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Riemannian geometry:

M : smooth manifold g: metric on M

Can measure lengths of tangent vectors:

|v|2 = g(v, v), v ∈ TpM

Isometry: preserves lengths

Conformal geometry:

Can only measure angles:

θ(v, w), cos θ =
g(v, w)

|v| |w|

Same as knowing g up to scale at each point

Conformal mapping: preserves angles

Same as preserving g up to scale
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Flat Model

Riemannian geometry:

Rn, Euclidean metric:
∑

(dyi)2

Isometries: E(n) = group of Euclidean motions

y → Ay + b, A ∈ O(n), b ∈ Rn

Can view E(n) ⊂ GL(n + 1, R) by:

(A, b) ↔

(
A b
0 1

)

Embed Rn ↪→ Rn+1 by: y ↔

(
y
1

)

Then

(
A b
0 1

)(
y
1

)
=

(
Ay + b

1

)
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Conformal Transformations of Rn

Euclidean motions

Dilations y → sy, s ∈ R+

Inversions in spheres

For unit sphere, center at origin, get y → y
|y|2

Definition: Möb(Rn) = Group generated by

Euclidean motions, dilations, inversions

Möb(Rn) provides one approach to the study

of the conformal group.

But inversions don’t map Rn to Rn:

center of sphere goes to ∞

Suggests compactifying Rn by appending ∞

Unnecessary and inappropriate for Euclidean

motions
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Compactify Rn to Sn = Rn ∪∞.

Metric on Rn+1 induces metric on Sn;

hence a conformal structure on Sn.

Sn \∞ is conformally equivalent to Rn via

stereographic projection.

Fruitful point of view: describe conformal geome-

try of Sn in terms of Minkowski geometry of Rn+2:

quadratic form Q of signature (n + 1,1)

x = (x0, x1, · · · , xn+1) ∈ Rn+2

Q(x) =
n∑

α=0

(xα)2 − (xn+1)2

N = {x : Q(x) = 0} ⊂ Rn+2 \ {0} Null cone

Pn+1 =
{
` = [x] : x ∈ Rn+2 \ {0}

}
lines in Rn+2

Q = {` = [x] : x ∈ N} ⊂ Pn+1 Quadric

Q ∼= Sn : Let y ∈ Sn, so y ∈ Rn+1, |y| = 1.

The map Sn 3 y →

[(
y
1

)]
∈ Q is a bijection.

π : N → Q projection
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g̃ =
n∑

α=0

(dxα)2 − (dxn+1)2 Minkowski metric

= g̃IJdxIdxJ , where g̃IJ =

(
I 0
0 −1

)

X =
n+1∑

I=0

xI∂xI position vector field on Rn+2

If x ∈ N , then X(x) ∈ TxN

Have g̃(X, X) = g̃IJxIxJ = Q(x) = 0 on N .

Claim: g̃(X, V ) = 0 for all V ∈ TN .

Proof: Q = 0 on N . So dQ(V ) = 0 if V ∈ TN .

Now Q = g̃IJxIxJ , so dQ = 2g̃IJxIdxJ .

Gives 0 = dQ(V ) = 2g̃IJxIV J = 2g̃(X, V ).
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Let x ∈ N . Then g̃
∣∣∣
TxN

is degenerate: X ⊥ TxN

But g̃
∣∣∣
TxN

induces an inner product g(x) on T`Q,

where ` = π(x) = [x]. g(x) is defined as follows:

Have π : N → Q. Gives π∗ : TxN → T`Q

Now π∗(X) = 0, and π∗ : TxN/spanX → T`Q

is an isomorphism

Given v, w ∈ T`Q, want to define g(x)(v, w)

Choose V , W ∈ TxN such that π∗V = v, π∗W = w.

Unique up to V → V + cX, W → W + c′X.

Define g(x)(v, w) = g̃(V, W ).

Independent of choices since X ⊥ TxN .

g(x) is a positive definite inner product on T`Q.

If 0 6= s ∈ R, how are g(sx) and g(x) related?
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Have δs : Rn+2 → Rn+2, δs(x) = sx Dilations

g̃ satisfies (δs)∗g̃ = s2g̃.

Have π(sx) = π(x) = `.

Suppose v, w ∈ T`Q.

Choose V , W ∈ TxN so that π∗V = v, π∗W = w.

Then Vs = (δs)∗V , Ws = (δs)∗W satisfy

π∗Vs = v, π∗Ws = w, since π ◦ δs = π.

So

g(sx)(v, w) = g̃(Vs, Ws) = g̃((δs)∗V, (δs)∗W )

= (δs)∗g̃(V, W ) = s2g̃(V, W ) = s2g(x)(v, w)

Thus g(sx) = s2g(x).

Conclusion: The Minkowski metric on Rn+2

invariantly determines a conformal structure on Q,

but not a Riemannian structure.
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Conformal Group

Idea: Any map of Rn+2 which preserves the linear

structure and the Minkowski metric will induce a

map of Q preserving the conformal structure.

Definition: O(n+1,1) = linear tranformations of

Rn+2 preserving Q

Let L ∈ O(n + 1,1). Then L|N : N → N .

Preserves lines, so induces LQ : Q → Q.

Claim: LQ is a conformal transformation of Q.

Proof: Let x ∈ N , so π(x) = [x] = ` ∈ Q.

Then LQ([x]) = [Lx]. Must show that

(LQ)∗g(Lx) is a multiple of g(x).

Will actually show they are equal.

Let v, w ∈ T`Q.

Choose V , W ∈ TxN so that π∗V = v, π∗W = w.

Then L∗V satisfies π∗L∗V = (LQ)∗(v), sim. for W .

