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Fields impacted by and impacting 3-manifold topology

I Algebraic Topology: fundamental group, homology,
Alexander polynomial, Reidemeister torsion

I Kleinian Groups, 3-D Hyperbolic Geometry: gives large
classes of examples of 3-manifolds, elucidates structure of
fundamental groups, uses topological methods of 3-manifolds

I Knot Theory

I 4-Manifold Theory: important questions, e.g. Dehn surgery,
invariants

I Geometric Group Theory: highly influenced by
geometrization conjecture by analogy and problems (JSJ
decomposition, convergence groups, hyperbolic groups)

I Foliations: 1 and 2-dimensional foliations are indispensable
for studying 3-manifold topology
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Fields impacted by and impacting 3-manifold topology

I Symplectic Geometry, Contact Topology: new invariants
such as Floer homology, various geometric types of contact
structures (overtwisted, tight, symplectically fillable, Stein
fillable, CR)

I Representation Theory and Algebraic Geometry:
character varieties, Bass-Serre theory

I Number Theory, Arithmetic Groups: construction of
special classes of hyperbolic 3-manifolds, properties of
invariants

I General Relativity: minimal surfaces, relation between scalar
curvature and topology

I Non-Commutative Geometry: Jones polynomial and
quantum invariants, l2-invariants
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Fields impacted by and impacting 3-manifold topology

I Quantum Algebra: diagrammatic formalism motivated by
3-manifold invariants, Tait flyping conjecture, relations of
quantum invariants to other 3-manifold invariants such as
Heegaard genus, tunnel number, SU(2) representations

I Gauge Theory, String Theory: conjectured new invariants
(constructed from a variety of viewpoints) and important
relations between these invariants

I Ergodic Theory, Dynamical Systems: pseudo-Anosov maps
and flows, Weinstein conjecture, foliations

I PDEs: elliptic theory, Ricci flow proof of geometrization
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Milestones in 3-Dimensional Geometric Topology

We’ll focus on results which emphasize the interaction between
geometry and topology of 3-manifolds. There have been many
spectacular results in the past 30+ years. This brief survey will
omit many important results, and is influenced by my own tastes.
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Milestones in 3-Dimensional Geometric Topology

Equivariant loop theorem and sphere theorem

(Meeks-Yau) First introduction of minimal surface techniques into
3-manifold topology. This theorem implies that if there is a finite
group G acting on a 3-manifold M with π2(M) 6= 0, then there is a
collection of homotopically non-trivial 2-spheres Σ ⊂ M such that
G preserves Σ. These spheres may be chosen to be minimal
surfaces in a G -equivariant Riemannian metric on M. Although
this theorem is subsumed by the Orbifold Theorem, it still has had
an important influence for the study of minimal surfaces in
3-manifolds, including work of Freedman, Hass and Scott for
minimal π1-injective surfaces and Rubinstein for minimal Heegaard
surfaces, as well as an alternative proof of the Poincaré conjecture
by Perelman which doesn’t require Ricci flow on infinite time
intervals.
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Milestones in 3-Dimensional Geometric Topology

Geometrization of Haken 3-manifolds, Dehn Surgery Theorem,
Geometrization Conjecture

Thurston revolutionized 3-manifold topology by introducing the
study of geometric structures, especially hyperbolic geometry. He
proved that Haken 3-manifolds, manifolds which contain an
embedded π1-injective surface such as a knot complement, admit a
canonical decomposition along surfaces of non-negative Euler
characteristic into geometric pieces. We’ll mention a bit later what
the eight 3-dimensional geometries are. His theorem was
foreshadowed by work of Jorgensen, Marden, Riley. It made use of
important work of Jaco, Shalen, Johansson, and Waldhausen in
3-manifold topology, as well as many important results from
Kleinian groups and Teichmüller theory, especially the work of
Ahlfors, Bers and Sullivan.
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Milestones in 3-Dimensional Geometric Topology

Geometrization of Haken 3-manifolds, Dehn Surgery Theorem,
Geometrization Conjecture

The techniques of Thurston’s proof probably had a greater impact
on the field of Kleinian groups than on 3-manifold topology.
Thurston’s Dehn Surgery Theorem further elucidated the structure
of hyperbolic 3-manifolds, and extended the Geometrization
Conjecture to many non-Haken examples, demonstrating that
hyperbolic manifolds are “generic”.
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Milestones in 3-Dimensional Geometric Topology

