Introduction to

Conformal Geometry

C. Robin Graham

Lecture 1

- Flat model for conformal geometry
- Conformal group: O(n+1,1)

Lecture 2

- Curved conformal geometry
- Weyl and Cotton tensors
- Characterization of conformal flatness

Lecture 3

- Ambient metric
- Tractor bundle and connection

Riemannian geometry:

M: smooth manifold g: metric on M

Can measure lengths of tangent vectors:

$$|v|^2 = g(v, v), \qquad v \in T_p M$$

Isometry: preserves lengths

Conformal geometry:

Can only measure angles:

$$\theta(v, w), \qquad \cos \theta = \frac{g(v, w)}{|v| |w|}$$

Same as knowing g up to scale at each point

Conformal mapping: preserves angles

Same as preserving g up to scale

Flat Model

Riemannian geometry:

 \mathbb{R}^n , Euclidean metric: $\sum (dy^i)^2$

Isometries: E(n) = group of Euclidean motions

 $y \to Ay + b,$ $A \in O(n), b \in \mathbb{R}^n$

Can view $E(n) \subset GL(n+1,\mathbb{R})$ by:

$$(A,b) \leftrightarrow \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$$

Embed $\mathbb{R}^n \hookrightarrow \mathbb{R}^{n+1}$ by: $y \leftrightarrow \begin{pmatrix} y \\ 1 \end{pmatrix}$

Then
$$\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y \\ 1 \end{pmatrix} = \begin{pmatrix} Ay+b \\ 1 \end{pmatrix}$$

<u>Conformal Transformations of \mathbb{R}^n </u>

Euclidean motions

Dilations $y \to sy$, $s \in \mathbb{R}_+$

Inversions in spheres

For unit sphere, center at origin, get $y \rightarrow \frac{y}{|y|^2}$

Definition: $M\"ob(\mathbb{R}^n) = Group$ generated by Euclidean motions, dilations, inversions

Möb (\mathbb{R}^n) provides one approach to the study of the conformal group.

But inversions don't map \mathbb{R}^n to \mathbb{R}^n : center of sphere goes to ∞

Suggests compactifying \mathbb{R}^n by appending ∞

Unnecessary and inappropriate for Euclidean motions

Compactify \mathbb{R}^n to $S^n = \mathbb{R}^n \cup \infty$. Metric on \mathbb{R}^{n+1} induces metric on S^n ; hence a conformal structure on S^n . $S^n \setminus \infty$ is conformally equivalent to \mathbb{R}^n via stereographic projection.

Fruitful point of view: describe conformal geometry of S^n in terms of Minkowski geometry of \mathbb{R}^{n+2} : quadratic form Q of signature (n + 1, 1)

$$\begin{aligned} x &= (x^0, x^1, \cdots, x^{n+1}) \in \mathbb{R}^{n+2} \\ Q(x) &= \sum_{\alpha=0}^n (x^{\alpha})^2 - (x^{n+1})^2 \\ \mathcal{N} &= \{x : Q(x) = 0\} \subset \mathbb{R}^{n+2} \setminus \{0\} \quad \text{Null cone} \\ \mathbb{P}^{n+1} &= \left\{ \ell = [x] : x \in \mathbb{R}^{n+2} \setminus \{0\} \right\} \quad \text{lines in } \mathbb{R}^{n+2} \\ \mathcal{Q} &= \left\{ \ell = [x] : x \in \mathcal{N} \right\} \subset \mathbb{P}^{n+1} \quad \text{Quadric} \\ \mathcal{Q} &\cong S^n : \quad \text{Let } y \in S^n \text{, so } y \in \mathbb{R}^{n+1} \text{, } |y| = 1. \\ \text{The map } S^n \ni y \to \left[\begin{pmatrix} y \\ 1 \end{pmatrix} \right] \in \mathcal{Q} \text{ is a bijection.} \\ \pi : \mathcal{N} \to \mathcal{Q} \qquad \text{projection} \end{aligned}$$

