(Σ, ḡ) given by

∇̃cV
A = ΠA

BΠc′
c ∇c′V

B

where V A ∈ EA
Σ .
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The connection ∇̃ leads to a tractor analogue of the Riemannian second fundamental

form.

Definition 5.7. The projective tractor second fundamental form is denoted M

and is defined as taking the action

McAV A = NAΠc′
c ∇c′V

A

where V A ∈ EA
Σ along Σ.

With this definition the projected ambient tractor connection takes the form

∇̃cV
A = Πc′

c ∇c′V
A − NAMcBV B (5.1)

The projective tractor second fundamental form McA inherits from its constituents con-

formal invariance when acting on objects V A with arbitrary tractor indices but without

tensor indices. The projective tractor second fundamental form is more complicated than

the Riemannian counterpart due to the non-trivial relation between the intrinsic tractor

connection and the projected ambient tractor connection.

Proposition 5.8. The projective tractor second fundamental form is explicitly

McA = XA(Πc′
c ∇c′H + NaΠ

c′
c P a

c′) − Zc′
AL(cc′)0

Proof. Let V A = σY A + μaZA
a + ρXA ∈ EA

Σ , whereby μ·N − σH = 0. Using the ambient

connection ∇ gives

[
Πc′

c ∇c′V
A
]

g
=

⎛
⎜⎜⎜⎜⎝

Πc′
c (∇c′σ − μc′)

Πc′
c (∇c′μ

a + δa
c′ρ + P a

c′σ)

Πc′
c

(∇c′ρ − Pbc′μ
b
)

⎞
⎟⎟⎟⎟⎠

Calculating the inner product NAΠc′
c ∇c′V

A gives

NBΠc′
c ∇c′V

B = −HΠc′
c ∇c′σ + HΠc′

c μc′ + NaΠ
c′
c ∇c′μ

a + NaP
a
c′Π

c′
c σ

= −Πc′
c ∇c′σH + σΠc′

c ∇c′H + HΠc′
c μc′ + Πc′

c ∇c′μ·N
−μaΠc′

c ∇c′Na + NaP
a
c′Π

c′
c σ

= σ(Πc′
c ∇c′H + NaP

a
c′Π

c′
c ) − μc′L(cc′)0

where the hypotheses V A ∈ EA
Σ causes the term Πc′

c ∇c′(μ·N − σH) to vanish. Rewriting

this in terms of the injecting operators yields the result.
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It is not difficult to verify the conformal invariance of McA directly using the conformal

transformations of the injecting operators with the results of sections 3.3 and 3.4.

Definition 5.9. The tractor contorsion C B
cA is the End(T) valued 1-form given by

C B
cA V A = ∇cV

B − ∇̃cV
B

where V A ∈ EA
Σ .

In the Riemannian setting the Levi-Civita connection ∇ of a sub-manifold may be

obtained from the ambient ∇ by projections, as ∇aϕ
b = Πa

cΠ
d
b∇cϕ

d. In the tractor

setting however, the connections ∇ and ∇̃ do not agree in general. We will find an

explicit expression for C B
cA to demonstrate this detail.

Proposition 5.10. The tractor contorsion is of the form

C B
cA = ZB

b XA

(
P

b

c − Πb
b′Π

c′
c P b′

c′ − HL(cb′)0 ḡ
bb′ − 1

2
Πb

cH
2

)

−XBZa
Aḡab

(
P

b

c − Πb
b′Π

c′
c P b′

c′ − HL(cb′)0 ḡ
bb′ − 1

2
Πb

cH
2

)

Proof. Let V A = σY A + μaZA
a + ρXA ∈ EA with μ·N − σH = 0. The tractor contorsion

may be expressed as

C B
cA V A = ∇cV

B − Πc′
c ∇c′V

B + NBMcAV A

Explicit forms of
[∇cV

B
]
g

and
[
McAV A

]
g

are obtained from propositions 5.5 and 5.8

respectively. Combining these terms with
[
Πc′

c ∇c′V
B
]
g

gives

[
C B

cA V A
]
g

=

⎛
⎜⎜⎜⎜⎝

∇cσ − ḡcbμ
b

∇cΠ
a
bμ

b + Πa
c (ρ + 1

2
H2σ) + P

a

cσ + HNa(∇cσ − ḡcbμ
b)