Smith Conjecture, Neuwirth Conjecture, Cyclic Surgery
Theorem
Shalen and coworkers introduced the study of Bass-Serre theory to
go from group representations into PSL(2, C) coming from
hyperbolic structures to group actions on trees (1-dimensional
buildings) and R-trees (Morgan-Shalen). This incorporates
algebraic geometry of character varieties and Stallings’ method of
proof of the Sphere Theorem via actions on trees. This enabled the
resolution of some longstanding conjectures (along with other
advances of a topological nature), including
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Milestones in 3-Dimensional Geometric Topology

Smith Conjecture, Neuwirth Conjecture, Cyclic Surgery
Theorem

I the Smith Conjecture (Gordon, Shalen, Thurston,
Meeks-Simon-Yau ): a finite cyclic group acting on S3 with
non-trivial fixed point set must be conjugate to an orthogonal
action

I the Neuwirth conjecture (Culler-Shalen ’84): every non-trivial
knot complement has a separating incompressible surface with
boundary

I the Cyclic Surgery Theorem (Culler-Gordon-Luecke-Shalen
’88): one may obtain a lens space by Dehn filling on a
(non-torus) knot for at most two fillings.
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Milestones in 3-Dimensional Geometric Topology

The Orbifold Theorem
In the mid-eighties, Thurston lectured at Princeton on the Orbifold
Theorem, which extended his geometrization theorem of Haken
manifolds to get a geometric decomposition of good orbifolds with
non-trivial singular locus (this includes the case of a 3-manifold
together with a finite group action with non-trivial fixed point set,
such as in the case of the Smith Conjecture). His proof was
incomplete, though. Encouraged by listing the Orbifold Theorem
as a conjecture in the ’94 version of Kirby’s problem list, two
groups of people gave a complete proof of the Orbifold Theorem,
announced in ’98. Cooper, Hodgson, and Kerckhoff followed
Thurston’s approach, whereas Boileau, Leeb and Porti incorporated
more ideas from differential geometry and Cheeger and Gromov’s
theory of almost collapsed manifolds.
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Milestones in 3-Dimensional Geometric Topology

Property (P)

Property (P) was stated as a conjecture in the ’70s, that there is
no non-trivial Dehn filling on a non-trivial knot complement which
yields a homotopy 3-sphere. Kronheimer and Mrowka developed a
program to prove this conjecture in the ’90s, which came to
fruition only in 2003 due to various advances. Although Property
(P) follows from the Poincaré Conjecture (proven by Perelman in
early 2003), and by the solution of the Knot Complement Problem
(resolved in 1989 by Gordon and Luecke), when Kronheimer and
Mrowka’s proof appeared, Perelman’s work was not yet generally
accepted or digested by the mathematical community. Still, this
was a major advance since their techniques proved something
much more powerful.
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Property (P)

Also, their method was quite deep, depending on many of the
important advances in low-dimensional topology from the previous
20 years, including:

I the Cyclic Surgery Theorem

I property (R), proven by Gabai in ’88 using foliations by
minimal surfaces (taut foliations)

I symplectic and contact geometry, developed by Gromov,
Eliashberg, Giroux, Etnyre, Taubes and others

I Instanton Floer homology (Donaldson, Floer)

I Seiberg-Witten invariants and SW Floer homology (Seiberg,
Witten, Taubes, Kronheimer, Mrowka)
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Property (P)

as well as relations between these various invariants

I confoliations interpolating between taut foliations and
symplectically fillable contact structures (Eliashberg and
Thurston)

I relation between Gromov invariants of symplectic manifolds
and Seiberg Witten invariants (Taubes)

I relations between Dondaldson and Seiberg-Witten invariants,
conjectured by Witten due to dualities in String Theory, and
proven partially by Feehan and Leness.
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Geometrization Conjecture

In 2002 and 2003, Perelman posted preprints on the Arxiv which
appeared to complete a program of Hamilton to prove the
Geometrization Conjecture (which has as a well-known corollary
the Poincaré Conjecture). After extensive work by several
mathematicians, including Kleiner and Lott, Cao and Zhu, and
Morgan and Tian, complete proofs filling in the details of
Perelman’s argument were finished in 2006 (Ye found and
corrected an error in Perelman’s argument). Part of the argument
relied on a proof of Shioya and Yamaguchi classifying 3-manifolds
which were collapsed in a certain sense, which replaced a claimed
proof by Perelman which didn’t appear.
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Classification of Kleinian groups

