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1 Introduction

The basic models of lincar partial differential equations were formulated E
the eighteenth and early -nineteenth cenfuries. In order of appearance these
were: the wave equation, (D’Alembert 1752),

Py B
otz a2’ - @D
the Laplace equation, (Laplace 1780),
v % . .
==+ —=0; 1.2):
M= pmd gy =0; (1.2):
and the heat equation, (Fourier 1810},
du Oy
—_— = . 13
ot 8z (3)

In these equations, u denotes the solution and x, y and ¢ the independent
variables. In applications,  and y indicate position and t time. These ba-
sic models in two variables were followed quickly by their higher dimensional
analogues. Approaches to finding solutions and some basic theory were devel-
oped in the nineteenth century, with more rigorous treatments appearing in
the late nineteenth and early twentieth centiiry. The study of these equations
is the basic fodder of introduciory undergraduate courses in partial differen-
tial equations and well documented in many text books such as Courant and
Hilbert [16}, Petrowski [42], Garabedian [23], Weinberger [54], John (28], and
Strauss [52]. .

The most famous nonlinear partial differential equations also arose
around the same time. These were: the Euler equations, (Euler 1755);

ou

mn_.:od‘ﬁ = —Vp, divi=0, (1.4)
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_the Navier Stokes equations, (Navier 1822, Stokes 1845),

o _
% ' TeVE — AT = —Vp,divi = 0, (15)

of fluid mechanics; the minimal surface equation, (Lagrange 1760),

Vu :
div | ——— | =0, 16
Vv 1+|Vul? . A )

satisfied by functions whose graphs minimize surface ared, and the Monge-
Ampére equations, (Monge 1775),

det D?u = f, (1.7}

which arises in various geometric problems.
We have written fhese equations in their n dimensional forms. _HWm in-
dependent variables are vectors z = (z1,...,2,) in m;ormmmﬁ n-space. .um.)..a
and time £, in the case of (1.4) and (1.5). In the fluid mechanics equations
(1.4) and (1.5), the solution T = (u!,...,u") is a vector function of = mﬁﬁ t,
(corresponding to velocity at point = and time ¢, while the function p, Anow.am.

sponding to pressure at point z and time ) is also to be determined fromthe
equations, What we really have here is thus a system of n + 1 equations in

n + 1 unknown functions u!,...,u™,p. For scalar fimctions u of n variables
we have employed the usual notation for the gradient,

du du
G

Laplacian

and Hessian

Uwﬁ.“;\y 8% g w.
%H.mmﬁm 4,5=1,0.,

while for vector functions % = (u'...u"), the .”.—.Emwmmﬁam_

div = M Bz,

=1

The function f in the Monge-Ampére equation (1.7) is vmmmomw_umm and welhave
abbreviated determinant to det.
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Stemming from the three basic linear models {1.1), (1.2) and (1.3}, partial
differential equations {at least of second order) are classified respectively as
hyperbolic, elliptic or parabolic. The main objects of our presentation are
the elliptic equations, and our particular interest concerns their invariance
properties. Accordingly, we rewrite the relevant examples from the above list.

1.. Laplace equation

Ay = = (1.8)
] i= ?
This equation is orthogonally invariant in R*®, in that its form is preserved
by an orthogonal change of independent variables = ¢ B

2.  Minimal surface equation
Carrying out the differentiation in (1.6), we ong

fu fu 0%u
1+ | Vaul?)Au — =0. 1.9
Qa3 2 e Gate 9
.QlH )
This is a quasilinear equation, because it is linear in its highest order deriva-
tives, and it is elliptic because its principal coefficient matrix

A=(1+|Vu>)I - Vug® Vu

is positive. Tt possesses a significantly stronger invariance property than the
Laplace equation, namely it is orthogonally invariant i in R™+1, that is under
an orthogonal transformation of R™t?, the graph M,, = {z, :@&w of a solution
is transformed into a surface, which can be locally represented as the graph of
a solution of the same equation. This invariance is immediately evident from

the fact that the minimal surface equation is equivalent to the vanishing of
the mean curvature of M,.

