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1. Introduction

Nearly Kähler geometry (shortly NK in what follows) naturally arises as one of the

sixteen classes of almost Hermitian manifolds appearing in the celebrated Gray–

Hervella classification [8]. These manifolds were studied intensively in the seventies

by Gray [7]. His initial motivation was inspired by the concept of weak holon-

omy [7], but very recently it turned out that this concept, as defined by Gray, does

not produce any new geometric structure (see [1]) other than those coming from a

Riemannian holonomy reduction. One of the most important properties of NK man-

ifolds is that their canonical Hermitian connection has totally skew-symmetric, par-

allel torsion [15]. From this point of view, they naturally fit into the setup proposed

in [6] towards a weakening of the notion of Riemannian holonomy. The same prop-

erty suggests that NK manifolds might be objects of interest in string theory [10].
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The structure theory of compact NK manifolds, as developed in [16] reduces

their study to positive quaternion-Kähler manifolds and nearly Kähler manifolds

of dimension 6. The last class of manifolds falls in the area of special metrics with

very rigid — though not yet fully understood — properties.

Indeed, it is known since a long time that in 6 dimensions, a NK metric which

is not Kähler has to be Einstein of positive scalar curvature. Moreover, such a

structure is characterized by the existence of some (at least locally defined) real

Killing spinor [13]. Combining these properties with the fact that the first Chern

class vanishes [7], one observes that non-Kähler, nearly Kähler 6-dimensional man-

ifolds solve most of the type II string equations [10]. Despite of all these interesting

features, very little is known about these manifolds. In particular, the only known

compact examples are the 3-symmetric spaces

S6, S3 × S3, CP 3, F (1, 2)

and moreover, Butruille recently proved that there are no other compact homoge-

neous examples [5].

In a recent article [14], Hitchin shows that nearly parallel G2-structures ([11] for

an account) and NK manifolds of 6 dimensions have the same variational origins.

On the other hand, many examples of nearly parallel G2-structures are available

since any 7-dimensional, 3-Sasakian manifold carries such a structure [11, 12] and a

profusion of compact examples of the latter were produced in [4]. Since one property

of 3-Sasakian manifolds is to admit unit Killing vector fields, one might ask whether

this can happen in the NK setting.

In the present paper we study 6-dimensional non-Kähler, nearly Kähler mani-

folds which globally admit a Killing vector field ξ of constant length. After recalling

some elementary features of nearly Kähler geometry in Sec. 2, we show in Sec. 3 that

any Killing vector field of unit length induces a transversal almost hyper-Hermitian

structure on the manifold. This almost hyper-Hermitian structure is preserved by

the Killing vector field ξ but not by Jξ (here J denotes the almost complex structure

of the nearly Kähler structure). We measure this in the fourth section by computing

the Lie derivatives of the various geometrically significant tensors in the direction

of Jξ. This technical part is used in Sec. 5 to perform a double reduction of the

6-dimensional nearly Kähler manifold. The resulting 4-dimensional manifold is in

fact a Kähler–Einstein surface of positive scalar curvature admitting an orthogonal

almost-Kähler structure inducing the opposite orientation. The geometry of the

situation is completely understood in terms of this data. Moreover, if the nearly

Kähler manifold is compact, a Sekigawa-type argument from [2] shows that the

almost-Kähler structure is actually integrable, allowing us to prove the main result

of this paper.

Theorem 1.1. Let (M6, g, J) be a complete nearly Kähler manifold. If g admits a

unit Killing vector field, then up to a finite cover (M 6, g, J) is isometric to S3 ×S3

endowed with its canonical NK structure.
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2. Nearly Kähler Manifolds

An almost Hermitian manifold (M, g, J) is called nearly Kähler if (∇XJ)X = 0 is

satisfied for all vector fields X . In other words, the covariant derivative of J (viewed

as a (3, 0)-tensor via the metric g) is skew-symmetric in all three arguments, not

only in the last two, as it is the case for general almost Hermitian structures. This

is equivalent to dΩ = 3∇Ω, where Ω is the fundamental 2-form, i.e. Ω(X, Y ) :=

g(JX, Y ). The following lemma summarizes some of the known identities for nearly

Kähler manifolds.

Lemma 2.1 (cf. [7]). Let (M, g, J) be a nearly Kähler manifold. Then

(1) (∇XJ)Y + (∇Y J)X = 0,

(2) (∇JXJ)Y = (∇XJ)JY,

(3) J((∇XJ)Y ) = −(∇XJ)JY = −(∇JXJ)Y,

(4) g(∇XY, X) = g(∇XJY, JX),

(5) 2g((∇2
W,XJ)Y, Z) = −σX,Y,Zg((∇W J)X, (∇Y J)JZ),

where σX,Y,Z denotes the cyclic sum over the vector fields X, Y, Z.

A nearly Kähler manifold is called to be of constant type α if

‖(∇XJ)(Y )‖2 = α{‖X‖2‖Y ‖2 − g(X, Y )2 − g(JX, Y )2}

holds for any vector fields X, Y . Gray proved that a nearly Kähler manifold of

positive constant type is necessarily 6-dimensional (cf. [7]). Moreover he showed:

Proposition 2.2. Let (M, g, J) be a 6-dimensional nearly Kähler, non-Kähler

manifold, then

(1) M is of constant type α > 0.

(2) c1(M) = 0 and in particular M is a spin manifold.

(3) (M, g) is Einstein and Ric = 5αId = 5Ric∗.

Here the ∗-Ricci curvature Ric∗ is defined as Ric∗(X, Y ) = tr(Z 7→ R(X, JZ)JY ).

From this it easily follows that Ric∗(X, Y ) = R(Ω)(X, JY ), where R denotes the

curvature operator on 2-forms. The following results are straightforward algebraic

calculations using Lemma 2.1.

Lemma 2.3. Let (M6, gJ) be a nearly Kähler manifold of constant type α, then

g((∇UJ)X, (∇Y J)Z) = α{g(U, Y )g(X, Z) − g(U, Z)g(X, Y )

− g(U, JY )g(X, JZ) + g(U, JZ)g(X, JY )}.