A Kleinian group is a finitely generated discrete subgroup
Γ < PSL(2, C). Classically, this was a topic in complex analysis
when the group Γ has a domain Ω ⊂ CP1 on which it acts
discontinuously. Kleinian groups were revolutionized in the ’70s by
the introduction of 3-dimensional manifold and hyperbolic
geometric techniques to study H3/Γ due to Jorgensen, Marden,
and Thurston. Thurston formulated a conjectural classification of
Kleinian groups called the Ending Lamination Conjecture in terms
of the underlying topology of H3/Γ, conformal data associated to
Ω/Γ, where Ω ⊂ Ĉ is the domain of discontinuity of Γ, and end
invariants conjectured to exist by Thurston (proven to exist by
Bonahon in ’86).
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Classification of Kleinian groups

This was resolved in 2004 as the cumulative work of many
mathematicians, including A., Ahlfors, Bers, Bonahon, Brock,
Canary, Marden, Masur, Minsky, Otal, Sullivan, Thurston and
many others. Minsky was the principal architect of the proof, with
joint contributions from Brock, Canary and Masur. A. and
Calegari-Gabai independently resolved the Tameness conjecture of
Marden, which implies that H3/Γ may be compactified to a
compact manifold with boundary, which guaranteed the existence
of the end invariants by work of Canary and Bonahon.
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Future Directions in 3-Manifold Geometric Topology

We’ll focus on geometric questions about 3-manifolds, and ignore
or miss many important questions. Kirby’s problem list has many
problems in low-dimensional topology contributed by many
mathematicians which are still left unresolved.

Geometric Structures on 3-Manifolds
Thurston’s geometrization conjecture resolved the classification of
3-manifolds admitting a geometric structure modelled on one of
Thurston’s eight geometries. These geometries are associated to
Lie groups which act transitively on R3 or S3 with compact point
stabilizers. The isotropy group is either

I O(3) (S3, E3, and H3 constant curvature geometries),

I O(2) (P̃SL(2, R), H2 × E1, Nil, and S2 × E1 geometries), or

I finite (Solv geometry).
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problems in low-dimensional topology contributed by many
mathematicians which are still left unresolved.

Geometric Structures on 3-Manifolds
Thurston’s geometrization conjecture resolved the classification of
3-manifolds admitting a geometric structure modelled on one of
Thurston’s eight geometries. These geometries are associated to
Lie groups which act transitively on R3 or S3 with compact point
stabilizers. The isotropy group is either

I O(3) (S3, E3, and H3 constant curvature geometries),
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Definition of Geometric Structures on 3-Manifolds
A more general type of geometry (also introduced by Thurston but
studied previously by others) comes from a group acting
analytically and transitively on S3 or R3 but with non-compact
point stabilizers (such as SO(1, 1),SO(2, 1) or GL(3)).
Let X be a manifold, and G a Lie group acting transitively and
analytically on X . Then a manifold M admits a (G ,X ) geometry if
there is a holonomy map ρ : π1(M) → G and a developing map
dev : M̃ → X which is an immersion, such that the following
diagram commutes for each covering translation ϕ ∈ π1(M):

dev : M̃ → X
ϕ : ↓ ρ(ϕ) : ↓

dev : M̃ → X
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Geometric Structures on 2-Manifolds
In 2-dimensions, the maximal geometries of this type are
(PSL(2, C), CP1) (complex projective) and (PGL(3, R), RP2) (real
projective) geometries. These geometric structures on surfaces are
still being intensively studied by Dumas, Goldman, Kapovich,
Marden and others. Complex projective structures are important in
Kleinian groups and Teichmüller theory.
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Examples of 3-Dimensional Geometric Structures

I Projective geometry
(PGL(4, R), RP3), which is the maximal dimensional group
acting analytically on a compact 3-manifold.
Cooper, Porti, and others have studied these recently. For
example, RP3#RP3 admits no projective structure. Any
hyperbolic 3-manifold admits a projective structure via the
Klein or Minkowski models of hyperbolic space.
Convex projective structures, where the developing image is
convex, have many analogues to the structure of negatively
curved manifolds.
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Examples of 3-Dimensional Geometric Structures

I Conformal geometry
(PO(4, 1; R), S3), where PO(4, 1; R) acts on S3 by Möbius
transformations, which are the maximal group of conformal
transformations of S3. This is also the action of Isom(H4) on
∂∞H4. A manifold has a conformal structure if and only if it
has a conformally flat Riemannian metric.
Five of Thurston’s eight geometries are conformally flat.
Connect sums of conformally flat manifolds are also
conformally flat.
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Examples of 3-Dimensional Geometric Structures

