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Rigidity of Riemannian Foliations with 
Complex Leaves on K ihler Manifolds 

By Paul-Andi Nagy 

ABSTRACT. We study Riemannian foliations with complex leaves on K~ihler manifolds. The tensor T, 

the obstruction to the foliation be totally geodesic, is interpreted as a holomorphic section of  a certain 

vector bundle. This enables us to give classification results when the manifoM is compact. 

1. Introduction 

Riemannian foliations with totally geodesic leaves and in particular Riemannian submersions 
with totally geodesic fibers are now quite well understood. Many general structure results in the 
theory of Riemannian submersions are known (see [4], Chapter 9). For particular symmetric 
spaces--as spheres or complex and quatemionic projective spaces--classification results are 
available [7, 6] under some geometric hypothesis on the fibers. For real hyperbolic spaces, or 
more generally locally symmetric spaces with negative sectional curvature complete classification 
results are available in the compact case [12, 19]. In the less explored case of pseudo-Riemannian 
submersions similar results are known to hold under some additional conditions [14, 2, 1]. In 
the case of Riemannian foliations transversal geometric assumptions were used in order to obtain 
classification theorems [16]. 

In a complex setting, a notion of almost Hermitian submersions was proposed in [20] but it 
turns out that for many classes the horizontal distribution has to be integrable [20, 8, 10]. One 
might suspect that a less rigid situation, even in the case of a submersion, could arise from the 
study of Riemannian submersions from an almost-Hermitian manifold. The geometric condition 
we need here is that the fibers (or the leaves) be almost complex. This is of interest when searching 
geometric structures admitting a (Riemannian) twistor construction as explained in [3]. 

In this article we study Riemannian foliations with complex leaves on Kahler manifolds. The 
totally geodesic case was completely described in [15]--as a byproduct of the classification of 
nearly K~hler manifolds--where it is shown that under the simple connectivity and completeness 
assumptions such an object is a Riemannian product of twistor spaces over positive quaternionic 
K~ihler manifolds, K~ le r  manifolds and homogeneous spaces belonging to three main classes 
(see [ 18] for basic quaternionic-K~ler geometry). Note that for the case of the complex projective 
space this was already known in [7]. 
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It is then natural to investigate the non-totally geodesic case. It turns out the ambient K~ihler 
geometry is sufficiently strong to force, at least in the compact case, the foliation to be of very 
special type. More precisely, our main result is the following rigidity theorem. 

Theorem 1.1. Let (M, g, J) be a compact Kiihler manifold. I f  M carries a Riemannian foli- 
ation ~ with complex leaves then M is locally isometric and biholomorphic with a Riemannian 
product M1 x M2 of Kiihler manifolds where M1 carries a totally geodesic, Riemannian folia- 
tion with complex leaves and M2 carries a Riemannian foliation with complex leaves which is 
transversally integrable. Moreover, the foliation Jr is the Riemannian product of  the latter. 

As it is well known, the decomposition theorem of deRham ensures that at least locally one 
can restrict attention to holonomy irreducible Riemannian manifolds. For the case of the latter, 
Theorem 1.1 gives: 

Corollary 1.2. On a compact, simply connected, irreducible Ki~hter manifold any Riemann&n 
foliation with complex leaves is either totally geodesic, or transversally integrable. 

Note that for these rigidity results no assumption on the curvature of the metric g is necessary. 
In a standard fashion, conditions ensuring total geodesicity of a given foliation are based on bounds 
on, say, Ricci curvature (see [ 11] for examples of results of this type). Note also that when studying 
holomorphic distributions on K~ihler manifolds conditions on the metric are necessary even in the 
case of (real) codimension 2 [13]. 

The article is organized as follows. In Section 2 we collect some classical facts about 
Riemannian foliations and then specialize to the case of K~hler manifolds. We are basically 
starting from O'Neill's equations for the curvature tensor and use the K~ihler structure to derive 
differential relations between the basic tensors A and T. In Section 3 we interpret the tensor T, 
the obstruction to the foliation to be totally geodesic as a holomorphic section of a certain vector 
bundle and use the compacity assumption in order to obtain the splitting in Theorem 1.1. 