3. Monge-Ampére equation

det D?*u = 7. . @

This is a fully nonlinear equation because the highest order derivatives
oceur nonlinearly. It will be elliptic with respect to solutions whose Hessian is
positive, that is with respect to solutions which are locally uniformly convex.

More generally we note that any second order partial differential equation of
form

F(D?*u,Vu,u,z) =0 (1.10)
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is elliptic, gﬁw Hmmvmnﬂ to a. function v if the linearized principal coefficient
matrix,

: 8F
A= ——
8(D%u) ]
+ is positive. For the Monge-Ampére equation (1.7), 4 is the cofactor{matrix

[U*] of the Hessian matrix %u, whose positivity is equivalent to thatjof D?u
itself. The Monge-Ampére equation is invariant with respect to unimodular

transformations in R", that is transformations of the independent yariable
z of the form

gy g, detT =1,

so again it has a significantly stronger invariance property than Laplace’s
equation (where T is orthogonal).

Now what about equations which enjoy {or wmuwm%m are cursed by) both
the invariances of (1.10) and (1.7). It turns out that:we have to go to fourth

order to find these and such an equation figures iniocur Hmmﬂ glimpse of the
twentieth century.

2 Bernstein’s Theorem

Our first glimpse in the twentieth century is a surprising and truly nonlinear
result by Sergei Bernstein 1915 [7], one of the great pioneers of the| modern
theory of nonlinear elliptic equations. To motivate his theorem, let us recall
that there are an abundance of solutions of Laplace’s equation, defined on all of
space, in more than one dimension. Typical examples, say in two dimensions,
mam aum trivial examples of linear functions, quadratic functions such as zy,

— y? ete. In fact, it is well known that the real part of any|analytic
?ﬁo_uow of a complex variable is harmonic, (that is a solution of Laplace’s

-equation). But this is not the case for the minimal: mﬁmmom equation (1.9) in
two dimensions, which we write in the form,

au\*\ 8®u _Ou fu 8% du\?\ 8%u
\ + Am@.v Jz2 wma By 8z 8y + Amav Oy? (2.1)
Bernstein’s Theorem. Let u be a solution of the minimal surface equation
(2.1) in the plane. Then u is an affine funciion, that is its graph 18 a plane.
Consequently a complete minimal surface in three dimensional space, which
is @ graph in some direction, must be a plane!

A minimal surface is a surface which locally minimizes area. If Jﬁvmm&mm
in three dimensional space, then locally at least it can be represented as a

!

=
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graph of a solution of the minimal surface equation. Bernstein’s theorem
shows that, a global representation as a graph is only possible for the mlim._.

examples. The simplest example of a complete minimal surface that is boﬁ a
plane is 55 nm&mﬁoa

z® +y° = (cosh z)? - A_MMV

which is the surface of revolution of the catenary, z = cosh z about the z axis.
Despite its restrictive aspect, Bernstein’s Theorem turned out to be only a
minor hiccup in the beautiful and rich geometric theory of two dimensional
minimal surfaces that was subsequently developed in the twentieth century
and which is presented for example, in the monographs by Osserman [40],
Nitsche [30], Dierkes, Hildebrandi, Kiister and Wohlrab [19] and Fang [20].
Fascinating examples of complete minimal surfaces include the helicoid (given
parametrically by = tsins, y = —fcoss, 2 = 5, —o0 < 5,t < 0o and'the
Costa-Hoffman-Meeks surface, which was the first example, E_mnod.mnmn_. QE%
- in 1985!), of an imbedded complete minimal surface of finite topological type
other than'the plane, catenoid or helicoid. The interested reader is referred to

the book of Fang [20], supplemented by the [3] Filmstrip of Palais, mﬁmwzm
on the internet [41],