∇cρ + σH∇cH − P bcμ
b + 1

2
H2ḡbcμ

b

⎞
⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

Πc′
c ∇c′σ − Πc′

c μc′

Πc′
c ∇c′μ

a + Πa
cρ + Πc′

c P a
c′σ

Πc′
c ∇c′ρ − Πc′

c Pbc′μ
b

⎞
⎟⎟⎟⎟⎠

+
(
σ(Πc′

c ∇c′H + NbΠ
c′
c P b

c′) − μc′L(cc′)0

)
⎛
⎜⎜⎜⎜⎝

0

Na

−H

⎞
⎟⎟⎟⎟⎠
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Clearly the primary component of
[
C B

cA V A
]
g

vanishes since ∇cϕ = Πc′
c ∇c′ϕ when ϕ is a

(conformally weighted) function. The secondary slot is

Za
BC B

cA V A = ∇cΠ
a
bμ

b + Πa
c

1

2
H2σ + P

a

cσ + HNa(∇cσ − ḡcbμ
b) − Πc′

c ∇c′μ
a

−Πc′
c P a

c′σ + σNa(Πc′
c ∇c′H + NbΠ

c′
c P b

c′) − Naμc′L(cc′)0

We note that

−Πc′
c P a

c′ + NaNb Π
c′
c P b

c′ = −Πa
a′Πc′

c P a′
c′

and since μ·N = σH ,

∇cΠ
a
bμ

b + HNa∇cσ − Πc′
c ∇c′μ

a + σNaΠc′
c ∇c′H

= Πc′
c ∇c′Π

a
bμ

b + Lcbμ
bNa + NaΠc′

c ∇c′μ·N − Πc′
c ∇cμ

a

= −Πc′
c ∇c′N

aμ·N + Lcbμ
bNa + NaΠc′

c ∇c′μ·N
= −μ·NLcbḡ

ab + Lcbμ
bNa

= −σHLcbḡ
ab + Lcbμ

bNa

These results give

Za
BC B

cA V A =
(
P

a

c − Πa
a′Πc′

c P a′
c′

)
σ − HLcbḡ

abσ +
1

2
Πa

cH
2σ

=
(
P

a

c − Πa
a′Πc′

c P a′
c′

)
σ − HL(cb)0 ḡ

abσ − 1

2
Πa

cH
2σ

For the third component of
[
C B

cA V A
]
g

we calculate:

YBC B
cA V A =

1

2
∇cH

2σ − P bcμ
b − 1

2
H2

(∇cσ − ḡcbμ
b
)

+ Πc′
c Pbc′μ

b

+HμbL(cb)0 − σHΠc′
c ∇c′H − σHNb Π

c′
c P b

c′

Here we again use μ·N − σH = 0 to obtain

Πc′
c Pbc′μ

b − HσNb Π
c′
c P b

c′ = Πc′
c Pbc′(μ

b − μ·NN b)

= Πc′
c Πb′

b Pb′c′μ
b

This leads to

YBC B
cA V A =

(
Πc′

c Πb′
b Pb′c′ − P bc

)
μb +

1

2
H2ḡcbμ

b + HμbL(cb)0
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Combining these results gives an expression for the tractor contorsion.

[
C B

cA V A
]
g

=

⎛
⎜⎜⎜⎜⎝

0(
P

a

c − Πa
a′Πc′

c P a′
c′

)
σ − HL(cb)0 ḡ

abσ − 1
2
Πa

cH
2σ(

Πc′
c Πb′

b Pb′c′ − P bc

)
μb + HμbL(cb)0 + 1

2
H2ḡcbμ

b

⎞
⎟⎟⎟⎟⎠

or in terms of the injecting operators,

C B
cA = ZB

b XAḡab

(
P ac − Πa′

a Πc′
c Pa′c′ − HL(ca)0 −

1

2
ḡacH

2

)

−XBZa
A

(
P ac − Πa′

a Πc′
c Pa′c′ − HL(ca)0 −

1

2
ḡacH

2

)
which is the required result.