I Conformal geometry
Problem: Classify hyperbolic 3-manifolds which have
non-trivial conformal deformations.
Examples due to Apanosov-Tetanov, Johnson-Millson,
Kapovich, Bart-Scannell, and Tan.
A closed conformally flat 3-manifold has a canonical volume
associated to it (boundary of the 4-D hyperbolic “convex
hull”). It would be interesting to see how this volume relates
to the simplicial volume.
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Examples of 3-Dimensional Geometric Structures

CR geometry
(PU(2, 1), S3), where PU(2, 1) acts on ∂∞CH2, complex
hyperbolic space (holomorphic automorphisms of the unit ball in
C2). This preserves a contact plane field, i.e. a nowhere integrable
2-plane field.
The Nil and S̃L(2, R) geometries admit CR structures.
There are examples due to Schwartz of complex hyperbolic
structures on the Whitehead link complement and some Dehn
fillings on it, but little is known in general.
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Examples of 3-Dimensional Geometric Structures

(PSL(2, R)× PSL(2, C), S1 × CP1), where the Lie group acts
preserving the product structure. Manifolds modelled on this
structure would have a natural foliation induced by the CP1

factors.
H2 × R geometry admit this structure.
There are hyperbolic 3-manifolds which have holonomy in this Lie
group, but it is unknown if there is a corresponding developing
map and geometric structure.
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Examples of 3-Dimensional Geometric Structures

I Affine structures
(R3 o GL(3, R), R3), which induces a projective structure via
the embedding

(R3 o GL(3, R), R3) ⊂ (GL(4, R), RP3)

Euclidean, Nil, and Solv 3-manifolds admit affine structures.

I Lorentz structures
(R3 o O(2, 1), R3), which are important in relativity and also
induces an affine structure.
There are examples due to Mess, Drumm, Goldman, Margulis,
Scannell and others, but relatively little is known. Mess
classified Lorentz manifolds whose O(2, 1) holonomy is
discrete.
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Examples of 3-Dimensional Geometric Structures

The principal problem in the subject is:
Problem: For a geometry (G ,X ), classify 3-manifolds with a
geometric structure modelled on (G ,X ).
There are several difficulties for studying geometric structures. The
holonomy might not be faithful and might not determine the
geometric structure uniquely, the developing map might not be an
embedding, and there may be deformations of the structure. Since
this problem is probably too difficult to solve in full generality, a
refinement is the question of whether one can promote a weaker
structure to a stronger structure?
Problem: If M admits a symplectically fillable contact structure,
then does it admit a CR structure?
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Examples of 3-Dimensional Geometric Structures

Question: Given M3, is there an algorithm to classify all (G ,X )
structures on M?
To start, for each G , one may compute the real algebraic variety

{ρ : π1(M) → G}.

But the difficulty is to determine which holonomies correspond to
geometric structures. Moreover, there may be multiple developing
maps for a given holonomy.
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Other Geometric Structures

I pseudo-Anosov flows. These arise naturally for fibered
3-manifolds

I quasi-geodesic flows

I taut foliations and essential laminations

I tight contact structures

I CAT (0) cubed structures: non-positively curved
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Other Geometric Structures
Question: Which aspherical 3-manifolds are homotopy equivalent
to a locally CAT (0) cube complex? The dimension must be ≥ 3.
This is related to the Virtual Haken Conjecture and the Virtual
Fibration Conjecture (via LERF).
Question: Which 3-manifolds are (a component of) the fixed
point set of an anti-holomorphic involution action on a Kähler
Einstein manifold or Calabi-Yau 3-fold? (“complexified” M3 ?)
Question: For which M3 does M3 × S1 admit a symplectic
structure? It is conjectured to be true by Kronheimer and Taubes
if and only if M fibers over S1 (Thurston proved that this is
sufficient).
There are many other types of geometric structures on
3-manifolds, and the study of them is just in its infancy!
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Hyperbolic 3-manifolds

The recent classification of Kleinian groups has led to the
application of the techniques to the study of closed or finite volume
hyperbolic 3-manifolds. Kleinian groups may arise as geometric
limits of infinite sequences of finite volume hyperbolic 3-manifolds,
and therefore may be used to study the topology and geometry of
certain infinite classes of finite volume hyperbolic 3-manifolds.
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Hyperbolic 3-manifolds