6

$$\begin{split} \tilde{g} &= \sum_{\alpha=0}^{n} (dx^{\alpha})^{2} - (dx^{n+1})^{2} & \text{Minkowski metric} \\ &= \tilde{g}_{IJ} dx^{I} dx^{J}, & \text{where} & \tilde{g}_{IJ} = \begin{pmatrix} I & 0 \\ 0 & -1 \end{pmatrix} \\ X &= \sum_{I=0}^{n+1} x^{I} \partial_{x^{I}} & \text{position vector field on } \mathbb{R}^{n+2} \end{split}$$

If $x \in \mathcal{N}$, then $X(x) \in T_x \mathcal{N}$

Have $\tilde{g}(X, X) = \tilde{g}_{IJ}x^{I}x^{J} = Q(x) = 0$ on \mathcal{N} .

Claim: $\widetilde{g}(X, V) = 0$ for all $V \in T\mathcal{N}$.

Proof: Q = 0 on \mathcal{N} . So dQ(V) = 0 if $V \in T\mathcal{N}$.

Now $Q = \tilde{g}_{IJ} x^I x^J$, so $dQ = 2 \tilde{g}_{IJ} x^I dx^J$.

Gives $0 = dQ(V) = 2\tilde{g}_{IJ}x^I V^J = 2\tilde{g}(X, V)$.

Let $x \in \mathcal{N}$. Then $\tilde{g}\Big|_{T_x\mathcal{N}}$ is degenerate: $X \perp T_x\mathcal{N}$ But $\tilde{g}\Big|_{T_x\mathcal{N}}$ induces an inner product $g^{(x)}$ on $T_\ell \mathcal{Q}$, where $\ell = \pi(x) = [x]$. $g^{(x)}$ is defined as follows:

Have $\pi : \mathcal{N} \to \mathcal{Q}$. Gives $\pi_* : T_x \mathcal{N} \to T_\ell \mathcal{Q}$

Now $\pi_*(X) = 0$, and $\pi_* : T_x \mathcal{N}/\text{span}X \to T_\ell \mathcal{Q}$ is an isomorphism

Given $v, w \in T_{\ell}\mathcal{Q}$, want to define $g^{(x)}(v, w)$

Choose V, $W \in T_x \mathcal{N}$ such that $\pi_* V = v$, $\pi_* W = w$. Unique up to $V \to V + cX$, $W \to W + c'X$.

Define $g^{(x)}(v,w) = \tilde{g}(V,W)$. Independent of choices since $X \perp T_x \mathcal{N}$.

 $g^{(x)}$ is a positive definite inner product on $T_{\ell}Q$. If $0 \neq s \in \mathbb{R}$, how are $g^{(sx)}$ and $g^{(x)}$ related? Have $\delta_s : \mathbb{R}^{n+2} \to \mathbb{R}^{n+2}$, $\delta_s(x) = sx$ Dilations \tilde{g} satisfies $(\delta_s)^* \tilde{g} = s^2 \tilde{g}$.

Have
$$\pi(sx) = \pi(x) = \ell$$
.

Suppose $v, w \in T_{\ell}Q$.

Choose V, $W \in T_x \mathcal{N}$ so that $\pi_* V = v$, $\pi_* W = w$.

Then $V_s = (\delta_s)_*V$, $W_s = (\delta_s)_*W$ satisfy

$$\pi_*V_s = v, \ \pi_*W_s = w, \quad \text{since } \pi \circ \delta_s = \pi.$$

So

$$g^{(sx)}(v,w) = \tilde{g}(V_s, W_s) = \tilde{g}((\delta_s)_* V, (\delta_s)_* W)$$

$$= (\delta_s)^* \widetilde{g}(V, W) = s^2 \widetilde{g}(V, W) = s^2 g^{(x)}(v, w)$$

Thus $g^{(sx)} = s^2 g^{(x)}$.

Conclusion: The Minkowski metric on \mathbb{R}^{n+2} invariantly determines a conformal structure on \mathcal{Q} , but not a Riemannian structure.

Conformal Group

Idea: Any map of \mathbb{R}^{n+2} which preserves the linear structure and the Minkowski metric will induce a map of \mathcal{Q} preserving the conformal structure.