2. Preliminaries 

We start by collecting a number of basic facts about Riemannian foliations and next we will 
specialize to the Kahler case. Let (M, g) be a Riemannian manifold and let ~- be a foliation on M. 
We denote by V the integrable distribution induced by b r. Let H be the orthogonal complement 
of V. We assume the foliation ~- to be Riemannian, that is 

s  Y) = 0 

whenever X, Y are in H and V belongs to V. Let V be the Levi-Civita connection of the metric 
g. Throughout this article we will denote by V, W vector fields in V and by X, Y, Z etc. vector 
fields in H. It is easy to verify that the formula [17] 

VEF = (VEEr;) v + (VEFn)H 

defines a metric connection with torsion on M (here the subscript denotes orthogonal projection 
on the subspace). The main property of this connection is that it preserves the distributions )2 and 
H. 

Of fundamental importance for the theory of Riemannian foliations are the O'Neill's tensors 
T and A which we are going to define now, following [17], p. 49. We have: 

TEF = (VEvFV)H + (VEvFH)v 
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whenever E, F belong to TM. Then T vanishes on H x H and H x V, it is symmetric on V x V 
(as a consequence of  the integrability of  V) and moreover, we have that < Tv X, W > = - < 
X, TvW >. 

The second O'Neill tensor A is defined by 

AEF = (VEuFH)v + (VEHFV)H 

for all E and F in TM. Concerning its properties, it vanishes on V x V and V x H,  it is 
skew-symmetric on H (because the foliation .T is Riemannian) and furthermore it satisfies < 
AxV,  Y > =  - < V, A x Y  >. 

Note that the foliation 3 r is called transversally integrable iff the distribution H is integrable. 
In this situation the tensor A has to be symmetric and therefore it vanishes, making H a totally 
geodesic distribution. 

With this definitions in hand one can easily express the difference V - V in terms of  the 
O'Neill 's  tensors: 

V x Y  = V x Y  + AxY,  V x V  = V x V  + A x V  

V v X  = V v X  + TvX, V v W  = V v W  + T v W .  

In the rest of  this article we will assume that (M, g) is a Kahler manifold of  dimension 2m, 
with complex structure J.  Moreover, we suppose that the foliation 5 r has complex leaves, that 
is JV  = V (then of course, J H  = H). As V J  = 0, it follows that V J  = 0, hence we obtain 
information about the complex type of  the tensors A and T as follows 

A x ( J Y ) =  J ( A x Y ) ,  A j x V  = - J ( A x V ) = - A x ( J V )  
(2.1) 

T s v W  = J (TvW) ,  T j v X  = - J ( T v X )  = - T v ( J X ) .  

We also have A j x J Y  = - A x Y  and T j v J W  = - T v W .  A consequence of the last identity is 
that the foliation ~- is harmonic, that is the mean curvature vector field vanishes. 

We will use now the Kahler structure on M, together with suitable curvature identities to get 
some geometric information about the tensors A and T. 

L e m m a  2.1. Let X, Y, Z be in H and V, W in V. Then we have: 

(i) (VxA)(Y ,  Z) = O. 

(ii) < AxY,  TvZ > =  0. 

(iii) < (VvA) (X ,  Y), W > = <  (VwA) (X ,  Y), V >. 

(iv) ( V j x T ) ( V ,  W)  = - J ( V x T ) ( V ,  W).  

Proof. We will prove (i) and (ii) simultaneously. Let us denote by R the curvature tensor of  
the Levi-Civita connection of  the metric g. We first recall the O'Neill  formula (see [17]) 

R(X, Y, Z, V) = <  (-VzA) (X, Y), V > + < AxY,  TvZ > 

- < A r Z ,  T v X > -  < A z X ,  T v Y > � 9  
(2.2) 

m 

Note that the formula in [17] contains V rather then V. However, after examining the difference 
V - V (which we have already given) it easily turns out that the two expressions are in fact the 
same. 
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Since (M, g) is K~ihler one has R ( J X ,  JY, Z, V) = R(X, Y, Z, V). Hence by (2.1) we 
easily arrive at 

< ( V z A )  (X, Y), V > + < AxY,  TvZ  > =  0 .  

Again by (2.1) we see that the first term of the previous equation is J-invariant in Y and V, whilst 
the second is J-anti-invariant in the same variables. This proves (i) and (ii). 

To prove (iii) we use another O'Nei l l ' s  formula stating that 

R(V,  W, X, Y) = <  ( V v A )  (X, Y), W > - < (VwA)  (X, Y), V > 

+ < A x V ,  A y W  > - < A x W ,  A y V  > (2.3) 

- < TvX,  T w Y > + <  TvY, T w X >  . 