Question: Give a topological characterization of hyperbolic
manifolds M with infinitely generated fundamental group.
There are some obvious necessary conditions, such as covers of M
with finitely generated fundamental group must be atoroidal,
irreducible and tame, and elements of π1M must be finitely
divisible, but very little is known otherwise.
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Hyperbolic 3-manifolds

Question: Is there an algorithm to tell if two hyperbolic
3-manifolds have the same volume? If M1 and M2 are hyperbolic,
and Vol(M1) 6= Vol(M2), then one may tell this by computing the
two volumes to enough accuracy until they disagree. But if
Vol(M1) = Vol(M2), how do we prove that these are the same? It
is conjectured that volumes of hyperbolic 3-manifolds are irrational
(and probably transcendental).
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Hyperbolic 3-manifolds

For example, Catalan’s constant

K = 0.915965 = 1− 1

9
+

1

25
− 1

49
+ · · ·

is the volume of a hyperbolic orbifold, and is not known to be
irrational. There is a conjecture of Ramakrishnan which would
imply that two hyperbolic manifolds have the same volume if and
only if they are scissors congruent. This means that one may be
cut up into finitely many polyhedra and reassembled to form the
other one. This conjecture would imply the existence of such an
algorithm, by reducing it to a homological question. It would also
imply that many hyperbolic volumes are linearly independent over
Q, so would imply that most hyperbolic volumes are irrational.
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Volume conjecture

Let K be a knot with hyperbolic complement. The (normalized)
Nth colored Jones polynomial J ′N is a polynomial invariant of link
complements which is (roughly) obtained by taking the Jones
polynomial of a cabling of a knot. Kashaev made the following
conjecture (reinterpreted by Murakami-Murakami):
Conjecture:

Vol(S3 − K ) = 2π lim
N→∞

1

N
log |J ′N(K )(e2πi/N)|.

It has been checked for the figure eight knot and some other
examples.
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Volume conjecture

Conjecture:

Vol(S3 − K ) = 2π lim
N→∞

1

N
log |J ′N(K )(e2πi/N)|.

This conjecture would be remarkable, since it would give the first
hint of a connection between quantum invariants and geometric
invariants of 3-manifolds. This conjecture has been generalized in
many ways, and it is an active area of research. Most likely, a
resolution of the conjecture will lead to insights into both the
structure of TQFT’s and into hyperbolic manifolds.
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Small volume and small Margulis constants

Jorgensen and Thurston showed that volumes of hyperbolic
3-manifolds and orbifolds are well-ordered.
Problem: Identify the smallest volume hyperbolic 3-orbifolds and
manifolds with various topological characteristics.
Recent breakthroughs have been made by Marshall and Martin,
who identified the smallest volume hyperbolic 3-orbifolds (with
volume .039 . . .), and Gabai, Meyerhoff and Milley who showed
that the Weeks manifold is the smallest volume orientable manifold
with volume .9427 . . ..
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Small volume and small Margulis constants

Recently, A. has shown that the Whitehead link complement and
the (−2, 3, 8) pretzel link complement are the smallest volume two
cusped orientable 3-manifolds, with volume 4K = 3.66....
It is an interesting problem to identify the smallest volume
hyperbolic manifolds with n cusps, or with bounds on the betti
numbers (Culler and Shalen have results of this type). Many times,
minimal volume manifolds end up being arithmetic. So far, there is
no good explanation for this phenomenon.
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Small volume and small Margulis constants

If Γ < PSL(2, C) is a discrete group, then the Margulis constant of
Γ is the smallest number ε such that for any 2 elements ξ1, ξ2 ∈ Γ,
we have that either

I the group 〈ξ1, ξ2〉 is (virtually) abelian, or

I maxi=1,2 dist(ξ1z , z) ≥ ε, ∀z ∈ H3.

Gehring and Martin have found optimal Margulis constants for
Kleinian groups with torsion. It follows from work of Culler and
Shalen that for Γ torsion-free, there exists V such that if
Vol(H3/Γ) > V , then ε > log 3. Thus, there are only countably
many Margulis constants < log 3.
Problem: Compute the smallest Margulis constants, and compute
the torsion-free groups with Margulis constant < log 3.
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Hyperbolic structure and topology

A natural invariant of a manifold M is the minimal number of
critical points of a Morse function on M. Let’s call this minimum
k(M). Another natural invariant is rank(π1M), the minimal
number of generators of π1M. Then 2rank(π1M) + 2 ≤ k(M).
Can one obtain a bound in the other direction?
Conjecture: There exists f : N → N such that if M is a hyperbolic
3-manifold with rank(π1M) ≤ n, then k(M) ≤ f (n).
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Hyperbolic structure and topology