February 4, 2005 13:54 WSPC/133-IJM 00287

284 A. Moroianu, P.-A. Nagy & U. Semmelmann

Corollary 2.4. Let (M6, g, J) be a nearly Kähler manifold of constant type

α = 1, then

(∇XJ) ◦ (∇XJ)Y = −|X |2Y, for Y ⊥ X, JX,

∇∗∇Ω = 4Ω.

Lemma 2.5. Let X and Y be any vector fields on M, then the vector field (∇XJ)Y

is orthogonal to X, JX, Y, and JY .

This lemma allows us to use adapted frames {ei} which are especially convenient

for local calculations. Let e1 and e3 be any two orthogonal vectors and define:

e2 := Je1, e4 := Je3, e5 := (∇e1
J)e3, e6 := Je5.

Lemma 2.6. With respect to an adapted frame {ei} one has

∇J = e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6 − e2 ∧ e3 ∧ e6 − e2 ∧ e4 ∧ e5,

∗(∇J) = −e2 ∧ e4 ∧ e6 + e2 ∧ e3 ∧ e5 + e1 ∧ e4 ∧ e5 + e1 ∧ e3 ∧ e6,

Ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6.

Corollary 2.7. Let Ω be the fundamental 2-form and X an arbitrary vector field,

then

(1) Xy Ω = JX[, Xy ∗ Ω = JX[ ∧ Ω, Xy dΩ = JXy ∗ dΩ,

(2) |Ω|2 = 3, ∗Ω = 1
2Ω ∧ Ω, vol = e1 ∧ · · · ∧ e6 = 1

6Ω3, Ω ∧ dΩ = 0,

(3) ∗X[ = 1
2JX[ ∧ Ω ∧ Ω,

where X[ denotes the 1-form which is metric dual to X.

Proposition 2.8. Let (M6, g, J) be a nearly Kähler, non-Kähler manifold with

fundamental 2-form Ω which is of constant type α = 1, then

∆Ω = 12Ω.

Proof. To show that Ω is an eigenform of the Laplace operator we will use the

Weitzenböck formula on 2-forms, i.e. ∆ = ∇∗∇ + s
3 Id − 2R. From Corollary 2.4,

we know that ∇∗∇Ω = 4Ω. Since we assume M to be of constant type 1 the scalar

curvature is s = 30 and the ∗-Ricci curvature Ric∗ coincides with the Riemannian

metric g. Hence, R(Ω)(X, Y ) = −Ric∗(X, JY ) = Ω(X, Y ). Substituting this into

the Weitzenböck formula yields ∆Ω = 12Ω.

Corollary 2.9. If ξ is any vector field satisfying Lξ(∗dΩ) = 0, then

d(Jξy dΩ) = −12Jξ[ ∧ Ω. (1)
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Proof. We use Corollary 2.7 and the relation Lξ = d ◦ ξy + ξy ◦ d to obtain

d(Jξy dΩ) = −d(ξy ∗ dΩ) = ξy (d ∗ dΩ) = −ξy (∗d∗dΩ) = −ξy (∗∆Ω).

Note that d∗Ω = 0. Again applying Corollary 2.7 together with (1), we get

d(Jξy dΩ) = −12ξy (∗Ω) = −6ξy (Ω ∧ Ω) = −12(ξy Ω) ∧ Ω = −12Jξ[ ∧ Ω.

The structure group of a nearly Kähler manifold (M 6, g, J) reduces to SU(3)

which implies the decomposition Λ2(TM) = Λinv ⊕ Λanti with

α ∈ Λinv ⇔ α(X, Y ) = α(JX, JY ),

α ∈ Λanti ⇔ α(X, Y ) = −α(JX, JY ).

We will denote the projection of a 2-form α onto Λinv by α(1,1) and the projection

onto Λanti by α(2,0). This is motivated by the isomorphisms

Λinv ⊗ C ∼= Λ(1,1)(TM) ∼= u(3), Λanti ⊗ C ∼= Λ(2,0)(TM) ⊕ Λ(0,2)(TM).

Lemma 2.10. The decomposition Λ2(TM) = Λinv ⊕ Λanti is orthogonal and the

projections of a 2-form α onto the two components are given by

α(1,1)(X, Y ) =
1

2
(α(X, Y ) + α(JX, JY )) =

1

2
Re(α([X + iJX ], [Y − iJY ])),

α(2,0)(X, Y ) =
1

2
(α(X, Y ) − α(JX, JY )) =

1

2
Re(α([X + iJX ], [Y + iJY ])).

Under the isomorphism Λ2(TM)
∼→ End0(TM) every 2-form α corresponds to

a skew-symmetric endomorphism A which is defined by the equation α(X, Y ) =

g(AX, Y ). Note that |A|2 = 2|α|2, where | · | is the norm induced from the

Riemannian metric on the endomorphisms and on the 2-forms.

Lemma 2.11. Let A(2,0) (respectively, A(1,1)) be the endomorphisms corresponding

to the components α(2,0) (respectively, α(1,1)), then

(1) A(2,0) = 1
2 (A + JAJ), A(1,1) = 1

2 (A − JAJ),

(2) J ◦ A(1,1) = A(1,1) ◦ J, J ◦ A(2,0) = −A(2,0) ◦ J .

3. The Transversal Complex Structures

In this section we consider 6-dimensional compact non-Kähler nearly Kähler man-

ifolds (M, g, J) of constant type α ≡ 1, i.e. with scalar curvature normalized by

s ≡ 30. We will assume from now on that (M, g) is not isometric to the sphere with

its standard metric.
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Proposition 3.1. Let ξ be a Killing vector field then the Lie derivative of the

almost complex structure J with respect to ξ vanishes

LξJ = 0.

Proof. Nearly Kähler structures J on (M, g) are in one-to-one correspondence with

Killing spinors of unit norm on M (cf. [13]). However, if (M, g) is not isometric to

the standard sphere, the (real) space of Killing spinors is 1-dimensional, so there

exist exactly 2 nearly Kähler structures compatible with g: J and −J . This shows

that the identity component of the isometry group of M preserves J , so in particular

LξJ = 0 for every Killing vector field ξ.