The result follows now by (2.1) and the fact that R(V, W, JX ,  JY )  = R(V, W, X, Y). The 
identity in (iv) can be proven in the same way, using this time the identity 

R(X,  V, r, w )  = <  ( V x T )  (V, W), Y > + < ( V v A )  (X, r ) ,  w > 

+ < A x V ,  A y W  > - < TvX,  TwY > 

the fact that R ( J X ,  JV ,  Y, W) = R(X,  V, Y, W) and (iii). [ ]  

R e m a r k  2.2. (i) By the first two assertions of Lemma 2.1 we obtain that R(X,  Y, Z, V) = 0, 
a condition frequently imposed when studying Riemannian foliations (see Chapter 5 of  [17] and 
references therein). 

(ii) By (i) and (ii) of  the previous lemma it is easy to see that H satisfies the Yang-Mills condition. 

(iii) Using (iii) of  Proposition 2.1 and [17], p. 52, we get the following relation between the 
covariant derivatives of  A and T 

2 < ( V v A )  (X, Y), W > = <  ( V y T )  (V, W), X > - < ( V x T )  (V, W), Y > . 

We will make use of  this equation in the next section. 

(2.4) 

Let us denote by R the curvature tensor of  the connection V. Another result that will be 
needed in the next section is the following. 

Lemma 2.3. We have: 

-R(X, Y )V  = 2[Ax, Ay]V + Q(X, Y)V  

for all X, Y in H and V in 1) where we defined Q(X, Y)V  = TTv~,X - TTvxY. 

Proof. Follows from the general formulas in [ 17], p. 100, and Lemma 2.1, (iii). [] 

3. The harmonicity of the tensor T 

In this section we begin the study of the tensor T. Our main idea is to consider T as 
an S2(V)-valued l - form on M and then use Lemma 2.1, (iv) to study differential equations 
involving T. The analogy we have constantly in mind is the well known fact that on a compact 
K~ihler manifold any holomorphic 1-form is closed. We first develop some preliminary material. 
We refer the reader to the discussion in Section 4 of  [5]. Although our geometric context is 
different, the guiding principle concerning the Kahler identities and relations between various 
natural differential operators is the same. 
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For each p > 0 we define $202) | AP(H)  to be the space of symmetric endomorphisms 
ot : ~ • )2 ~ AP(H).  We also define S2(V) as the subspace of S2(V) consisting of tensors 
which vanish on )) • ,4 where A = {AxY : X, Y in H}. 

The ordinary exterior derivative d does not preserve A* (H) but dH, the horizontal component 
of its restriction to A*(H) does. The latter can be extended to $20 ;) | A*(H) by setting 

P 
~ . ~ ) ~ ,  ~ ) ~ 0  . . . . .  ~ )  = Z ~ - ,  i { v ~ ) ~ ,  w)(x0 . . . .  ~i . . . .  ~ )  

/ X 

i=0 

for every ot in S 20;) | AP (H). Using Lemma 2.1, (i) it is easy to see that d e  preserves S 2 (V) | 
A*(H). The fact that the almost complex structure J is integrable induces a splitting 

dH = OH + OH 

on S2(U) | A*(H) where OH " $2('1 )) | AP'q(H) -+ $2(] 2) | AP'q+I(H) and 0n  " $2() )) | 
AP,q(H) --+ $2(1)) | Ap+I,q(H) where 

OH = 1 (dH + (-1)riJdHJ) 

-Ott = l (dn + (-1)r+liJdl4J) 

on $2(12) | Ar(H)  and J acts on an element ot of S2(V) | AP(H) by 

(Jol ) (V,  W)(X1 . . . . .  X p )  = a ( V ,  W ) ( J X  1 . . . . .  J X p )  . 

We need now a formula relating to the anticommutator of the operators OH and OH. Let Q be 
the tensor defined at the end of Section 2. If s belongs to S 2 (V) we define the action of Q on s 

to be Q.s, an element of S2 (V) | A 2(H) defined by (Q.s)(V, W)(X, Y) = s(Q(X, Y) V, W) + 
s(V, Q(X, Y)W). Obviously, this can be extended to give a linear map 

7 7' : $2(12) | A P ( H )  --+ S2(V) | A P + 2 ( H ) ,  "Pot = Q.ot 

having the property that 79(sa)(V, W) = (Q.s)(V, W)/xa whenever s is in S2(V) and c~ belongs 
to A P ( H ) .  

