# Maths 260 Lecture 28

#### Topics for today:

- More on using nullclines to sketch phase portraits for nonlinear systems
- Modelling using systems
- Reading for this lecture: BDH Section 2.1
- **Suggested exercises:** BDH Section 2.1, #1-4,9,10
- Reading for next lecture: None

# Result from the last lecture

- Linearisation can tell us about the behaviour of solutions near equilibria but is unhelpful for solutions far away from equilibria.
- Nullclines can help us to sketch the complete phase portrait for a nonlinear system (both near equilibria and far from equilibria).

Remember:

- ► The x-nullcline is the set of points (x, y) where dx/dt = 0 and tells us where the solution curves are vertical.
- ► The y-nullcline is the set of points (x, y) where dy/dt = 0 and tells us where the solution curves are horizontal.

# Sketching a phase portrait

To sketch a phase portrait for a nonlinear system:

- 1. Find all equilibria. Where possible, use linearisation to determine their types (e.g., saddle, spiral source).
- 2. Draw the nullclines. Determine the direction of solutions in the regions between nullclines. Determine the direction of solutions on the nullclines.
- 3. Sketch some representative solution curves. Make sure the solution curves you sketch go in the directions determined by the nullclines and behave like the appropriate linearised system near any equilibrium.

# Example 1

Use nullclines to sketch the phase portrait for the system

$$\frac{dx}{dt} = x - y^2 + 2$$
$$\frac{dy}{dt} = y - x.$$

Example 1

$$J = \begin{pmatrix} 1 & -2y \\ -1 & 1 \end{pmatrix}$$

J(-1, -1) =

#### J(2,2) =

# Example 1

#### Sketch the phase portrait using the nullclines:



The approximate phase portrait obtained using nullclines looks very like the phase portrait obtained with pplane:



# Modelling - Predator/prey system example

The following equations give a typical simple model of two populations where animals of one type (known as the **predators**) eat animals of the other type (known as the **prey**).

Let R(t) = number of prey (e.g., rabbits), in 1000's

Let F(t) = number of predators (e.g., foxes) in 1000's.

A possible model of change in the two populations is given by

$$\dot{R} = 0.4R - 0.1RF,$$
  
 $\dot{F} = -0.5F + 0.1RF, \qquad R \ge 0, \ F \ge 0.$ 

# Physical significance of terms in the DEs

- ► The term 0.4*R* in the *R* equation gives unlimited growth of prey population if there are no predators.
- ► The term -0.5F in the F equation gives exponential decay in the predator population if there are no prey.
- ► The term -0.1RF in the R equation models the negative effect on prey population of 'interactions' between prey and predators, (i.e., predators eat prey and prey population decreases).
- The term 0.1RF in the F equation models the positive effect on predator population of interactions between prey and predators, (i.e., predators eat prey and predator population increases).

Equilibrium solutions to the predator/prey system

Rewrite the system as:

$$\dot{R} = R(0.4 - 0.1F), \ \dot{F} = F(0.1R - 0.5),$$

It is easy to see that (R, F) = (0, 0), is an equilibrium solution.

What does this mean physically?

We also see that (R, F) = (5, 4) is an equilibrium solution.

Physically, this tells us that a prey population of 5000 and a predator population of 4000 is perfectly balanced; neither population increases or decreases over time.

# Types of equilibria

The Jacobian is J =

$$J(0,0) =$$

J(5, 4) =

### Some other special cases

If  $F(t_0) = 0$ , then dF/dt = 0, and so F(t) = 0 for all time, regardless of the behaviour of R.

However, if F(t) = 0, then dR/dt = 0.4R, which implies

 $R(t)=R(0)e^{0.4t},$ 

i.e., if there are no predators, the prey population grows exponentially.

### Some other special cases

Similarly, if  $R(t_0) = 0$ , then dR/dt = 0, and so R(t) = 0 for all time, regardless of the behaviour of F.

However, if R(t) = 0, then dF/dt = -0.5F, which implies

$$F(t)=F(0)e^{-0.5t},$$

i.e., if there are no prey, the predator population decreases exponentially.

# Nullclines

Find and sketch the nullclines



Experiments with *pplane* confirm that:

- There are equilibrium solutions at (R, F) = (0,0) and at (R, F) = (5,4);
- If F(0) = 0 and R(0) > 0, then R increases exponentially;
- If R(0) = 0 and F(0) > 0, then F decreases exponentially;
- All other solutions with R(0) > 0 and F(0) > 0 are periodic with R and F having the same period as each other.

# Phase portrait

#### The phase portrait for the predator/prey system is:



This simple predator-prey model is known as the Lotka-Volterra model (1925).

# What else can we model?

- Infectious diseases
  - 1. Think about the different populations involved (infected, immune, susceptible, dead, ...)
  - 2. How do they affect each other?
- Two species in competition for the same resources
  - 1. Can both species survive?
  - 2. Can one species become extinct and the other species survive?
  - 3. Can both species become extinct?
- What about species that are mutually beneficial?
  - 1. Here, each species helps the other one survive
  - 2. Populations should not be able to grow indefinitely as there are limits on natural resources
- And lots and lots more ....

# Modelling mutually beneficial species - a quick example

Consider the nonlinear system

$$\frac{dx}{dt} = x(1 - 0.5x + 0.1y)$$
$$\frac{dy}{dt} = y(1 - 0.8y + 0.5x)$$

where  $x(t), y(t) \ge 0$ .

Think of x(t) and y(t) as two different populations that help each other. How can we tell (from the equations) that they help each other?

# Getting ready to sketch the phase portrait

Let's see how far we can get with just nullclines:

## Phase portrait

Sketch the phase portrait:



### Phase portrait from Matlab

Our sketch of the phase portrait agrees with pplane:



# Important ideas from today's lecture:

- Simple population interactions can be modelled using a system of nonlinear differential equations.
- Some examples are models of predator-prey systems, competitive species and infectious diseases (epidemics).
- Simple models might not be totally accurate but they can be very useful - and not just for modelling population interactions.