Since a Killing vector field ξ satisfies by definition Lξg = 0, we obtain that

the Lie derivative Lξ of all natural tensors constructed out of g and J vanishes. In

particular, we have

Corollary 3.2. If ξ is a Killing vector field on the nearly Kähler manifold (M, g, J)

with fundamental 2-form Ω, then

Lξ(Ω) = 0, Lξ(dΩ) = 0, Lξ(∗dΩ) = 0.

In order to simplify the notations we denote by ζ := ξ[ the dual 1-form to ξ.

Corollary 3.3.

d(Jζ) = −ξy dΩ.

Proof. From LξΩ = 0, it follows: −ξy dΩ = d(ξy Ω) = d(Jζ).

Lemma 3.4. Let ξ be a Killing vector field with metric dual ζ and let dζ = dζ (1,1)+

dζ(2,0) be the type decomposition of dζ. Then the endomorphisms corresponding to

dζ(2,0) and dζ(1,1) are −∇JξJ and 2∇ · ξ + ∇JξJ respectively.

Proof. The equation LξJ = 0 applied to a vector field X yields [ξ, JY ] = J [ξ, Y ],

which can be written as

∇ξJY −∇JY ξ = J∇ξY − J∇Y ξ.

From this equation we obtain

(∇ξJ)Y = ∇JY ξ − J∇Y ξ. (2)

Let A (= 2∇ · ξ) denote the skew-symmetric endomorphism corresponding to the

2-form dζ. Then (2) can be written

∇ξJ =
1

2
(A ◦ J − J ◦ A).
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From Lemma 2.1, we get ∇JξJ = (∇ξJ) ◦ J , whence

∇JξJ =
1

2
(A ◦ J − J ◦ A) ◦ J = −1

2
(A + J ◦ A ◦ J) = −A(2,0).

For the corresponding 2-form we obtain: dζ(2,0) = −∇JξΩ. Finally we compute

A(1,1) as

A(1,1) = A − A(2,0) = 2∇ · ξ + ∇JξJ .

From now on we will mainly be interested in compact nearly Kähler manifolds

admitting a Killing vector field ξ of constant length (normalized to 1). We start by

collecting several elementary properties

Lemma 3.5. The following relations hold:

(1) ∇ξξ = ∇Jξξ = ∇ξJξ = ∇JξJξ = 0, [ξ, Jξ] = 0,

(2) ξy dζ = Jξy dζ = 0.

In particular, the distribution V := span{ξ, Jξ} is integrable.

We now define two endomorphisms which turn out to be complex structures on

the orthogonal complement H := {ξ, Jξ}⊥:

I := ∇ξJ, and K := ∇JξJ . (3)

Note that −K is the endomorphism corresponding to dζ(2,0). Later on, we will see

that the endomorphism Ĵ := ∇ · ξ + 1
2∇JξJ , corresponding to 1

2dζ(1,1), defines a

complex structure on H , too.

Lemma 3.6. The endomorphisms I and K vanish on span{ξ, Jξ} and define com-

plex structures on H = {ξ, Jξ}⊥ compatible with the metric g. Moreover they satisfy

K = I ◦ J, 0 = I ◦ J + J ◦ I and for any X, Y ∈ H, we have the equation

(∇XJ)Y = 〈Y, IX〉ξ + 〈Y, KX〉Jξ.

We will call endomorphisms of TM , which are complex structures on H =

{ξ, Jξ}⊥ transversal complex structures. The last equation shows that ∇J vanishes

in the direction of H . It turns out that the same is true for transversal complex

structures I and J .

Lemma 3.7. The transversal complex structures I and K are parallel in the direc-

tion of the distribution H, i.e.

〈(∇XI)Y, Z〉 = 〈(∇XK)Y, Z〉 = 0

holds for all vector fields X, Y, Z in H.
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Proof. First of all we compute for any vector fields X, Y, Z the covariant deriva-

tive of I .

〈(∇XI)Y, Z〉 = 〈(∇X (∇ξI))Y, Z〉 = 〈(∇2
X,ξI)Y, Z〉 + 〈(∇∇XξI)Y, Z〉.

If X is a vector field in H , then Lemma 2.5 implies that ∇XJ maps H to V and

vice versa.

Let now X, Y, Z be any vector fields in H . Then both summands in the above

formula for ∇XI vanish, which is clear after rewriting the first summand using

formula (5) of Lemma 2.1 and the second by using formula (1) of Lemma 2.1.

The proof for the transversal complex structure K is similar.

Our next goal is to show that 1
2dζ(1,1) defines an complex structure on the

orthogonal complement of span{ξ, Jξ}.

Lemma 3.8. Let ξ be a Killing vector field of length 1, then

‖dζ(1,1)‖2 = 8, ‖dζ(2,0)‖2 = 2.

Proof. We already know that the skew-symmetric endomorphism K corresponding

to −dζ(2,0) is an complex structure on {ξ, Jξ}⊥ with K(ξ) = K(Jξ) = 0. Hence it

has norm 4 and ‖dζ(2,0)‖2 = 1
2‖K‖2 = 2. Next, we have to compute the (pointwise)

norm of dζ(1,1). Since ξ is a Killing vector field and M is Einstein with Einstein

constant 5, we have ∆ζ = 10ζ. Moreover, using Lemma 3.5 and the fact that

d∗ζ = 0, we get

‖dζ‖2 = 〈d∗dζ, ζ〉 + d∗(ξy dζ) = 〈∆ζ, ζ〉,

whence

‖dζ(1,1)‖2 = ‖dζ‖2 − ‖dζ(2,0)‖2 = 〈∆ζ, ζ〉 − 2 = 8.

Notice that the square norm of a p-form is, as usual, equal to 1
p! times the square

of the tensorial norm. For example, the 2-form e1 ∧e2 has unit norm as a form, and

it is identified with the tensor e1 ⊗ e2 − e2 ⊗ e1, whose square norm is 2.

Corollary 3.9. The square (tensorial) norm of the endomorphism Ĵ corresponding

to 1
2dζ(1,1) is equal to 4.

Proposition 3.10. Let (M6, g, J) be a compact nearly Kähler, non-Kähler mani-

fold of constant type 1 and let ξ be a Killing vector field of constant length 1 with

dual 1-form ζ. Then

d∗(Jζ) = 0 and ∆(Jζ) = 18Jζ.