L e m m a  3.1. The following holds on S 2 (V) | A p'q ( H )  : 

OHOH + OHOH = "~ �9 

Proof. Let us first compute d2Hq where q belongs to S~ ('F). An easy manipulation yields 

--2 --2 
( d 2 q ) ( V , W ) ( X , Y ) : ( V x ,  yq ) (V ,W)- (X7y ,  x q ) ( V , W )  �9 

Using the Ricci identity for the connection with torsion V (see [4], p. 26) we get 

(v~,~q) ~ ,  w ) -  (v~,~q)~, w)= q / ~ ,  ~)~, ~1 +q t~, ~ ,  , )~t  + 21Va~qt~, ~ )  

Using now Lemma 2.3 and the fact that q vanishes on vectors of the form AxY with X, Y in H 
we obtain that 

(d2 q) (V, W)(X, Y) = 2  (VAxYq) (V, W) + q(Q(X, Y)V, W) + q(V, Q(x, Y)W) . (3.1) 
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We consider now ot in S2A 0; )  | AP'q (H) and let {e ~ } be a local basis of  closed basic (p,  q)-forms 

in A p'q ( H ) .  We write ~ = ~ qle I with ql in S 2 (V) and use the multiplicative property of dH 
l 

to obtain d2c~ ---- ~ d2 qI A e I. But a/-/~/-/~ + ~/~0/~ot -- (d~u) p+l,q+l = ~ ( d 2  qi) 1,1 A d .  
l 1 

But A j x J Y  = - A x Y  and Q(JX,  JY)  = Q(X, Y) hence (d2 ql) l'l = 79ql and the proof is 
finished. [ ]  

At this stage let us recall another particular feature of K~ihler geometry, namely the Kahler 
identities. We state them on A P ( H )  as follows: 

[3H, L*] ' -*  = --tOH, [314, L*] = i3 ~ 

where L is multiplication with w n in A2(H)  defined by wH(x,  JY) = <  X, JY  >. Of  course 
these are projection of  the Kahler identities of  M and, furthermore, it is easy to see that they hold 
on $ 2 0 ; )  | A*(H)  too. 

Let us now define t~T in S2(V) | A I ( H )  by setting C~T(V, W)X = <  TvW, X >. In virtue 
of  Lemma 2.1, (ii) we have that OtT belongs to $20 ;) @ A I ( H ) .  Moreover, we define ( in 

$ 2 0  d) | A ~  by ( = t~T + iJOtT. Then 

L e m m a  3.2.  (i) V j x (  = - i V x (  forall X in H. 

(ii) 3H ( = 0. 

(iii) 874 ( = O*H ( = 0. 

(iv) abort( = -i79"L(.  

Proof. (i) is a straightforward consequence of Lemma 2.1, (iv), while (ii) comes immediately 
by (i) and the fact that 2-3H = dtt + i JdH J on S2A (V) | A ~ 1 (H).  (iii) We notice first that for 
any c~ in S2(V) | A I ( H )  we have 

-- (dhol) (V, W) : Z (veiOt) (V, W)ei 
i 

whenever V, W are V and {el } is an arbitrary local orthonormal basis in H.  Therefore, when V 
and W in V are fixed, - (d~/o t r ) (V,  W) equals the trace over H of < (V.T)(V, W), .  >. Since 
by Lemma 2.1, (iv) this last tensor is J-anti-invariant over H,  it has no trace and we deduce that 
d~4t~r = 0. In the same way one proves that d ~ / J a r  = 0, thus d~/( = 0 and the proof of  (iii) is 
clearly finished. (iv) We use (in the classical way) the Kahler identities and the previous lemma. 
We have 

3*HOH ~ =--i3~1 O H ,L  ~ = - - i  3H3 H L ( = - i  O H ,3 n L ( + , O  H[o H ,L] 

= - - i  IOH, OH} Lr +-3*H-3Hff = - - i  IO*H,-3*HI Lg 

where {., �9 } denotes the anti-commutator. It suffices now to dualize the equation in Lemma 3.1. 
[]  

Before proceeding to the proof of  the Theorem 1.1 we need one more preliminary result. 
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L e r n m a  3.3. We have 7:'~ = O. 