Bernstein’s proof.
By caleulation, the functions

o= E”Q..mﬁ 1 = arctan — . A_m.mv

ma 8y
each satisfy the linear elliptic equation,
gu\*\ 8% _Budu &% mgvu dp
1 — =0 2.4

1+ Amev Oz? Oz 8y Bz By Tt 8z dy? (2.4)
with e, _.E < a.\w. In modern terminclogy, equation (2.4) means that the
functions ¢ and 1) are harmonic on the graph of u. If (2.4) were Laplace’s
equation, we would conclude our result immediately from the classical Viou-
yille theorem, which asserts that bounded barmonic vector functions in ™

are necessarily constant. Bernstein amazingly, and even with unbounded co-

efficients, proved a Liouville theorem for solutions of elliptic equations of the
form

L= .\_..bwn_c . ANmu

in the plane, where the only conditions are that I is elliptic (that is the
coefficient matrix A is positive).and the solution ¢ = o(y/z? +y?) as z,y —
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0. This would give us Vi = V1) = 0, and hence V.= constant as r V@EHmm.
More generally, Bernstein considered ?EnﬂObm  satistying
. 82 8%p 820 ”
det D?p=—L X _ | .
™ doy? Amam@.v =0 (2.6)

since any solution of (2.5) satisfies (2.6) by virtue.of the positivily of A.
Unfortunately there was a gap of a topological nature in Bernstein’s argument,
which was eventually fixed by E. Hopf in 1950 {27]. Many other Eoomm of
Bernstein's Theorem were subsequently found by Bers (8], Finn [21],|Nitsche
[38], Fleming [22], Giusti [25], Simon [50] and we refer'the reader to the survey
[50] for further information. So far no alternative proofs have been f
the Liouville theorem employed by Bernstein and Hopf.

=0

found of

3 Jorgens® Theorem

Bernstein’s Theorem has an analogue for the Monge- Ampere equatién {1.7),
discovered by Jorgens, 1954 [29].

Jorgens® Theorem Let u be a solution of the Monge-Ampére equation,

@mﬂ @,mcu @mﬁ 2
tD2p =2 £ 0¥ _ - _
det D% = 527 e A@a@ev 1 (3.1)

in R:. Then u is a second degree polynomial, 3& is the graph of u is a
paraboloid.

We observe that equation (3.1) tells us that the mHme<w_ﬂmm of the Hessian
D?q are either both positive or both negative and hence a solution ujis either
convex or concave, whence the resultant paraboloid must be elliptic.

Bernstein’s and Jorgen’s Theorems are connected in that the former fol-
lows readily from the latfer. We show this now, together with a simple com-
plex variables proof of Jorgen’s Theorem, Hnozo,&Em Z:“mnrm [38].
Proof of Jorgen’s Theorem

From our remark above, we can assume that a solution u of (3.1) js convex
so that the mapping given by

du
m|H+®|H

(3.2)
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is a diffeormorphism of R? onto itself. Now consider a complex variable

{=§+in
and define a complex function w by

e@nalwlml% !wmv ..a..g

where z and y are related to £ and % by inverting the transformation ﬁwmv
By caleulation we can show that the real and imaginary parts of w satisfy ﬁpm

Cauchy-Riemann equation,
‘BRew 8Imw B8Rew  dImw a_ "
8  “om ' Tap  8E ;

which means that w is an analytic function of ¢, along with its comp
derivatives. Furthermore

HmH

re g D —2

W@ =F—3 <1 (3.5)
and hence by the classical Liouville Theorem for analyiic functions, (which
is equivalent to that for harmonic functions in the plane), we have that w' is
constant which implies that D?u is constant and hence v is a second degree
polynomial. .
Jorgens’ implies Bernstein
‘We define three functions f, g and h on R? by

where v = /1 + |Vu|2. The minimal surface equation (2.1) implies that

a8f  bg
curl{f,g) = .wm e 0,
(3.7)
8g Oh
) ﬂ.C.Hw.ﬁ.Q__«mv = mlﬁ — a HO_
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as that by basic vector caleulus, there exists a function tp with second