In particular, the vector field Jξ is never a Killing vector field.
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Proof. We start to compute the L2-norm of the function d∗(Jζ):

‖d∗(Jζ)‖2 = (d∗Jζ, d∗Jζ) = (∆(Jζ), Jζ) − (d∗d(Jζ), Jζ).

Since ∆ = ∇∗∇ + Ric on 1-forms and Ric = 5Id, we obtain

‖d∗(Jζ)‖2 = ‖∇(Jζ)‖2 + 5‖Jζ‖2 − ‖dJζ‖2.

To compute the norm of ∇(Jζ) we use the formula 2(∇X [) = dX[ + LXg which

holds for any vector field X .

Note that the decomposition T ∗M ⊗ T ∗M ∼= Λ2(TM) ⊕ Sym2(TM) is orthog-

onal. Together with Lemma 4.1, this yields

‖∇(Jζ)‖2 =
1

4

(

‖dJζ‖2 + ‖LJξg‖2
)

=
1

4

(

‖dJζ‖2 + 4‖Ĵ‖2
)

.

From Lemma 3.8, it follows: ‖Ĵ‖2 = 1
2‖dζ(1,1)‖2 = 4. Using Corollary 3.3, the

formula dΩ = 3∇Ω and the fact that I = ∇ξJ is again a transversal complex

structure, we find

‖dJζ‖2 = 9‖ξy∇Ω‖2 = 36.

Combining all these computations yields ‖d∗(Jζ)‖2 = 0.

Next we want to compute ∆Jζ. We start by using the Weitzenböck formula on

1-forms and the equation ∇∗∇(Jτ) = (∇∗∇J)τ +J(∇∗∇τ)−2
∑

(∇ei
J)(∇ei

τ) for

any 1-from τ . This gives

∆Jζ = ∇∗∇Jζ + Ric(Jζ) = (∇∗∇J)ζ + J(∇∗∇ζ) + 5(Jζ) − 2
∑

(∇ei
J)(∇ei

ζ)

= 14Jζ − 2
∑

(∇ei
J)(∇ei

ζ).

For the last equation we used Corollary 2.4 and the assumption that ξ is a Killing

vector field, hence ∇∗∇ζ = ∆ζ − Ric(ζ) = 5ζ. Since d∗(Jζ) = 0, we can compute

∆Jζ by

∆Jζ = d∗d(Jζ) =
∑

eiy∇ei
(ξy dΩ) =

∑

eiy (∇ei
ξ)y dΩ + eiy ξy (∇ei

dΩ)

= −3
∑

(∇ei
Ω)(∇ei

ξ) + 12Jζ.

Comparing these two equations for ∆Jζ we get
∑

(∇ei
Ω)(∇ei

ξ) = −2Jζ, so finally

∆Jζ = 18Jζ.

Since ∆X = 2Ric(X) = 10X for every Killing vector field X , Jζ cannot be

Killing.

Notice that if the manifold M is not assumed to be compact a local calculation

still shows that d∗(Jζ) is a constant.
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Corollary 3.11. If ξ is a Killing vector field of unit length, then

〈dζ, Ω〉 = 〈dζ(1,1), Ω〉 = 0.

Proof. Using Corollary 2.7, we compute

〈dζ, Ω〉vol = dζ ∧ ∗Ω =
1

2
dζ ∧ Ω ∧ Ω =

1

2
d(ζ ∧ Ω ∧ Ω) = −d(∗Jζ) = ∗(d∗Jζ) = 0.

This proves the corollary since the decomposition Λ2(TM) = Λinv⊕Λanti is orthog-

onal and Ω ∈ Λinv.

We are now ready to prove that the (1, 1)-part of dζ defines a fourth complex

structure on H = {ξ, Jξ}⊥. Indeed we have

Proposition 3.12. Let ξ be a Killing vector field of constant length 1. Then

Ĵ := ∇ · ξ +
1

2
K

defines a transversal complex structure on H which is compatible with the metric g.

Moreover, Ĵ is the skew-symmetric endomorphism corresponding to 1
2dζ(1,1) and it

commutes with I, J and K:

[Ĵ , J ] = [Ĵ , K] = [Ĵ , I ] = 0.

Proof. Lemma 3.4 shows that Ĵ corresponds to 1
2dζ(1,1). Since 〈dζ(1,1), Ω〉 = 0

and since Ĵ vanishes on span{ξ, Jξ}, it follows that dζ(1,1) ∈ Λ
(1,1)
0 (H) = Λ2

−(H).

Hence, Corollary 3.9 yields

Ĵ2 = −1

4
‖Ĵ‖2IdH = −IdH .

Finally, Ĵ commutes with I, J and K since endomorphisms corresponding to self-

dual and anti-self-dual 2-forms in dimension 4 commute.

4. Projectable Tensors

In this section we want to study which of the above defined tensors descend to the

space of leaves of the integrable distribution V = span{ξ, Jξ}. For doing this we

have to compute Lie derivatives in the direction of ξ and Jξ. We first remark that

the flow of ξ preserves both the metric g and the almost complex structure J , thus

it also preserves I, K, dζ, Ĵ etc.

The situation is more complicated for Jξ. Since Jξ is not Killing for g, we have to

specify, when computing the Lie derivative of a tensor with respect to Jξ, whether

the given tensor is regarded as endomorphism or as bilinear form.
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Lemma 4.1. Let α ∈ Γ(T ∗M⊗T ∗M) be a (2, 0)-tensor and A be the corresponding

endomorphism. Then the Lie derivatives of A and α with respect to Jξ are related by

(LJξα)(X, Y ) = g((LJξA)X, Y ) + 2g(JĴA(X), Y ). (4)

In particular, the Lie derivative of the Riemannian metric g with respect to Jξ is

LJξg = 2g(JĴ ·, ·). (5)

Proof. Taking the Lie derivative in α(X, Y ) = g(AX, Y ) yields

(LJξα)(X, Y ) = (LJξg)(AX, Y ) + g((LJξA)X, Y ).

Thus (5) implies (4). Taking α = g in (4) yields (5), so the two assertions are

equivalent.