Definition: O(n+1,1) = linear tranformations of \mathbb{R}^{n+2} preserving Q

Let $L \in O(n + 1, 1)$. Then $L|_{\mathcal{N}} : \mathcal{N} \to \mathcal{N}$. Preserves lines, so induces $L_{\mathcal{Q}} : \mathcal{Q} \to \mathcal{Q}$.

Claim: $L_{\mathcal{Q}}$ is a conformal transformation of \mathcal{Q} .

Proof: Let $x \in \mathcal{N}$, so $\pi(x) = [x] = \ell \in \mathcal{Q}$. Then $L_{\mathcal{Q}}([x]) = [Lx]$. Must show that $(L_{\mathcal{Q}})^* g^{(Lx)}$ is a multiple of $g^{(x)}$. Will actually show they are equal. Let $v, w \in T_{\ell}\mathcal{Q}$. Choose $V, W \in T_x\mathcal{N}$ so that $\pi_*V = v, \pi_*W = w$. Then L_*V satisfies $\pi_*L_*V = (L_{\mathcal{Q}})_*(v)$, sim. for W. So $(L_{\mathcal{Q}})^* g^{(Lx)}(v, w) = g^{(Lx)}((L_{\mathcal{Q}})_*(v), (L_{\mathcal{Q}})_*(w))$ $= \tilde{g}(L_*V, L_*W) = (L^*\tilde{g})(V, W) = \tilde{g}(V, W)$ $= g^{(x)}(v, w)$ Thus O(n + 1, 1) acts on Q by conformal transformations. $-I \in O(n + 1, 1)$ acts trivially.

Definition: The conformal group of $Q = S^n$ is $O(n+1,1)/{\pm I}$.

Metrics in the conformal class on \mathcal{Q} correspond to sections of $\mathcal{N} \to \mathcal{Q}$ (modulo ±1):

Let $s : \mathcal{Q} \to \mathcal{N}$ be a section of π . If $\ell \in \mathcal{Q}$, then $x = s(\ell)$ is a point on ℓ . So $g^{(x)}$ is a metric in the conformal class at ℓ . Thus $\ell \to g^{(s(\ell))}$ is a metric in the conformal class on \mathcal{Q} . $g^{(s(\ell))}$ determines $s(\ell)$ up to ± 1 .

Explicit realization on S^n

Realize $S^n \cong Q$ by $x^{n+1} = 1$. This section s determines the usual metric on S^n , since we can choose V, W so that $dx^{n+1}(V) = dx^{n+1}(W) = 0$, in which case \tilde{g} becomes $\sum_{\alpha=0}^{n} (dx^{\alpha})^2$.

Recall $L_{\mathcal{Q}}$ is the map induced on \mathcal{Q} by L.

Write $L_{S^n} : S^n \to S^n$ for the corresponding conformal transformation of S^n , when \mathcal{Q} is identified with S^n this way. How does $L \in O(n + 1, 1)$ act on S^n ?

Let
$$L \in O(n + 1, 1)$$
. Write $L = \begin{pmatrix} A & b \\ c^t & d \end{pmatrix}$.

Let $y \in S^n$. So $y \in \mathbb{R}^{n+1}$ and |y| = 1.

Set
$$x = \begin{pmatrix} y \\ 1 \end{pmatrix} \in \mathcal{N}$$
. Then

$$Lx = \begin{pmatrix} A & b \\ c^t & d \end{pmatrix} \begin{pmatrix} y \\ 1 \end{pmatrix} = \begin{pmatrix} Ay + b \\ c^t y + d \end{pmatrix} \in \mathcal{N}.$$

Now
$$\begin{pmatrix} Ay+b\\c^ty+d \end{pmatrix} = (c^ty+d) \begin{pmatrix} \frac{Ay+b}{c^ty+d}\\1 \end{pmatrix}$$

and
$$\left|\frac{Ay+b}{c^ty+d}\right| = 1.$$

So obtain

$$L_{S^n}(y) = \frac{Ay+b}{c^t y+d}$$

Conclusion: The conformal tranformations of S^n are fractional linear transformations induced by $L \in O(n + 1, 1)$.

This argument also gives the conformal factor associated to L_{S^n} .

