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Riemannian geometry:

M: smooth manifold g. metric on M
Can measure lengths of tangent vectors:
v[2=g(v,v),  vETM

Isometry: preserves lengths

Conformal geometry:

Can only measure angles:

g(v, w)
[v] ||

(v, w), COoSf =

Same as knowing g up to scale at each point

Conformal mapping: preserves angles

Same as preserving g up to scale



Flat Model

Riemannian geometry:

R™, Euclidean metric: Y (dy*)?2
Isometries: E(n) = group of Euclidean motions
y — Ay + b, AeO(n), beR"

Can view E(n) C GL(n+ 1,R) by:
A b
- (5 )

Embed R"? — R*+1 py: ¢ — (‘?f)

o ()4 - (5



Conformal Transformations of R"

Euclidean motions
Dilations y — sy, se& R4
Inversions in spheres

For unit sphere, center at origin, get y — W%

Definition: M6b(R") = Group generated by
Euclidean motions, dilations, inversions

MOb(IR™) provides one approach to the study
of the conformal group.

But inversions don't map R"™ to R":
center of sphere goes to o

Suggests compactifying R™ by appending oo

Unnecessary and inappropriate for Euclidean
motions



Compactify R™ to S = R" U oo.

Metric on R?*T1 induces metric on S™;
hence a conformal structure on S™.

S™\ oo is conformally equivalent to R" via
stereographic projection.

Fruitful point of view: describe conformal geome-
try of S™ in terms of Minkowski geometry of R™12:

quadratic form @Q of signature (n+1,1)

= (CUO,:Ul, o ,xn—l-l) c Rn—l—Q
Qz) = Y ()7 — (a"T1)?
a=0

N — {gj : Q(aj) = O} C Rn—l_z \ {O} Null cone
prtl = {E = [z] i z € R*" T2\ {O}} lines in R*12
Q={{=[z] :z e N} CP"1 Quadric

Q= Sn: Letye 8™ soycRPTL |y =1.

The map S">y — [(%)] € Q is a bijection.

T N — QO projection



n
g= Y (dz*)? — (d=z"T1)?  Minkowski metric
=0

= gy ydatdz’, where g§;7 = (é _01>
n—+1
X=)>Y CCIa:C] position vector field on R™t2
1=0

If z e N, then X(x) € TN

Have §(X, X) = grjzla! = Q(z) =0 on N.

Claim: g(X,V) =0 forall Ve TN.

Proof: Q=0on N. SodQ(V)=0if Ve TN.

Now @Q = grjzx IxJ | so dQ—QgIJCU dz’ .

Gives 0 = dQ(V) = 2g; 521V’ = 25(X, V).

L]



Let x € N. Then g| \ Is degenerate: X L ToN

N

But g induces an inner product g(f’?) on 1,9,

TaN

where ¢ = 7(x) = [z]. ¢(*) is defined as follows:
Have 7w : N — Q. Gives 7« : TyN — T)Q

Now 7«(X) = 0, and 7 : TpN /spanX — T,Q
IS an isomorphism

Given v, w € TyQ, want to define ¢(®) (v, w)

Choose V, W &€ TN such that n.V = v, m«W = w.
Uniqueupto V-V 4+cX, W —->W 4+ X.

Define ¢(*) (v, w) = g(V, W).
Independent of choices since X 1 TN

¢(*) is a positive definite inner product on T,Q.

If 0 %#s e R, how are g(Sx) and g(x) related?



Have 65 : R*t2 - R*+2 §.(z) = sz  Dilations
g satisfies (§5)*g = s23.

Have n(sx) = n(x) = ¢.

Suppose v, w € T)Q.

Choose V, W € T, N so that m«V = v, m:W = w.
Then Vs = (85)«V, Ws = (§5)«W satisfy

Vs = v, m«Ws = w, since mwo ds = Tr.

So

gGP) (v, w) = G(Vs, Ws) = G((65)+V; (85)+W)

= (8:)*g(V, W) = s2g(V, W) = s29(*) (v, w)

Thus g(sx) = 329(‘”).

Conclusion: The Minkowski metric on R?t2
invariantly determines a conformal structure on Q,
but not a Riemannian structure.



Conformal Group

Idea: Any map of R*T2 which preserves the linear
structure and the Minkowski metric will induce a
map of O preserving the conformal structure.

Definition: O(n+1,1) = linear tranformations of
R"+2 preserving Q

Let Le O(n+1,1). Then Ly : N — N.
Preserves lines, so induces Lg : Q — Q.

Claim: Ly is a conformal transformation of 9.

Proof: Let z €¢ N, so n(z) = [z] =4 € Q.

Then Lo([z]) = [Lz]. Must show that

(Lo)*9'L?) is a multiple of g(#).

Will actually show they are equal.

Let v, w &€ TgQ.

Choose V, W € T,N so that m«V = v, mW = w.
Then LV satisfies m«L+«V = (Lg)«(v), sim. for W.
So

(Lo)*g™E™) (v, w) = g% ((L@)«(v), (Lg)+(w))

= g(L«V, L:W) = (L*g)(V, W) = g(V, W)

= ¢®@) (v, w) [ ]
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Thus O(n+1,1) acts on Q by conformal
transformations. —I € O(n 4+ 1,1) acts trivially.