Using Proposition 3.12, we can write

LJξg(X, Y ) = g(∇XJξ, Y ) + g(X,∇Y Jξ)

= ∇J(X, ξ, Y ) + ∇J(Y, ξ, X) + g(J∇Xξ, Y ) + g(J∇Y ξ, X)

= g

(

J

(

Ĵ − 1

2
K

)

X, Y

)

+ g

(

J

(

Ĵ − 1

2
K

)

Y, X

)

= 2g(JĴX, Y ).

From Lemma 3.5, we see that LJξξ = LJξJξ = 0. Thus, if ζ and Jζ denote as

before the metric duals of ξ and Jξ, (5) shows that LJξζ = LJξJζ = 0, hence

LJξ(dζ) = LJξ(dJζ) = 0. (6)

Lemma 4.2. If ξ is a Killing vector field of constant length 1, then

LJξ(Ω) = Jξy dΩ − dζ = 4ωK − 2ωĴ , LJξ(J) = 4K, (7)

LJξ(ωK) = −4Ω + 4ζ ∧ Jζ = −4ωJ , LJξ(K) = −4J |H − 2IĴ, (8)

LJξ(ωĴ) = −2Ω + 2ζ ∧ Jζ, LJξ(Ĵ) = 0, (9)

LJξ(ωI) = 0, LJξ(I) = 2ĴK, (10)

where ωI , ωK , ωĴ are the 2-forms corresponding to I, K, Ĵ and ωJ denotes the pro-

jection of Ω onto Λ2H, i.e. ωJ = Ω − ξ ∧ Jξ.

Proof. We will repeatedly use the formula LXα = Xy dα + dXy α, which holds

for any vector field X and any differential form α.

Proposition 3.12 shows that

2ωĴ = dζ + ωK (11)

hence

LJξΩ = Jξy dΩ + d(Jξy Ω) = Jξy dΩ − dζ = 3ωK − dζ = 4ωK − 2ωĴ .

The second equation in (7) follows by taking A = J in Lemma 4.1.
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Using Corollary 2.9, we get

LJξ(ωK) =
1

3
LJξ(Jξy dΩ) =

1

3
Jξy d(Jξy dΩ) = −4Jξy (Jζ ∧ Ω) = −4Ω + 4ζ ∧ Jζ.

The second equation in (8) follows directly from the first one, by taking A = K in

Lemma 4.1.

Using (6), (8) and (11), we obtain

2LJξωĴ = LJξ(dζ + ωK) = LJξωK = −4Ω + 4ζ ∧ Jζ.

The second part of (9) follows from Lemma 4.1.

Finally, in order to prove (10), we use (6) twice:

LJξωI =
1

3
LJξ(ξy dΩ) =

1

3
ξy LJξ(dΩ) = −4ξy (Jζ ∧ Ω) = 0,

and the second part follows from Lemma 4.1 again.

5. The Transversal Involution

We define a transversal orthogonal involution σ ∈ End(TM) by

σ = K ◦ Ĵ ,

i.e. we have σ2 = Id on H and σ = 0 on V = span{ξ, Jξ}. Hence, the distribution H

splits into the (±1)-eigenspaces of σ and we can define a new metric g0 on M as

g0 = g +
1

2
g(σ·, ·), (12)

i.e. we have g0 = g on V , g0 = 1
2g on the (−1)-eigenspace of σ and g0 = 3

2g on

the (+1)-eigenspace of σ. The reason for introducing g0 is the fact that, in contrast

to g, this new metric is preserved by the flow of Jξ (cf. Corollary 5.2 below).

Lemma 5.1. If A[ denotes the (2, 0)-tensor corresponding to an endomorphism A,

and α] denotes the endomorphism corresponding to a (2, 0)-tensor α with respect

to the metric g, then

LJξσ
[ = −4(JĴ)[.

Proof. The right parts of (8) and (9) read

LJξ(K) = −4J + 4(ζ ∧ Ĵζ)] − 2IĴ, LJξ(Ĵ) = 2(ζ ∧ Ĵζ)].

We clearly have (ζ ∧ Ĵζ)] ◦ K = K ◦ (ζ ∧ Ĵζ)] = (ζ ∧ Ĵζ)] ◦ Ĵ = Ĵ ◦ (ζ ∧ Ĵζ)] = 0,

therefore

LJξσ = (LJξK)Ĵ + K(LJξĴ) = (−4J + 4(ζ ∧ Ĵζ)] − 2JĴK)Ĵ = −4JĴ − 2I.
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Thus Lemma 4.1 gives

LJξσ
[ = (−4JĴ − 2I)[ + 2(JĴ(KĴ))[ = −4(JĴ)[.

Corollary 5.2. The metric g0 is preserved by the flow of Jξ:

LJξg0 = 0.

Proof. Direct consequence of (5):

LJξg0 = LJξ

(

g +
1

2
σ[

)

= 2(JĴ)[ +
1

2
(−4(JĴ)[) = 0.

Proposition 5.3. For every horizontal vector fields X, Y, Z ∈ H, the Levi–Civita

connection ∇g0 of g0 is related to the Levi–Civita connection ∇ of g by the formula

g0

(

∇g0

X Y, Z
)

= g0

(

∇XY, Z
)

+
1

3
g0

((

1 − 1

2
σ

)

[(

∇Xσ
)

Y +
(

∇KX Ĵ
)

Y
]

, Z

)

. (13)

Proof. Since the expression g0(∇g0

X Y, Z)−g0(∇XY, Z) is tensorial, we may suppose

that X, Y, Z are ∇-parallel at some point where the computation is performed. The

Koszul formula for g0(∇g0

X Y, Z) yields directly

2g0(∇g0

X Y, Z) = 2g0(∇XY, Z)

+
1

2
[〈(∇Xσ)Y, Z〉 + 〈(∇Y σ)X, Z〉 − 〈(∇Zσ)X, Y 〉], (14)

where 〈·, ·〉 denotes the metric g. Since σ = K ◦ Ĵ = Ĵ ◦ K and since — according

to Lemma 3.7 — K is ∇-parallel in direction of H , we obtain 〈(∇Xσ)Y, Z〉 =

〈(∇X Ĵ)KY, Z〉. Now, (11) shows that 2ωĴ − ωK = dξ is a closed 2-form. Hence,
〈(

∇X1
Ĵ
)

X2, X3

〉

+
〈(

∇X2
Ĵ
)

X3, X1

〉

+
〈(

∇X3
Ĵ
)

X1, X2

〉

= 0

for all vectors Xi. Using this equation for X1 = Y, X2 = KX and X3 = Z, we

obtain

〈(∇Xσ)Y, Z〉 + 〈(∇Y σ)X, Z〉 − 〈(∇Zσ)X, Y 〉

= 〈(∇X Ĵ)KY, Z〉 + 〈(∇Y Ĵ)KX, Z〉 − 〈(∇Z Ĵ)KX, Y 〉

= 〈(∇X Ĵ)KY + (∇KX Ĵ)Y, Z〉 = 〈(∇Xσ)Y + (∇KX Ĵ)Y, Z〉.