Recall
$$(L_Q)^* g^{(Lx)} = g^{(x)}$$

If $x^{n+1} = 1$, then $g^{(x)} = g_{S^n}$ is usual metric on S^n .
Take $y \in S^n$ and apply above with $x = \begin{pmatrix} y \\ 1 \end{pmatrix}$.
Then $Lx = (c^t y + d) \begin{pmatrix} L_{S^n}(y) \\ 1 \end{pmatrix} = sx'$
with $s = (c^t y + d), \ x' = \begin{pmatrix} L_{S^n}(y) \\ 1 \end{pmatrix}, \ \text{so } (x')^{n+1} = 1$.
Use $g^{(sx')} = s^2 g^{(x')}$; get
 $(L_Q)^* g^{(Lx)} = (L_Q)^* g^{(sx')} = s^2 (L_Q)^* g^{(x')}$
So $(L_{S^n})^* g_{S^n} = (c^t y + d)^{-2} g_{S^n}$.

Conclusion: The conformal factor associated to the fractional linear transformation

$$L_{S^n}(y) = \frac{Ay+b}{c^t y+d}$$
 is $(c^t y+d)^{-2}$.

Can conjugate L_{S^n} by stereographic projection to obtain formulae for the conformal transformations on \mathbb{R}^n .

Why are all conformal transformations of this form?

Liouville's Theorem: Suppose $n \ge 3$. If $U \subset S^n$ is open and connected and $\varphi : U \to S^n$ is a C^1 conformal transformation, then φ is the restriction to U of L_{S^n} for some $L \in O(n + 1, 1)$.

This is false for n = 2: holomorphic and conjugateholomorphic maps are conformal. But the global result is true for n = 2: every conformal transformation of S^2 is L_{S^2} for some $L \in O(3,1)$. This follows by complex analysis: conformal transformations are holomorphic or anti-holomorphic; the holomorphic ones are in $PSL(2,\mathbb{C})$, isomorphic to the identity component of O(3,1).

Liouville's Theorem is a result about solutions of overdetermined systems of pde's; cf. talks of M. Eastwood. The condition that φ is conformal is $\varphi^*g = \Omega^2 g$, where $\Omega > 0$ is an unknown function. This is a first order system of pde's for the components of φ . There are n+1 unknowns: Ω and the n components of φ . There are n(n+1)/2 equations: the components of g. These are equal for n = 2, so problem is determined in that case–lots of solutions. Overdetermined for n > 2.

The proof proceeds by first analyzing Ω . We know that Ω for any L_{S^n} is of the form

$$\Omega(y) = (c^t y + d)^{-1}.$$

So try to show that Ω^{-1} is a linear function of y. Actually, the Theorem is proved in its \mathbb{R}^n realization. Corresponding statement is that the analogous Ω^{-1} on \mathbb{R}^n is a quadratic function of the form $\mu |x - x_0|^2 + \kappa$. The Hessian of Ω^{-1} must be a constant multiple of the identity. Once this is known, one shows that either $\mu = 0$ or $\kappa = 0$. The first case corresponds to a dilation composed with an isometry, the second to an inversion composed with an isometry. The fact about the Hessian of Ω^{-1} can be derived by differentiations and manipulations of the equation $\varphi^*g = \Omega^2 g$. The "ambient" realization of the flat model for conformal geometry and the conformal group works exactly the same way for other signatures.

For conformal geometry in signature (p,q) with p+q=n, the flat model is a quadric Q of signature (p+1,q+1) in \mathbb{P}^{n+1} . The conformal group is $O(p+1,q+1)/\{\pm I\}$, acting as linear transformations on Q.

However, the conformal compactification of \mathbb{R}^n to get the quadric involves adding more than a single point at infinity. The inversion $x \to \frac{x}{|x|^2}$ is still conformal, where now $|x|^2$ is with respect to a mixed signature metric. So a full null-cone gets mapped to infinity and must be included in the compactification. This is all easily analyzed in terms of the geometry of the quadric in \mathbb{P}^{n+1} .

In the special case of Lorentz signature one obtains the conformal compactification of Minkowski space. This is important for relativity.