Proposition 3.9 demonstrates that the tensor

P ac − Πa′
a Πc′

c Pa′c′ − HL(ca)0 −
1

2
ḡacH

2

is conformally invariant. It is then simple to see that the above expression for C B
cA is

indeed a conformally invariant tractor.

Burstall and Calderbank [6] propose a decomposition of the ambient connection into

parts normal and tangential to the sub-manifold. The results of this section detail the

tangential component of such a decomposition. Specifically, the sub-manifold connection

may be decomposed into

∇cV
A = Πc′

c ∇c′V
A − NAMcBV B + C A

cB V B (5.2)

along Σ, where each of the terms on the right hand side are discussed above.

5.3 The Ambient Tractor Second Fundamental Form

The Riemannian second fundamental form Lab = Πc
a∇cNb is a bilinear form measuring the

difference between the intrinsic connection ∇ and the projected ambient connection ΠΣ∇.

The tractor setting is not as thoroughly understood and there are several candidate objects

that might be called a “tractor second fundamental form”. The direct tractor analogue of

Lab is the projective second fundamental form McA, but an altogether different object has

been introduced by Grant [5] which is not yet easily related to the connonical connections

∇ and ∇̃ on (Σ, ḡ).
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Definition 5.11. The ambient tractor second fundamental form is defined, for a

choice of metric ḡ, in terms of the intrinsic injecting operators as

LAB = (n − 3)Z
a

AZ
b

BL(ab)0 −
n − 3

n − 2
Z

a

AXB∇b
L(ab)0 −

n − 3

n − 2
Z

b

BXA∇a
L(ab)0

+XAXB(P
ab

L(ab)0 +
1

n − 2
∇a∇b

L(ab)0)

where L(ab)0 is the trace-free Riemannian second fundamental form.

Despite the overloaded notation, there will be no confusion as to which second fun-

damental form is intended due to the case of the indices. The ambient tractor second

fundamental form is clearly symmetric; but is not obviously conformally invariant.

Proposition 5.12. The ambient tractor second fundamental LAB form is conformally

invariant in ambient dimensions n ≥ 4.

Proof. Equation 3.3 and proposition 3.3 are combined using the Leibniz rule to derive

that for a symmetric μab ∈ Eab[w],

gbc∇̂cμab = gbc
[
∇cμab + (w − 2)Υcμab − Υbμac − Υaμcb + gbcΥ

dμad + gacΥ
dμdb

]
= ∇bμab + (n + w − 2)Υbμab − gcbΥaμcb

By proposition 3.8, L(ab)0 is conformally invariant. Since L(ab)0 has conformal weight

w = 1, the term ∇b
L(ab)0 will under conformal rescalings of the metric transform according

to a Σ version of the above formula, as

∇̂
b

L(ab)0 = ∇b
L(ab)0 + (n − 2)Υ

b
L(ab)0

Recalling that for weighted one-forms ua ∈ Ea[w],

gac∇cua = gac (∇cua − Υauc + (w − 1)Υcua + gacΥ
aua)

= ∇aua + (n + w − 2)Υaua

Using a (Σ, ḡ) version of this where ∇b
L(ab)0 has conformal weight −1 yields

∇̂
a

∇̂
b

L(ab)0 = ∇̂
a (

∇b
L(ab)0 + (n − 2)Υ

b
L(ab)0

)
= ∇a∇b

L(ab)0 + (n − 2)∇a
Υ

b
L(ab)0 + (n − 4)Υ

a∇b
L(ab)0

+(n − 4)(n − 2)Υ
a
Υ

b
L(ab)0

= ∇a∇b
L(ab)0 + (n − 2)(∇a

Υ
b
)L(ab)0 + (2n − 6)Υ

a∇b
L(ab)0

+(n − 4)(n − 2)Υ
a
Υ

b
L(ab)0
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Equation 3.5 indicates that