So

(LQ)∗g(Lx)(v, w) = g(Lx) ((LQ)∗(v), (LQ)∗(w)
)

= g̃(L∗V, L∗W ) = (L∗g̃)(V, W ) = g̃(V, W )

= g(x)(v, w)
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Thus O(n + 1,1) acts on Q by conformal

transformations. −I ∈ O(n + 1,1) acts trivially.

Definition: The conformal group of Q = Sn is

O(n + 1,1)/{±I}.

Metrics in the conformal class on Q correspond to

sections of N → Q (modulo ±1):

Let s : Q → N be a section of π. If ` ∈ Q, then

x = s(`) is a point on `. So g(x) is a metric in the

conformal class at `. Thus ` → g(s(`)) is a metric in

the conformal class on Q. g(s(`)) determines s(`)

up to ±1.

Explicit realization on Sn

Realize Sn ∼= Q by xn+1 = 1. This section s deter-

mines the usual metric on Sn, since we can choose

V , W so that dxn+1(V ) = dxn+1(W ) = 0, in which

case g̃ becomes
n∑

α=0

(dxα)2.

Recall LQ is the map induced on Q by L.

Write LSn : Sn → Sn for the corresponding con-

formal transformation of Sn, when Q is identified

with Sn this way.
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How does L ∈ O(n + 1,1) act on Sn?

Let L ∈ O(n + 1,1). Write L =

(
A b
ct d

)
.

Let y ∈ Sn. So y ∈ Rn+1 and |y| = 1.

Set x =

(
y
1

)
∈ N . Then

Lx =

(
A b
ct d

)(
y
1

)
=

(
Ay + b
cty + d

)
∈ N .

Now

(
Ay + b
cty + d

)
= (cty + d)




Ay+b
cty+d

1





and

∣∣∣∣
Ay+b
cty+d

∣∣∣∣ = 1.

So obtain

LSn(y) = Ay+b
cty+d

Conclusion: The conformal tranformations of Sn

are fractional linear transformations induced by

L ∈ O(n + 1,1).
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This argument also gives the conformal factor

associated to LSn.

Recall
(
LQ

)∗ g(Lx) = g(x)

If xn+1 = 1, then g(x) = gSn is usual metric on Sn.

Take y ∈ Sn and apply above with x =

(
y
1

)
.

Then Lx = (cty + d)

(
LSn(y)

1

)
= sx′

with s = (cty+d), x′ =

(
LSn(y)

1

)
, so (x′)n+1 = 1.

Use g(sx′) = s2g(x′); get

(
LQ

)∗ g(Lx) =
(
LQ

)∗ g(sx′) = s2
(
LQ

)∗ g(x′)

So (LSn)∗ gSn = (cty + d)−2gSn.

Conclusion: The conformal factor associated to

the fractional linear transformation

LSn(y) = Ay+b
cty+d

is (cty + d)−2.
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Can conjugate LSn by stereographic projection to

obtain formulae for the conformal transformations

on Rn.

Why are all conformal transformations of this form?

Liouville’s Theorem: Suppose n ≥ 3. If U ⊂ Sn

is open and connected and ϕ : U → Sn is a C1

conformal transformation, then ϕ is the restriction

to U of LSn for some L ∈ O(n + 1,1).

This is false for n = 2: holomorphic and conjugate-

holomorphic maps are conformal. But the global

result is true for n = 2: every conformal transfor-

mation of S2 is LS2 for some L ∈ O(3,1). This

follows by complex analysis: conformal transfor-

mations are holomorphic or anti-holomorphic; the

holomorphic ones are in PSL(2, C), isomorphic to

the identity component of O(3,1).

Liouville’s Theorem is a result about solutions of

overdetermined systems of pde’s; cf. talks of M.

Eastwood. The condition that ϕ is conformal is

ϕ∗g = Ω2g, where Ω > 0 is an unknown function.

This is a first order system of pde’s for the compo-

nents of ϕ. There are n+1 unknowns: Ω and the

n components of ϕ. There are n(n + 1)/2 equa-

tions: the components of g. These are equal for

n = 2, so problem is determined in that case–lots

of solutions. Overdetermined for n > 2.
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The proof proceeds by first analyzing Ω. We know

that Ω for any LSn is of the form

Ω(y) = (cty + d)−1.

So try to show that Ω−1 is a linear function of y.

Actually, the Theorem is proved in its Rn realiza-

tion. Corresponding statement is that the anal-

ogous Ω−1 on Rn is a quadratic function of the

form µ|x − x0|
2 + κ. The Hessian of Ω−1 must be

a constant multiple of the identity. Once this is

known, one shows that either µ = 0 or κ = 0. The

first case corresponds to a dilation composed with

an isometry, the second to an inversion composed

with an isometry. The fact about the Hessian of

Ω−1 can be derived by differentiations and manip-

ulations of the equation ϕ∗g = Ω2g.
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The “ambient” realization of the flat model for

conformal geometry and the conformal group

works exactly the same way for other signatures.

For conformal geometry in signature (p, q) with

p + q = n, the flat model is a quadric Q of

signature (p + 1, q + 1) in Pn+1. The conformal

group is O(p+1, q+1)/{±I}, acting as linear trans-

formations on Q.

However, the conformal compactification of Rn to

get the quadric involves adding more than a single

point at infinity. The inversion x → x
|x|2

is still con-

formal, where now |x|2 is with respect to a mixed

signature metric. So a full null-cone gets mapped

to infinity and must be included in the compacti-

fication. This is all easily analyzed in terms of the

geometry of the quadric in Pn+1.

In the special case of Lorentz signature one ob-

tains the conformal compactification of Minkowski

space. This is important for relativity.
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