1 deriva-
tives

0%p &y 5
| 3 s Bzoy 9 B h. (3.8)
But from (3.6) we have

%ﬁ%ssmmﬁv“nw

Bx? 8y®  \ Bzoy

which implies, by Jorgens’ Theorem, Vu = constant,

4 The Bernstein problem

The Bernstein problem in higher dimensions, whether entire minimal graphs
in Euclidean space are hyperplanes, became one of the most omgmvammmn_ prob-
lems in partial differential equations in the twentieth century. Its mmﬁ&\ Was
pivotal in the development of higher dimensional minimal surface ﬁumoaw and
geometric measure theory. It was solved in the affirmative by De Q%om.mm [18]
in 1965 for three dimensional graphs, and subsequently by Almgren [2] in
1966 for four dimensions and Simons {51} in 1968 for five to seven di hensions.
Fleming’s proof [22] of the two dimensional cade turned out to be a Sw& blazer
for the higher dimensional theory, through its connedtion with mini

EWH cones.
The Bernstein problem was finally settled in all dimensions through an amaz-

ing piece of work by Bombieri, De Giorgi and Giusti in 1969, QW% showed
that in dimensions larger than seven, there do exist entire solutiohs of the
minimal surface equation (1.9), whese graphs are not r%meEmbmm.m Further
important contributions by Schoen, Simon and Yau 46) in 1975 provided cur-
vature estimates for minimal graphs in dimensions up to seven, which implied
the Bernstein property and later Simon [49] in 1989 found and classified many
examples of non-affine minimal graphs in dimensions higher than seven. For

further information, the reader is veférred to the excellent survey
[50].

of Simon

"The higher dimensional Jorgens’ theorem turned out to be more straight-
forward. Indeed, for the higher dimensional Monge:Ampere equatidns,

det D?u =1 (4.1)

a convex entire solution in R™ is a second degree polynomial, that if its graph

is a paraboloid, for all dimensions n. This was shown by O&mﬂ (13] for

n < 5 in 1958 and then for all n by Pogorelov [43], 1972. Their piocofs used

a priori interior estimates for third derivatives of solutions of Monge-Ampére
{

M
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equations, which were important in the early development of the Spmcﬂ& of
Monge-Ampére equations. In affine geometry, Jorgens’ theorem im
complete parabolic affine hyperspheres are elliptic paraboloids.

5 A priori mmﬁgmﬂmm

A priori estimates in partial differential equations are estimates for ﬁ.,dmﬁwmo-
tive solutions, which are independent of any knowledge about-their existerice.
Their fundamental importance lies in the crucial role they often play in ies-
tablishing existence, uniqueness, regularity and other qualitative properties of
solutions. Bernstein, in papers starting from 1906, [4], (5], [6], was the great
pioneer of a priori estimates for solutions of nonlinear elliptic equations in
the twentieth century. The scope of his work was limited as it preceded the
discovery of much of the linear theory but nevertheless his ideas for gradient
estimates in particular were used extensively throughout the century. These
-ideas included transformations of the dependent variable u 1+ ¢(u} and ap-
plication of the operator Vi e V to get a differential inequality for _d:.m_w.
Their execution in higher dimensions by Ladyzhenskaya and Uraltéeva [33],
Serrin [48] and others led to a definitive quasilinear theory, which is also de-
scribed in the book [24]. The basic linear theory to underpin the quasilinear
theory was provided by the Hopf maximum principle [26] and the Schauder
theory of Holder estimates of second derivatives for linear elliptic equations
with Hélder continuous coefficients [45]. The reader is referred also to [24] for
a. presentation of this theory. '