P̂ab = Pab −∇aΥb + ΥaΥb − 1

2
gabΥ·Υ

Use of the Σ version of this rule for n ≥ 4 shows that the term (P
ab

L(ab)0 + 1
n−2

∇a∇b
L(ab)0)

transforms according to

P̂
ab

L(ab)0 +
1

n − 2
∇̂

a

∇̂
b

L(ab)0

=
(
P ab − (∇aΥb) + ΥaΥb

)
L(ab)0 + 1

n−2
∇a∇b

L(ab)0 + (∇a
Υ

b
)L(ab)0

+2n−6
n−2

Υ
a∇b

L(ab)0 + (n − 4)Υ
a
Υ

b
L(ab)0

= P
ab

L(ab)0 + 1
n−2

∇a∇b
L(ab)0 + 2n−6

n−2
Υ

a∇b
L(ab)0 + (n − 3)Υ

a
Υ

b
L(ab)0

The injecting operators transform as

X̂A = X
A

Ẑ
a

A = Z
A

a + ΥaX
A

Having established the transformations of all the components, we can verify the conformal

invariance of LAB.

L̂AB = (n − 3)
(
Z

a

AZ
b

BL(ab)0

)
+ Z

a

AXB

(
−n − 3

n − 2
∇̂

b

L(ab)0 + (n − 3)Υ
b
L(ab)0

)

+Z
b

BXA

(
−n − 3

n − 2
∇̂

a

L(ab)0 + (n − 3)Υ
a
L(ab)0

)
+ XAXB

(
P̂

ab

L(ab)0

+
1

n − 2
∇̂

a

∇̂
b

L(ab)0 + (n − 3)Υ
a
Υ

b
L(ab)0 −

2n − 6

n − 2
Υ

a∇̂
b

L(ab)0

)

Clearly the off diagonal coefficients display the correct transformation, while the Z
a

AZ
b

B

term is conformally invariant. The XAXB component is

P̂
ab

L(ab)0 +
1

n − 2
∇̂

a

∇̂
b

L(ab)0 + (n − 3)Υ
a
Υ

b
L(ab)0 −

2n − 6

n − 2
Υ

a∇̂
b

L(ab)0

= P
ab

L(ab)0 + 1
n−2

∇a∇b
L(ab)0 + 2n−6

n−2
Υ

a∇b
L(ab)0 + (n − 3)Υ

a
Υ

b
L(ab)0

+(n − 3)Υ
a
Υ

b
L(ab)0 − 2n−6

n−2
Υ

a
(
∇b

L(ab)0 + (n − 2)Υ
b
L(ab)0

)
= P

ab
L(ab)0 + 1

n−2
∇a∇b

L(ab)0

Hence LAB transforms correctly under conformal rescalings of the metric.
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The ambient second fundamental form plays an important role in obtaining third order

conformally invariant differential operators, but is presently not well motivated. It has

been conjectured [10] that the ambient second fundamental form might be recovered via

the ambient construction of the tractor bundle.
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Chapter 6

Sub-manifold Tractor Operators

Here we extend the results of Grant [5] on higher order conformally invariant operators

to operators that are invariant on any conformal weight. The author understands that

Andreas Juhl is also pursuing work in this general direction [1, 10], but differences in

notation make comparison awkward.

Descriptions of conformally invariant operators require increasingly vast numbers of terms

as the normal order increases. Work will be broken into a number of smaller more man-

ageable lemmas.