The desired formula then follows from (12) and (14) using
(

idH +
1

2
σ

) (

idH − 1

2
σ

)

=
3

4
idH . (15)

We consider the space of leaves, denoted by N , of the integrable distribution

V = span{ξ, Jξ}. The 4-dimensional manifold N is a priori only locally defined.

It can be thought of as the base space of a locally defined principal torus bundle

T2 ↪→ M → N . The local action of the torus is obtained by integrating the vector
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fields ξ and ξ′ = 1
2
√

3
Jξ. Moreover, if one considers the 1-forms ζ and ζ ′ on M

associated via the metric g to the vector fields ξ and 2
√

3Jξ it follows that ζ(ξ) =

ζ ′(ξ′) = 1 and the Lie derivatives of ζ and ζ ′ in the directions of ξ and ξ′ vanish

by (6). Therefore ζ and ζ ′ are principal connection 1-forms in the torus bundle

T
2 ↪→ M → N .

A tensor field on M projects to N if and only if it is horizontal and its Lie

derivatives with respect to ξ and Jξ both vanish. All horizontal tensors defined

above have vanishing Lie derivative with respect to ξ. Using (10) together with

Corollary 5.2, we see that ωI and g0 project down to N . Moreover, ωI is compatible

with g0 in the sense that

ωI(X, Y ) =
2√
3
g0(I0X, Y ), ∀ X, Y ∈ H,

where I0 is the g0-compatible complex structure on H given by

I0 =
2√
3

(

I − 1

2
σI

)

.

This follows directly from (12) and (15). Keeping the same notations for the pro-

jections on N of projectable tensors (like g0 or I0) we now prove

Theorem 5.4. (N4, g0, I0) is a Kähler manifold.

Proof. In order to simplify notations we will denote by ∇̃ and ∇̃g0 the partial

connections on the distribution H given by the H-projections of the Levi–Civita

connections ∇ and ∇g0 .

Then Proposition 5.3 reads

∇̃g0

X = ∇̃X +
1

3

(

idH − 1

2
σ

)

(

∇̃Xσ + ∇̃KX Ĵ
)

. (16)

We have to check that ∇̃g0

X I0 = 0 for all X in H . We first notice the tautological

relation ∇̃X idH = 0. From Lemmas 3.6 and 3.7, we have ∇̃XI = ∇̃XJ = ∇̃XK = 0

for all X in H . Moreover, the fact that I, J and K commute with Ĵ and the relation

Ĵ2 = idH easily show that ∇̃X Ĵ commutes with I, J, K and anti-commutes with

Ĵ and σ. Consequently, ∇̃Xσ (= K∇̃X Ĵ) commutes with K and anti-commutes

with I, J, Ĵ and σ for all X ∈ H .

We thus get

∇̃XI0 = ∇̃X
2√
3

(

I − 1

2
σI

)

= − 1√
3
(∇̃Xσ)I. (17)

On the other hand, the commutation relations above show immediately that

the endomorphism I0 commutes with (idH − 1
2σ)∇̃KX Ĵ and anti-commutes with
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(idH − 1
2σ)∇̃Xσ. Thus the endomorphism 1

3 (idH − 1
2σ)(∇̃Xσ+∇̃KX Ĵ) acts on I0 by

1

3

(

idH − 1

2
σ

)

(

∇̃Xσ + ∇̃KX Ĵ
)

(I0) = 2
1

3

(

idH − 1

2
σ

)

(∇̃Xσ)I0

=
4

3
√

3

(

idH − 1

2
σ

)

∇̃Xσ

(

idH − 1

2
σ

)

I

=
4

3
√

3

(

idH − 1

2
σ

) (

idH +
1

2
σ

)

(∇̃Xσ)I

=
1√
3
(∇̃Xσ)I.

This, together with (16) and (17), shows that ∇̃g0

X I0 = 0.

We will now look closer at the structure of the metric g. Since

g = g0 +
1

2
ωK(Ĵ ·, ·),

the geometry of N , together with the form ωK and the almost complex structure Ĵ

determine completely the nearly Kähler metric g. But the discussion below will

show that ωK depends also in an explicit way on the geometry of the Kähler surface

(N4, g0, I0).

If α is a 2-form on H we shall denote by α′ (respectively α′′) the invariant

(respectively anti-invariant) parts of α with respect to the almost complex struc-

ture I0. An easy algebraic computation shows that ωJ is I0-anti-invariant whilst

ω′
K = −1

3
(ωK − 2ωĴ), and ω′′

K =
2

3
(2ωK − ωĴ). (18)

Consider now the complex valued 2-form of H given by

Ψ =
√

3ω′′
K + 2iωJ . (19)

It appears then from Lemma 4.2 and (18) that

Lξ′Ψ = iΨ. (20)

Thus Ψ is not projectable on N , but it can be interpreted as a L-valued 2-form on

N , where L is the complex line bundle over N associated to the (locally defined)

principal S1-bundle

M/{ξ} → N := M/{ξ, ξ′}

with connection form ζ ′.

Corollary 3.3, together with (3) implies that the curvature form of L equals

dζ ′ = −6
√

3ωI = −12g0(I0·, ·). (21)
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Notice that, since the curvature form of L is of type (1, 1), the Koszul–Malgrange

theorem implies that L is holomorphic.

The following proposition computes the Ricci curvature of the Kähler surface

(N4, g, I0) by identifying the line bundle L with the anti-canonical bundle of (N, I0).

Proposition 5.5. (N4, g, I0) is a Kähler–Einstein surface with Einstein constant

equal to 12. Moreover, L is isomorphic to the anti-canonical line bundle K of

(N4, g, I0).