The critical results needed to link nonlinear equations to the linear
Schauder theory were Holder estimates for linear equations with possibly
bad coefficients as such equations arose through differentiation. The first
big breakthrough in this direction was made by Charles Morrey Jor. [34] in

H@wmmonwﬁo&ﬂmﬁmwowm.goﬁm%ooumﬁmam&mbmmhmEﬁﬂnmpﬁmﬁo_,_m%ﬁrm
form .

w..muz a:
“H .d|”o .
.ﬁﬁ ...Q.M"w D QHF. @Hu. .
in domains ) ¢ R?, with coefficient matrix A = [a¥] satisfying

2

NEP < Y ¥ < Alg? (5.2)

t,9=1

for all vectors £ € R2? and some positive constants A;A. He proved a Hélder
estimate for the gradient of solutions u, namely for any strictly contained

plies that .
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subdomain £’ CC Q, there exists a constant o > 0 depending onlylon A/A
and a constant C' > 0 depending additionally on dist(€, 8Q) such that

IVa(z) ~ Vuly)] < Clo - yI*sup o (5.3)

for all z,y € Q. Morrey’s estimate led to a fairly definitive ﬁrmn.w% of two
dimensional quasilinear and fully nonlinear elliptic equations, [37] , :@ﬁ

In higher dimensions the big breakthrough came through the independent

discoveries by De Giorgi [17] in 1957 and Nash [36] in 1958 of Holder estimates
for solutions of linear elliptic equations in divergence form,
8 [ .. 0u
Lu =div(AVu) = = |a¥—=—] =
U iv(d Vu) H.mp B; An. mauu 0, (5.4)
with coefficient matrix A = [a¥] satisfying, corresponding to (5.2),
MNeP < Y a¥git; < AJg? (5.5)
i,5=1 i
for all £ € R™ and some positive constants A, A. For solutions u bof Bqua-
tion (5.4) in domains @ C R™, the De Giorgi-Nash result provides & Holder
estimate
|u(z) —u(y)] < Cla —y|*sup [ul (5.6)
for 2,y € & for any subdomain Q' ccC §, where o is a positive constant
depending only on A/X and n and C is a constant depending additi

ﬁqu:% on
dist(£2', 8Q). This result was applied immediately to derivatives of olutions

of quasilinear equations such as the minimal surface equation, and in tan-
dem with the gradient estimates arising from the sbove mentioned

ideas of

Bernstein led to a. fairly definitive theory of quasiliiear equations and scalar
variational problems, [24], [33], [48].

For linear elliptic equations in the general form, (5.1),
. Pu

= W —— =) 5.7

HE. MU @ @Hm QH..M A v
i,5=1

the major breakthrough was made by Krylov and Safonov [31] in 1979, For
solutions » in domains Q ¢ R™, and coefficient matrix A satisfying (5.5),
they derived a Hoélder estimate of the form (5.5). Their approach was funda-
mental for the development of the theory of fully nonlinear elliptic ¢
in higher dimensions, including the Monge-Ampére equation [24],
Interestingly, it rested upon a result coming from, earlier considej

2quations
30], [11).
ations of
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the Monge-Ampére equation, namely the Aleksandrov-Bakel'man maximum

HuabaEmﬁgor.rmmvmmn&mngmamwm._ucﬁ.mémb@ years earlier, [1], (3], [24]
and provides an estimate :

1/n
supu < supu + G diam{Q) A\ (Lu)™/ det bv - (5.8)
Q 80 Q ;

where C is a constant depending on n.

‘ _
The Hélder estimates for solutions of the equations (5.1), (5.4) and (5.7)
were accompanied by Harnack inequalities _
supu < Cinfu : (5.9)
o o Do

for non-negative solutions u and domains ' CC Q, where C is a constant
depending on n, A/A, and dist(Q/, Q). These were discovered by Serrin [47]
for (5.1), Moser [35] for (5.2) and Krylov and Safonov [31] for (5.7). From
the Harnack inequalities followed Liouville theorems asserting that entire so-
lutions, bounded at least from above or below, are constant. Discrete versions
of these results on general meshes were found by Kuo and Trudinger [32].