Lemma 6.1. Let V A = Y Aσ + ZA
a μa + XAρ ∈ EA[w]. Then

DBΠB
AV A = (n + w − 2)Jσ − Δσ + (n + 2w − 1)∇aΠ

a
bμ

b

+(n + 2w − 1)(n + w − 2)

(
ρ + Hμ·N − 1

2
H2σ

)
Proof. By lemma 5.3, the projection ΠB

AV A appears with respect to the intrinsic metric

ḡ as

ΠB
AV A = Y

B
σ + Z

B

a Πa
bμ

b + X
B

(
ρ + Hμ·N − 1

2
H2σ

)
Since V A has conformal weight w, σ and μa have weight w + 1 while ρ has conformal

weight w − 1. Careful application of lemma 4.10 yields

DBY
B
σ =

(
(n − 1) + (w + 1) − 2

)
Jσ − Δσ

DBZ
B

a Πa
bμ

b =
(
(n − 1) + 2(w + 1) − 2

)∇aΠ
a
bμ

b

DBX
B
τ =

(
(n − 1) + 2(w − 1) + 2

)(
(n − 1) + (w − 1)

)
τ

where τ =
(
ρ + Hμ·N − 1

2
H2σ

)
. These terms sum to the result.
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Proposition 6.2. The conformally invariant operator DBΠB
ADA takes the explicit form

DBΠB
ADAϕ = (n + w − 3)

[
(n + 2w − 2)� − (n + 2w − 3)�

+(n + 2w − 3)(n + 2w − 2)(H∇N − 1

2
wH2)

]
ϕ

where ϕ ∈ E [w].

Proof. From the definition, DAϕ is the tractor

DAϕ =

⎛
⎜⎜⎜⎜⎝

(n + 2w − 2)wϕ

(n + 2w − 2)∇aϕ

−�ϕ

⎞
⎟⎟⎟⎟⎠

of conformal weight w − 1. Application of lemma 6.1 yields

DBΠB
ADAϕ =

(n + w − 3)(n + 2w − 2)wJϕ − (n + 2w − 2)wΔϕ

+(n + 2w − 3)(n + 2w − 2)∇aΠ
a
b∇bϕ

+(n + 2w − 3)(n + w − 3)
(−�ϕ + (n + 2w − 2)(HNa∇aϕ − 1

2
H2wϕ)

)
which simplifies to the result, since ∇aΠ

a
b∇bϕ = Δϕ when ϕ has no indices.

The second order operator DBΠB
ADA was discussed by David Grant [5] in this form.

It was also developed independently by Andreas Juhl [1] using different methods and

notation. It should also be noted that this operator reduces to the Yamabe operator

when acting on the appropriate Yamabe weights. Setting w = 2−n
2

recovers a multiple

of �, which is conformally invariant on functions of this conformal weight. Substituting

instead w = 3−n
2

produces a multiple of �, the Yamabe operator of the sub-manifold,

which is conformally invariant when acting on functions of weight w = 3−n
2

.

6.1 The δ3 Operator

Definition 6.3. [4] The conformal Robin operator δ is

δϕ = ∇Nϕ − wHϕ
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where ϕ ∈ E�[w] with 
 representing any combination of tractor indices, and ∇N is the

coupled Levi-Civita tractor connection.

It is easy to show that δ is conformally invariant using the known conformal transfor-

mations of H and ∇N acting on tractors.

Lemma 6.4. Let ϕ ∈ E [w]. Then the conformally invariant operator δDA has weight −2

and is explicitly

[
δDAϕ

]
g

=

⎛
⎜⎜⎜⎜⎝

(n + 2w − 2)(w − 1)(∇N − wH)ϕ

(n + 2w − 2)
(∇N∇a + wP a

b N b − (w − 1)H∇a
)
ϕ − Na�ϕ

−(n + 2w − 2)N cPcb∇bϕ −∇N�ϕ + (w − 1)H�ϕ

⎞
⎟⎟⎟⎟⎠

Proof. Applying the tractor connection ∇N to DAϕ yields

[∇NDAϕ
]
g

= ∇N

⎛
⎜⎜⎜⎜⎝

(n + 2w − 2)wϕ

(n + 2w − 2)∇Nϕ

−�ϕ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

(n + 2w − 2)(w − 1)∇Nϕ

(n + 2w − 2) (∇N∇a + wN cP a
c ) ϕ − Na�ϕ

−∇N�ϕ − (n + 2w − 2)N cPcb∇bϕ

⎞
⎟⎟⎟⎟⎠

The action of the Robin operator on DAϕ is then

[
δDAϕ

]
g

=

⎛
⎜⎜⎜⎜⎝

(n + 2w − 2)(w − 1)(∇N − wH)ϕ

(n + 2w − 2)
(∇N∇a + wP a

b N b − (w − 1)H∇a
)
ϕ − Na�ϕ

−(n + 2w − 2)N cPcb∇bϕ −∇N�ϕ + (w − 1)H�ϕ

⎞
⎟⎟⎟⎟⎠

since DAϕ has conformal weight w − 1.