Conjecture: There exists f : N → N such that if M is a
hyperbolic 3-manifold with rank(π1M) ≤ n, then k(M) ≤ f (n).
Some progress has been made on this conjecture under the
hypothesis that inj(M) > ε and rankπ1M = 2 by A. and by
Biringer and Souto when rankπ1M > 2.
Conjecture: There are finitely many commensurability classes of
n-generator arithmetic hyperbolic 3-manifolds.
This conjecture would follow from the previous one.
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Hyperbolic structure and topology

An important conjecture which goes back to Waldhausen is the
focus of much current research.
Conjecture: If M is a hyperbolic manifold, then there exists a
finite-sheeted cover M̃ → M such that M is Haken, i.e. has an
embedded π1-injective surface. More strongly, we may choose
M̃ → M such that β1(M) > 0.
There are several stronger variations on this conjecture.
If M is arithmetic, then the Virtual Haken Conjecture would follow
from the generalized Taniyama-Shimura conjecture for number
fields.
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Hyperbolic structure and topology

Let λ1(M) denote the minimal non-zero eigenvalue of the
Laplacian on M.
Question: For ε > 0, does there exist V > 0 such that if M is a
closed hyperbolic manifold with Vol(M) > V and λ1(M) > ε, then
M is Haken?
If this question were answered affirmatively, it would imply the
Virtual Haken Conjecture. There is a potential approach to
answering this question using minimal surfaces and Heegaard
splittings (using methods of Casson-Gordon, Lackenby, and
Rubinstein).
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Hyperbolic structure and topology

Theorem
(Long-Lubotzky-Reid) If M is a closed hyperbolic manifold, there
exists ε > 0 and a cofinal sequence of finite-index covers Mn → M
such that λ1(Mn) > ε.

Such a sequence of covers is said to have property (τ). The proof
makes use of some number-theoretic techniques and a deep
theorem of Bourgain and Gamburd about constructions of
expander graphs.
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Ricci Flow in 3-Dimensions
It is an important problem to simplify Perelman’s argument
proving the Geometrization Conjecture using Ricci flow. In
particular, it is important to understand in more detail the
structure and stability of singularities occurring in the 3-D Ricci
flow. This might enable one to understand how the Ricci flow with
surgery behaves for a parameterized family of Riemannian metrics.
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Ricci Flow in 3-Dimensions
This might enable the proof of the Generalized Smale Conjecture
in full generality. This was proven by Hatcher for S3 and for Haken
manifolds, and by Gabai for hyperbolic 3-manifolds. Even with the
resolution of the Geometrization Conjecture, there are still a few
cases of the Smale conjecture left unresolved (further cases have
been covered by McCullough and Rubinstein).
The Smale conjecture gives a conjectured classification of the
homotopy type of Diff (M). For S3 or for M hyperbolic, the Smale
conjecture states that Diff (M) ' Isom(M).
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Ricci Flow in 3-Dimensions
In principle, the Geometrization Conjecture gives an algorithm to
tell whether two 3-manifolds are homeomorphic. It is an interesting
question whether Ricci flow can give any insight into the
computational complexity of this problem.
Question: Is Ricci flow (with surgery) in 3-D algorithmic? Can we
numerically simulate Ricci flow on a 3-manifold in a stable fashion,
and use this to find the geometric decomposition of a 3-manifold?
A 3-manifold may be described combinatorially as a simplicial
complex, for example. If M is hyperbolic, does the Ricci flow and
its numerical simulation converge quickly to the hyperbolic metric,
to give a polynomial time algorithm to tell if a manifold is
hyperbolic?
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Ricci Flow in 3-Dimensions
Another important problem in 3-D Ricci flow is to see if it is
possible to prove the Orbifold Theorem using Ricci flow. Most
likely this will work, but there are some issues that don’t occur in
the manifold case having to do with “Ricci solitons” on bad
oribfolds, that don’t exist in the manifold case.
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Conclusion
To summarize, some possible future directions for the study of 3-D
geometric topology which we believe will be fruitful are:

I continue with the study of geometric structures on
3-manifolds, and connections between these structures

I apply the classification of Kleinian groups to the study of
hyperbolic 3-manifolds

I understand the structure of 3-D Ricci flow more precisely in
order to refine the classification of 3-manifolds via geometric
decompositions
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