6 The affine Bernstein problem

The affine maximal surface equation was introduced by Chern [15} in 1977.
"To formulate it, we first recall that a smooth convex function u in R™ has
non-negative Hessian matrix D?u. Let us call v strongly convex if also
det D%u is positive. We then set

w = (det D*u) " +H (6.1)

and let U = [U%] be the cofactor matrix of D?u. The affine maximal
surface equation can be written as

UeD?w=0 (6.2)

It is a nonlinear, fourth order partial differential equation, elliptic with respect
to strongly convex solutions w. Furthermore, it is invariant under uni-modular
affine transformations of R®*2. The expression on the left of (6.2) is the
mean curvature of the graph of u with respect to its affine metric [15]. m.H.EEm
examples of solutions are second degree polynomials, for which. ﬂ.ﬁm function w
in (8.1) is constant. We also know from Jorgens’ theorem that in fact m,z.ﬂpm
trivial entire solutions for which w is constant are second degree polynomials.
Chern [15] conjectured in 1977 that all entire solutions of the affine Emu&.gm._.
surface equation (6.2), in two dimensions, are second degree polynomials.
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.The problem as to whether this is true
became kmown as the affine Bernst

In a later paper in 1982, Calabi
the affine maxima] surface equation a;
smooth hypersurface in R=+!
positive), then the affine area

» which can be posed in any dimension,
ein problem.
[14] established ‘the connection petween
nd affine area. If M is a stronglyj convex,

and K its Gauss curvature, (normealized to be
of M is given hy

A(M) = \ K= (6.3)
M
When M is the graph of a strongly convex function 1 on a domain §) R™,
we call - , .
Alw) == A(M) = \ (det D?u) = (6.4)
o

the affine area functional of ©. The functional A is readily shovi
invariant under uni-modular affine transformations in;R™*!, The affir
mal surface equation can now be characterized as the Buler-Lagrange equation
of the affine area functional. Calabi showed moreover that (6.2) is beth nec-
essary and sufficient for the graph of v to locally maximize affine areal Calabi
also reformulated the Chern conjecture as whether Euclidean ooﬂﬁwmﬁ_m, affine
maximal hypersurfaces are paraboloids and showed by geometric a

that this is true for two dimensional hypersurfaces w
plete.

m to be
1€ maxi-

r ents
hich are also affine com-

The Chern conjecture was recently resolved by Hmsmwﬂme and Wang [53],
who proved: i

Theorem. A complete, strongly convez affine mazimal surface in B3 maust
be an elliptic paraboloid. _

For higher dimensions, the Bernstein problem was reduced to estim
the strict convexity of solutions, [53].

One interesting foature of the affine maximal sur
it also has a divergence form (5.4)

ation of

face quation (6.2) is that

div(UDw) =0 (6.5)

g0 that if the Hessian matrix D?u satisfies (5.5) we deduce from either the De
Giorgi-Nash estimates or the Krylov—Safonov estimates, Hélder estinlates for
the function w. Recently, Caffarelli and Guiicrres {12}, exploiting ﬁ_ﬁ affine
invariance of the second order operator, L := U « D?, in R™ obtainéd much
stronger results. To formulate their estimates, we define for z € R™ and
h > 0, the section 5(z, h) of the convex function u by

§(@,h) = {y € R"|u(y) < u(z) + Vu(z) o (y—2) 4+ h} | (6.6)
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Then, replacing (5.5) by,

0<A<detDuw <A - (8.7,

moH ooumﬁmswﬁm A, A, we obtain for solutions w of (6.2) in sections §(z, ko) C H..wa,
“Holder” estimates, :

RN\ )
osc w<C A:Iv 0sC W Nm.wv
5(z,k) ho/ S(zho) W

where C and o are positive constants depending on n, AfA, and for wowl
negative sohitions w, Harnack inequalities, _