Combining lemmas 6.1 and 6.4 we obtain an explicit expression for the 3th order

conformally invariant operator DBΠB
AδDA;
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Proposition 6.5. Let ϕ ∈ E [w]. The conformally invariant operator DBΠB
AδDA has

weight -3 and takes the form

DBΠB
AδDAϕ =

(n + w − 4)(n + 2w − 2)(w − 1)J (∇N − wH)ϕ

−(n + 2w − 2)(w − 1)Δ (∇N − wH)ϕ

+(n + 2w − 2)(n + 2w − 5)
(∇aΠ

a
b∇N∇b + w∇aΠ

a
bP

b
c N c

)
ϕ

−(n + 2w − 2)(n + 2w − 5)(w − 1)
(∇aH∇a)

ϕ

+(n + w − 4)(n + 2w − 2)(n + 2w − 5)
(−PcbN

b∇c + HN bN c∇c∇b + wHP⊥)
ϕ

+(n + w − 4)(n + 2w − 5) (−∇N� + (w − 2)H�)ϕ

+(n + w − 4)(n + 2w − 2)(n + 2w − 5)(w − 1)
(−1

2
H2(3∇N − wH)

)
ϕ

Proof. Adjusting lemma 6.1 to act on UA ∈ EA[w − 2] yields

DBΠB
AUA = (n + w − 4)Jσ − Δσ + (n + 2w − 5)∇aΠ

a
bμ

b

+(n + 2w − 5)(n + w − 4)

(
ρ + Hμ·N − 1

2
H2σ

)

Substituting into this equation the tractor δDAϕ of lemma 6.4 produces

DBΠB
AδDAϕ =

(
(n + w − 4)J − Δ

)
(n + 2w − 2)(w − 1)(∇N − wH)ϕ

+(n + 2w − 5)∇aΠ
a
b (n + 2w − 2)

(∇N∇a + wP a
b N b − (w − 1)H∇a

)
ϕ

+(n + 2w − 5)(n + w − 4) ×[(
(n + 2w − 2)N cPcb∇bϕ − (∇N − (w − 1)H)ϕ

)
+HNa(n + 2w − 2)

(∇N∇a + wP a
b N b − (w − 1)H∇a

)
ϕ − H�ϕ

−1

2
H2(n + 2w − 2)(w − 1)(∇N − wH)ϕ

]

which is equivalent to the result.

In the case w = 4−n
2

the weighted operator above specialises to the operator δ3 derived
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by Grant [5]. The δ3 operator has the form

δ3ϕ = (n − 4)

(
2 − n

2
J∇Nϕ +

(n − 2)(n − 4)

4
JHϕ +

2 − n

2
ΔHϕ + ∇aΠ

a
bP

b
c N cϕ

+PcbN
b∇cϕ − HN bN c∇c∇bϕ − 4 − n

2
HP⊥ϕ +

4 − n

4
∇NJϕ − 1

2
∇NΔϕ

−n(n − 4)

8
HJϕ +

n

4
HΔϕ +

3(n − 2)

4
H2∇Nϕ +

(n − 2)(n − 4)

4
Hϕ

)
+(n − 2)Δ∇Nϕ − (n − 2)∇a

H∇aϕ + 2∇aΠ
a
b∇N∇bϕ

6.2 An Invariant Third Normal Order Operator

Proposition 6.6. Given an index-free weighted section ϕ ∈ E [w], the conformally invari-

ant operator D
A
LABDB is explicitly

D
A
LABDB = (n + 2w − 5)(n + 2w − 2) ×

[
(n − 3)∇a

L(ab)0∇
b
ϕ

−n − 3

n − 2
(n + 2w − 4)