Proof. We first compute ωJ(I0·, ·) = −
√

3
2 ω′′

K and (ω′′
K)(I0·, ·) = 2√

3
ωJ . These

lead to

Ψ(I0·, ·) = −iΨ

in other words Ψ belongs to Λ0,2
I0

(H, C). We already noticed that by (20), Ψ defines

a section of the holomorphic line bundle

Λ0,2
I0

(N) ⊗L = K−1 ⊗L. (22)

Since Ψ is non-vanishing, this section induces an isomorphism Ψ: K → L. We now

show that Ψ is in fact ∇̃g0 -parallel.

Notice first that K commutes with
(

idH − 1
2σ

)

(∇̃Xσ + ∇̃KX Ĵ) (it actually

commutes with each term of this endomorphism), and ∇̃K = 0 by Lemma 3.7.

Thus (16) shows that

∇̃g0K = 0. (23)

Furthermore, using the relation

g(·, ·) =
4

3
g0

((

1 − σ

2

)

·, ·
)

,

Ψ can be expressed as

Ψ =
4√
3
g0((K − iI0K)·, ·). (24)

Since ∇̃g0g0 = 0 and ∇̃g0I0 = 0 (by Theorem 5.4), (23) and (24) show that Ψ is

∇̃g0 -parallel.

Hence the Ricci form of (N4, g0, I0) is opposite to the curvature form of L.

From (21), we obtain Ricg0
= 12g0, thus finishing the proof.

Proposition 5.6. The almost complex structure Ĵ on H is projectable and defines

an almost Kähler structure on (N, g0) commuting with I0.

Proof. Lemma 4.2 shows that Ĵ is projectable onto N . Let us denote the associated

2-form with respect to g0 by ω0
Ĵ
. Identifying forms and endomorphisms via the

metric g we can write

ω0
Ĵ

:= g0(Ĵ ·, ·) =

(

1 +
1

2
σ

)

Ĵ =

(

1 +
1

2
KĴ

)

Ĵ = Ĵ − 1

2
K =

1

2
dζ.
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This shows that ω0
Ĵ

is closed, so the projection of (g0, Ĵ) onto N defines an almost

Kähler structure.

Together with Proposition 5.5, we see that the locally defined manifold N carries

a Kähler structure (g0, I0) and an almost Kähler structure (g0, Ĵ), both obtained by

projection from M . Moreover g0 is Einstein with positive scalar curvature. If N were

compact, we could directly apply Sekigawa’s proof of the Goldberg conjecture in

the positive curvature case in order to conclude that (g0, Ĵ) is Kähler. As we have

no information on the global geometry of N , we use the following idea. On any

almost Kähler Einstein manifold, a Weitzenböck-type formula was obtained in [2],

which in the compact case shows by integration that the manifold is actually Kähler

provided the Einstein constant is non-negative. In the present situation, we simply

interpret on M the corresponding formula on N , and after integration over M we

prove a pointwise statement which down back on N just gives the integrability of

the almost Kähler structure.

The following result is a particular case (for Einstein metrics) of [2,

Proposition 2.1].

Proposition 5.7. For any almost Kähler Einstein manifold (N 2n, g0, J, Ω) with

covariant derivative denoted by ∇ and curvature tensor R, the following pointwise

relation holds:

∆Ns∗ − 8δN (〈ρ∗,∇ · Ω〉) = −8|R′′|2 − |∇∗∇Ω|2 − |φ|2 − s

2n
|∇Ω|2, (25)

where s and s∗ are respectively the scalar and ∗-scalar curvature, ρ∗ := R(Ω) is

the ∗-Ricci form, φ(X, Y ) = 〈∇JXΩ,∇Y Ω〉, and R′′ denotes the projection of the

curvature tensor on the space of endomorphisms of [Λ2,0N ] anti-commuting with J .

We apply this formula to the (locally defined) almost Kähler Einstein manifold

(N, g0, Ĵ) with Levi–Civita covariant derivative denoted ∇0 and almost Kähler

form Ω̂ and obtain

F + δNα = 0, (26)

where

F := 8|R′′|2 + |(∇0)∗∇0Ω̂|2 + |φ|2 +
s

4
|∇0Ω̂|2

is a non-negative function on N and

α := ds∗ − 8g0(ρ
∗,∇0 · Ω̂)

is a 1-form, both α and F depending in an explicit way on the geometric data (g0, Ĵ).

Since the Riemannian submersion π: (M, g0) → N has minimal (actually totally
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geodesic) fibers, the codifferentials on M and N are related by δM (π∗α) = π∗δNα

for every 1-form α on N . Thus (26) becomes

π∗F + δM (π∗α) = 0. (27)

Notice that the function π∗F and the 1-form π∗α are well-defined global objects

on M , even though F , α and the manifold N itself are just local. This follows from

the fact that F and α only depend on the geometry of N , so π∗F and π∗α can be

explicitly defined in terms of g0 and Ĵ on M .

When M is compact, since π∗F is non-negative, (27) yields, after integration

over M , that π∗F = 0. Thus F = 0 on N and this shows, in particular, that φ = 0,

so Ĵ is parallel on N .

6. Proof of Theorem 1.1

By the discussion above, when M is compact, Ĵ is parallel on N with respect to

the Levi–Civita connection of the metric g0, so Ĵ is ∇̃g0 -parallel on H .

Lemma 6.1. The involution σ is ∇̃-parallel.

Proof. Since σ = ĴK, (23) shows that ∇̃g0σ = 0. Using (16) and the fact that σ

anti-commutes with ∇̃Xσ and ∇̃X Ĵ for every X ∈ H , we obtain

∇̃Xσ +
2

3

(

idH − 1

2
σ

)

(

∇̃Xσ + ∇̃KX Ĵ
)

σ = 0

for all X in H . Since I commutes with ∇̃X Ĵ and anti-commutes with σ and ∇̃Xσ,

the I-invariant part of the above equation reads

2

3
(∇̃Xσ)σ +

1

3
∇̃KX Ĵ = 0. (28)

But σ = ĴK and ∇̃K = 0, so from (28), we get

2(∇̃X Ĵ)Ĵ = ∇̃KX Ĵ .