AQ. m.c
by = sty | o)
with constant C' depending on n, A/A and h/hy. Consequenily, if we can
establish (6.7) for solutions u of the affine maximal surface equation, isiog
the definition (6.1), we may conclude from either (6.8) or (6.9) or Bernstein’s
Liouville theorem (7], [27] in the case n = 2, that w is constant and hence
1 is a second degree polynomial by Jorgens’ theorem. The approach E.A [63]

differs slightly from this, but its essential ingredients still reduce to a

priori
estimation of the form (6.7).

|
7 Conclusion

The theory of nonlinesr partial differential equations has been a massive de-
velopment of twentieth century mathematics, impacting upon other areas of
mathematics and a diverse range of applications; (see [10]). In & small ar-
ticle, we can only sample fragments of this amazing development. Our first
glimpse was the two dimeusional Bernstein problem for minimal graphs, initi-
ated by Bernstein in 1915, whose higher dimensional version provided one of
the major challenges for nonlinear partial differential equations in the twen-
tieth cenfury. The corresponding affine problem in two dimensions, solved at
the end of the twentieth century, also provided a glimpse into the fascinating
world of nonlinear, higher order, geometric partial differential equations. The
higher dimensional affine Bernstein problem clearly becomes a challenge for

the twenty first century. One aspect of this challenge lies in interpreting the
_example in dimension ten, namely

“ufz) = 4|2 +2dy, 2 = (z1,...,70), (7.1)

of a non-smoocth entire affine maximal graph, (see [53]). Indeed could it Wm.w-
pen that the affine Bernstein property is true to dimension nine and then fails
for higher dimensions?
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THREE-DIMENSIONAL SUBGROUPS AND UNITARY
REPRESENTATIONS
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E-mail: dav@math.mit.edu

The simplest noncommutative compact Lie group is.the group SU(2){of unit
quaternions. If K is a compact Lie group, write D(K) for the set of copjugacy
classes of homomorphisms of ST(2) into K. Dynkin showed in the 1850s that
D{K) is a finite set, and calculated it in all cases. . '

A fundamental unsolved problem is to parametrize the “purely real® untamified
unitary representations of a split reductive group G! over a local fieldd Such
representations are parametrized by a compact polytope P(G). When & and
K are “Langlands dual” to each other, 2 conjecture of Arthur realizes D(X) as
a subset of P(G). We discuss the staius of this conjecture, and how Dlynkin's
problem illuminates the representation-theoretic one.

1 Introduction

One of the purposes of representation theory is to provide tools for harmonic
analysis problems. The idea is to understand actions of Eroups on geomet-
ric objects by understanding first the possible representations of the group
(by linear operators). Formally the simplest examples are finite groups: no
sophisticated analytical tools are needed to study.them. Nevertheless the (fi-
nite set) of irreducible representations of a finite group can be ext aordinarily
complicated from a combinatorial point of view. In some respects the rep-
resentation theory of (connected) Lie groups is actually simpler than that of
finite groups, because the geometric structure of a Lie group comnstrains the
multiplication law to be nearly commutative. :

_ The purpose of this paper is to examine a classical problemfin the rep-
H__ammﬁmﬂom theory of Lie groups (formulated as (23) below). The| problem is
gtill unsolved. I'll explain a conjecture due to Jarhes Arthur that lrelates this
representation theory problem to a structural problem for compact groups.
The structural problem was solved by Eugene Dynkin in the H@,mo_ . Connect-
ing the two problems requires the classification of compact Emwmmﬂzﬁm in the
beautitul form given to it by Michel Demazure and Alexandre Hm othendieck
{elaborating on previous constructions). I will recall that classification in
Sec. 2. The solution to Dynkin’s problem appears in Sec. 3. In Sec. 4 I will
formulate the representation-theoretic problem, and state Arthur’ conjecture
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