(
∇a

L(ab)0

)
∇b

ϕ

+
w

n − 2
(w − 1)

(
∇a∇b

L(ab)0

)
ϕ

+(n + w − 4)wP
ab

L(ab)0ϕ
]

Proof. Applying the tractor projection to the DB operator yields

[
ΠB

CDCϕ
]
ḡ

=

⎛
⎜⎜⎜⎜⎝

(n + 2w − 2)wϕ

(n + 2w − 2)Πb
c∇cϕ

−�ϕ + (n + 2w − 2)
(
H∇Nϕ − 1

2
wH2ϕ

)

⎞
⎟⎟⎟⎟⎠

The tractor LAB of definition 5.11 is

LAB = Z
b

BZ
a

A(n − 3)L(ab)0 − Z
b

BXA
n − 3

n − 2
∇a

L(ab)0 − Z
a

AXB
n − 3

n − 2
∇b

L(ab)0

+XAXB

(
P

ab
L(ab)0 + (n − 2)−1∇a∇b

L(ab)0

)
so that LABDBϕ is obtained from a contraction in the sub-manifold;

LABDBϕ = (n + 2w − 2)(n − 3)Z
a

A

[
L(ab)0Π

b
c∇cϕ − w

n − 2
(∇b

L(ab)0)ϕ

]

(n + 2w − 2)XA

[
−n − 3

n − 2
(∇a

L(ab)0)Π
b
c∇cϕ + wP

ab
L(ab)0

+
w

n − 2
(∇a∇b

L(ab)0)ϕ

]

43



Here ϕ is assumed to be index-free and so Πb
c∇cϕ = ∇b

ϕ. Since (Σ, ḡ) has dimension

(n− 1), lemma 4.10 informs that the D
A

operator acts on the injecting operators Z
a

A and

XA as

D
A
Z

a

Aϕ = (n + 2w − 3)∇a
φ

D
A
XAϕ = (n + 2w + 1)(n + w − 1)φ

where in each case φ is assumed to be of weight w. The Z
a

A coefficient of LABDBϕ has

weight w − 1 while the XA coefficient has weight w − 3 so that

D
A
LABDBϕ = (n + 2w − 5)(n + 2w − 2)(n − 3)∇a

[
L(ab)0∇

b
ϕ − w

n − 2
(∇b

L(ab)0)ϕ

]

+(n + 2w − 5)(n + w − 4)(n + 2w − 2)

[
−n − 3

n − 2
(∇a

L(ab)0)∇
b
ϕ

+wP
ab

L(ab)0ϕ +
w

n − 2
(∇a∇b

L(ab)0)ϕ

]
= (n + 2w − 5)(n + 2w − 2) ×

[
(n − 3)∇a

L(ab)0∇
b
ϕ

−n − 3

n − 2

(
w∇a

(∇b
L(ab)0)ϕ + (n + w − 4)(∇a

L(ab)0)∇
b
ϕ
)

+(n + w − 4)w
(
P

ab
L(ab)0ϕ +

1

n − 2
(∇a∇b

L(ab)0)ϕ
)]

Using the Leibniz rule and the symmetry of L(ab)0 we obtain

∇a
(
∇b

L(ab)0

)
ϕ =

(
∇a∇b

L(ab)0

)
ϕ +

(
∇a

L(ab)0

)
∇b

ϕ

which allows further simplification to the result.

For the conformal weight w = 4−n
2

the term involving (∇a
L(ab)0)∇

b
ϕ vanishes and so

the operator D
A
LABDB takes the form

D
A
LABDBϕ = 2(3 − n)∇a

L(ab)0∇
b
ϕ +

n − 4

2

(
(n − 4)P

ab
L(ab)0 −

(
∇a∇b

L(ab)0

))
ϕ

which recovers the weighted operator D
A
LABDB : E [4−n

2
] �→ E [−2−n

2
] of Grant [5].