Replacing X by KX and applying this formula twice yields

∇̃X Ĵ = −2(∇̃KX Ĵ)Ĵ = 4∇̃X Ĵ ,

thus proving the lemma.

We now recall that the first canonical Hermitian connection of the NK structure

(g, J) is given by

∇̄U = ∇U +
1

2
(∇UJ)J

whenever U is a vector field on M . We will show that (M 6, g) is a homogeneous space

actually by showing that ∇̄ is a Ambrose–Singer connection, that is ∇̄T̄ = 0 and

∇̄R̄ = 0, where T̄ and R̄ denote the torsion and curvature tensor of the canonical

connection ∇̄.
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Let H± be the eigen-distributions of the involution σ on H , corresponding to

the eigenvalues ±1. We define the new distributions

E = 〈ξ〉 ⊕ H+ and F = 〈Jξ〉 ⊕ H−.

Obviously, we have a g-orthogonal splitting TM = E ⊕ F , with F = JE.

Lemma 6.2. The splitting TM = E ⊕ F is parallel with respect to the first canon-

ical connection.

Proof. For every tangent vector U on M we can write

∇̄U ξ = ∇Uξ +
1

2
(∇U J)Jξ = ĴU − 1

2
KU +

1

2
JIU = (σ + 1)ĴU,

showing that ∇̄U ξ belongs to E (actually to H+) for all U in TM .

Let now Y+ be a local section of H+. We have to consider three cases. First,

∇̄ξY+ = ∇ξY+ +
1

2
(∇ξJ)JY+ = LξY+ + ∇Y+

ξ +
1

2
IJY+ = LξY+ + ĴY+

belongs to H+ since Lξ and Ĵ both preserve H+. Next, if X belongs to H , then

∇̄XY+ = ∇̃XY+ + 〈∇̄XY+, ξ〉ξ + 〈∇̄XY+, Jξ〉Jξ.

But 〈∇̄XY+, Jξ〉 = 〈JY+, ∇̄Xξ〉 = 0 by the above discussion and the fact that JY+

is in H−, and ∇̃XY+ is an element of H+ by Lemma 6.1. Thus ∇̄XY+ belongs

to E.

The third case to consider is

∇̄JξY+ = ∇JξY+ +
1

2
(∇JξJ)JY+ = LJξY+ + ∇Y+

Jξ − 1

2
∇ξY+

= LJξY+ + (∇Y+
J)ξ + J∇Y+

ξ − 1

2
IY+

= LJξY+ − IY+ + J

(

ĴY+ − 1

2
KY+

)

− 1

2
IY+

= LJξY+ − 2IY+ + JĴY+.

On the other hand

LJξY+ = LJξσY+ = σLJξY+ + (LJξσ)Y+,

so the H−-projection of LJξY+ is

πH−
LJξY+ =

1 − σ

2
LJξY+ =

1

2
(LJξσ)Y+.

Using (8) and (9) and the previous calculation, we get

πH−
(∇̄JξY+) = πH−

(LJξY+ − 2IY+ + JĴY+)

= πH−

(

1

2
(LJξσ)Y+ − 2IY+ + JĴY+

)

= πH−
((I − 2JĴ − 2I + JĴ)Y+) = −πH−

((1 + σ)(Y+)) = 0.

Thus E is ∇̄-parallel, and since F = JE and ∇̄J = 0 by definition, we see that F

is ∇̄-parallel, too.
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Therefore the canonical Hermitian connection of (M 6, g, J) has reduced holon-

omy, more precisely complex irreducible but real reducible. Using [16, p. 487,

Corollary 3.1], we obtain that ∇̄R̄ = 0. Moreover, the condition ∇̄T̄ = 0 is always

satisfied on a NK manifold (see [3, lemma 2.4], for instance). The Ambrose–Singer

theorem shows that if M is simply connected, then it is a homogeneous space. To

conclude that (M, g, J) is actually S3 × S3 we use the fact that the only homoge-

neous NK manifolds are S6, S3 ×S3, CP 3, F (1, 2) (see [5]) and among these spaces

only S3 × S3 has vanishing Euler characteristic. If M is not simply connected, one

applies the argument above to the universal cover of M which is compact and finite

by Myers’ theorem. The proof of Theorem 1.1 is now complete.

7. The Inverse Construction

The construction of the (local) torus bundle M 6 → N4 described in the previous

sections gives rise to the following Ansatz for constructing local NK metrics.

Let (N4, g0, I0) be a (not necessarily complete) Kähler surface with Ric = 12g0

and assume that g0 carries a compatible almost-Kähler structure Ĵ which com-

mutes with I0. Let L → N be the anti-canonical line bundle of (N 4, g0, I0) and let

π1: M1 → N be the associated principal circle bundle. Fix a principal connection

form θ in M1 with curvature −12ω(g0,I0). Let H be the horizontal distribution of

this connection and let Φ in Λ0,2
I0

(H, C) be the “tautological” 2-form obtained by

the lift of the identity map 1L−1 : L−1 → L−1.

Give M1 the Riemannian metric

g1 = θ ⊗ θ +
2

3
π?

1g0 −
1

2
√

3
(ReΦ)(Ĵ ·, ·). (29)

Let now M denote the principal S1-bundle π: M → M1 with first Chern class

represented by the closed 2-form Ω = 2π?
1g0(Ĵ ·, ·). Since we work locally we do not

have to worry about integrability matters. Let µ be a connection 1-form in M and

give M the Riemannian metric

g = µ2 + π?g1.

We consider on M the 2-form

ω =
1

2
√

3
µ ∧ π?θ +

1

2
π?(ImΦ). (30)

By a careful inspection of the discussion in the previous sections, we obtain

Proposition 7.1. (M6, g, ω) is a nearly Kähler manifold of constant type

equal to 1. Moreover, the vector field dual to µ is a unit Killing vector field.

Notice that the only compact Kähler–Einstein surface (N 4, g0, I0) with Ric =

12g0 possessing an almost Kähler structure commuting with I0 is the product of

two spheres of radius 1
2
√

3
(see [2]), which corresponds, by the above procedure, to

the nearly Kähler structure on S3 ×S3. Thus the new NK metrics provided by our

Ansatz cannot be compact, which is concordant with Theorem 1.1.
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