Definition: The conformal group of Q = S™ is
O(n+1,1)/{£I}.

Metrics in the conformal class on O correspond to
sections of NN — Q (modulo £1):

Let s : @ — N be a section of w. If £ € Q, then
= s(¢) is a point on £. So ¢(*) is a metric in the
conformal class at £. Thus ¢ — ¢((f)) is a metric in
the conformal class on Q. ¢(s(¥)) determines s(¥)
up to +1.

Explicit realization on S"

Realize S™ & Q by z"1T1 = 1. This section s deter-

mines the usual metric on S™, since we can choose

V, W so that dz"T1(V) = dz"T1(W) = 0, in which
n

case g becomes ) (dz™)?.

a=0

Recall Lo is the map induced on QO by L.

Write Lgn : S — S™ for the corresponding con-
formal transformation of S™, when Q is identified
with S™ this way.
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How does L € O(n+ 1,1) act on S"?
. A b
Let Le O(n+1,1). Write L= [, .

Let y € S™. So y e R**T1 and |y| = 1.

Set z = (g) e N. Then

b\ (y\ _ (Ay+b
) (1) = (o k) e

(A
Lx = (Ct
Ay—+b
Ay+b\ _ 4 Cty
Now (cty—l—d> = (cy—l—d)( yl—l-d>

Ay+b| __
and cty-|-d| =1.
So obtain

Ay+b
LSn(y) — Ct??jid

Conclusion: The conformal tranformations of S™
are fractional linear transformations induced by
LeO(n+1,1).
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This argument also gives the conformal factor
associated to Lgn.

Recall (LQ)*g(Lx) = ¢(®)

If 2Tl =1, then ¢(*) = gon is usual metric on S™.

Take y € S™ and apply above with x = (?)

Then Lz = (cly + d) (Lsni(y)> = sz

with s = (cly+d), o' = (Lsni(y)> . so (H)ntl =1.
Use g(s7) = s24(2): get
(LQ)*g(La:) — (LQ)*g(S;c’) — 2 (LQ)*g(a;/)

So (Lgn)* ggn = (c'y 4+ d)%ggn.

Conclusion: The conformal factor associated to
the fractional linear transformation

A . —
Lon(y) =500 is  (y+d)72
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Can conjugate Lgn by stereographic projection to
obtain formulae for the conformal transformations
on R",.

Why are all conformal transformations of this form?

Liouville’s Theorem: Suppose n > 3. If U C S™
is open and connected and ¢ : U — S™ is a 1
conformal transformation, then ¢ is the restriction
to U of Lgn for some L e O(n+1,1).

This is false for n = 2: holomorphic and conjugate-
holomorphic maps are conformal. But the global
result is true for n = 2: every conformal transfor-
mation of S2 is Lg, for some L € O(3,1). This
follows by complex analysis: conformal transfor-
mations are holomorphic or anti-holomorphic; the
holomorphic ones are in PSL(2,C), isomorphic to
the identity component of O(3,1).

Liouville’s Theorem is a result about solutions of
overdetermined systems of pde’'s; cf. talks of M.
Eastwood. The condition that ¢ is conformal is
©*g = Q2g, where Q > 0 is an unknown function.
This is a first order system of pde’s for the compo-
nents of . There are n+4+ 1 unknowns: €2 and the
n components of ¢. There are n(n + 1)/2 equa-
tions: the components of g. These are equal for
n = 2, SO problem is determined in that case—lots
of solutions. Overdetermined for n > 2.
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The proof proceeds by first analyzing 2. We know
that €2 for any Lgn is of the form

Qy) = (y+d)~t.

So try to show that 1 is a linear function of .
Actually, the Theorem is proved in its R" realiza-
tion. Corresponding statement is that the anal-
ogous Q1 on R” is a quadratic function of the
form plz — zo|?2 4+ k. The Hessian of 21 must be
a constant multiple of the identity. Once this is
known, one shows that either uy =0 or k = 0. The
first case corresponds to a dilation composed with
an isometry, the second to an inversion composed
with an isometry. The fact about the Hessian of
Q1 can be derived by differentiations and manip-
ulations of the equation ¢*g = Q2g.
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The "ambient” realization of the flat model for
conformal geometry and the conformal group
works exactly the same way for other signatures.

For conformal geometry in signature (p, q) with
p+ g = n, the flat model is a quadric Q of
signature (p+ 1,¢+ 1) in P**1 The conformal
group is O(p+1,q+1)/{£I}, acting as linear trans-
formations on O.

However, the conformal compactification of R™ to
get the quadric involves adding more than a single
point at infinity. The inversion z — # is still con-

formal, where now |:1c|2 is with respect to a mixed
signature metric. So a full null-cone gets mapped
to infinity and must be included in the compacti-
fication. This is all easily analyzed in terms of the
geometry of the quadric in P*+1,

In the special case of Lorentz signature one ob-
tains the conformal compactification of MinkowsKi
space. This is important for relativity.
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