Lemma 6.7. The term ∇a
L(ab)0∇

b
may be expanded as

∇a
L(ab)0∇

b
ϕ = Δ∇Nϕ −∇a

H∇aϕ −∇aΠ
a
b∇N∇bϕ

for weighted functions ϕ ∈ E [w].
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Proof. The Leibniz rule allows

Δ∇Nϕ = ∇aΠ
a
b∇bN c∇cϕ

= ∇aΠ
a
bN

c∇b∇cϕ + ∇a

(
Πa

b∇bN c
)∇cϕ

The connections ∇a and ∇b commute when acting on ϕ ∈ E [w]. Therefore

Δ∇Nϕ = ∇aΠ
a
bN

c∇c∇bϕ + ∇a
Lac∇cϕ

We apply ∇cϕ = Πc′
c ∇c′ϕ, again because ϕ is without indices, so that

Δ∇Nϕ −∇a
H∇aϕ = ∇aΠ

a
bN

c∇c∇bϕ + ∇a
Lac∇c

ϕ −∇a
H∇aϕ

= ∇aΠ
a
bN

c∇c∇bϕ + ∇a
L(ac)0∇

c
ϕ

from which the result follows.

Lemma 6.7 allows some simplifications when adding the operators DBΠB
AδDA and

D
A
LABDB of propositions 6.5 and 6.6 respectively. We obtain the conformally invariant

third order operator

Λ3(w) = (n + w − 4)(n + 2w − 2)(w − 1)J (∇N − wH)ϕ

+(n + 2w − 2)(w − 1)wΔHϕ

+(n + 2w − 2)(n + 2w − 5)
(
w∇aΠ

a
bP

b
c N c

)
ϕ

+(n + 2w − 2)(n + 2w − 5)(4 − n − w)
(∇aH∇a)

ϕ

+(n + w − 4)(n + 2w − 2)(n + 2w − 5)
(−PcbN

b∇c + HN bN c∇c∇b + wHP⊥)
ϕ

+(n + w − 4)(n + 2w − 5) (−∇N� + (w − 2)H�) ϕ

+(n + w − 4)(n + 2w − 2)(n + 2w − 5)(w − 1)

(−1

2
H2(3∇N − wH)

)
ϕ

+(n + 2w − 2)
(
(n + 2w − 4)(n − 4) + w

)
Δ∇Nϕ

+(n + 2w − 5)(n + 2w − 2)(4 − n)∇aΠ
a
b∇N∇bϕ

+(n + 2w − 5)(n + 2w − 2) ×
[
n − 3

n − 2
(n + 2w − 4)

(
∇a

L(ab)0

)
∇b

ϕ

+
w

n − 2
(w − 1)

(
∇a∇b

L(ab)0

)
ϕ + (n + w − 4)wP

ab
L(ab)0ϕ

]

This construction is polynomial in g, g−1, ∇, Pab, Na, and Lab. It follows that we are

free to cancel any common factors of rational functions of n and w without affecting the

conformal invariance or the normal order of the operator.
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Similar to the second order operator DBΠB
ADA, the operator Λ3(w) simplifies to known

operators for particular conformal weights. When w = 2−n
2

we recover

Λ3

(
2 − n

2

)
=

3(4 − n)

2

(
−∇N� +

n − 2

2
H�

)
ϕ

=
3(n − 4)

2
δ �ϕ

since �ϕ will be of weight w − 2. When w = 5−n
2

we obtain

Λ3

(
5 − n

2

)
=

3

2
(n − 3) � δ ϕ

which is again a multiple of known conformally invariant operators. To conclude, the

methods of tractor calculus provide a concise and insightful way to produce conformal

invariant quantities. The setting of conformal sub-manifolds presents still more research

opportunities. Further work could involve establishing tractor calculus results analogous

to useful Riemannian theorems such as the Gauss-Codazzi-Mainardi theorem for the cur-

vature of a sub-manifold.
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