P r o o f  Obviously it suffices to show that 72OtT = 0. But it is straightforward to see that 

(79a)(V, W ) ( X ,  Y, Z)  = e~(Q(X, Y)V,  W ) ( Z )  § or(V, Q(X,  r ) w ) ( z )  

- ot(Q(X, Z )V ,  W ) ( Y )  - a(V,  Q(X,  z ) w ) ( Y )  

+ a (Q(Y ,  z ) v ,  W ) ( X )  + or(V, Q(Y, z ) w ) ( x )  

whenever c~ belongs to S 2 (V) | A I (H) .  We have: 

< T v Q ( X ,  Y )W,  Z > = - < Q(X,  Y )W,  T v Z  >-=- - < TTwrX -- TTwxY, T v Z  > 

= <  X, TTvz (TwY)  > - < Y, TTwxTvZ  > �9 

But < X, TTvz (TwY)  > =  - < TTvzX,  T w Y  > = <  TwTTvzX,  Y > hence 

< T v Q ( X ,  Y )W,  Z > = <  TwTTvzX,  Y > - < TTwxTvZ ,  Y > �9 

Taking the alternate sum on X, Y, Z of  this formula gives now easily the result. [ ]  

Let us assume, in the rest of  this section, that the manifold M is compact and then prove 
Theorem 1.1. At first, taking the scalar product with ( in Lemma 3.2, (iv) we get 

< O*HOH (, ( > =  --i < 7~*L(, ( > =  --i < L( ,  7~( > =  0 

where for the last step we used Lemma 3.3. Now integrating over M we obtain that Ot4( = 0 and 
since 0H(  vanishes [cf. Lemma 3.2, (ii)] it follows that d , (  = 0 and further dH~T = 0. Using 
now (2.4) we obtain that (Vv A)(X, Y) = 0 and we conclude by invoking Lemma 2.1, (i) that 

(VEA) (X, Y) = 0 (3.2) 

for all E in TM.  To extract the remaining information encoded in the fact that dnOtT = 0 we 
will compute, in the lemma below, the square of  dH. 

L e m m a  3.4. The following holds on S 2 (V) | A 1 ( H)  

d2n = 2/2 + T' (3.3) 

where 

(/2o')(g, W)(X, V, Z) = (V  Ay ZOI) (g,  W)(  X) - (VAxZO/) (g, W)(Y)  "]- (V  Ax YOt) (V, W)(  Z) 

+ a(V ,  W ) ( A x A y Z  - A y A x Z  + A z A x Y ) .  

P r o o f  Let {e i } be a local basis of  closed basic 1-forms on H. If  a belongs to S~ (V) | A 1 (H) 

we write c~ = Y~qi"  e i where the qi's belong to S2A(V). Then d2HOt = y~dZqi  A e i and 
i i 

furthermore, by (3.1), we have that (d2 qi - T')(V,  W ) ( X ,  Y) = 2 (VAxyq i ) (V ,  W).  Hence, a 
short computation gives 

l (d2HOt-Jg)(V , W ) ( X , Y , Z ) =  Z [ ~ A r Z q i ) ( V  , W ) ' e i ( X ) - ( V A x Z q i ) ( V ,  W ) ' e i ( Y )  
i 

n t- (VAxyqi) (V, W) .  ei(Z)] . 
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We have now to convince that the right hand side of the previous equation equals the claimed 
expression for Eot in the statement. To this aim, recall that each of the (horizontal) forms e i is 
basic, that is (see [17]) de i (V, .) = 0 whenever V belongs to "P. This leads easily to (Vve i )X  = 
--e i (Ax  V) for all X in H and V in "P. It follows by a routine computation that 

VAyZ (qi " ei)  (V, W)(X)  + (qi " ei)  (V, W ) ( A x A y Z )  ---- (VAyZqi) (V, W) . ei(X) . 

The proof is finished by taking the symmetric sum in X, Y, Z in the last equation and then doing 
summation over i. [ ]  

R e m a r k  3.5. Formulas of type (3.3) can be proven for forms of any degree and the operator E 
can be given a more concise form. Since only the case of 1-forms is needed for our purposes this 
presentation makes more clear subsequent computations. 

Lemma3.6. A x ( T v W )  = O. 

Proof. Let us recall first the following O'Neill formula: 

R ( V l ,  v2,  v3, z )  = <  (~v2T)(v~,  v 3 ) , z  > - < ( V v 1 T ) ( V 2 ,  V3),Z > . 

Now, by Lemma 2.1, (ii) and (3.2) we get < (Vvl T)(AxY,  V3), Z > =  0 and it follows that 
R(V1, AxY,  V3, Z) = <  (VaxYT)(V1, V3), Z >. Since (M, g, J )  is K/ahler R(JV1, A x ( J Y ) ,  
V3, Z) = R(V1, A x Y, V3, Z) which yields further to 

~ A j x Y  T) (V1, V3) = - J  (-V AxY T) (V1, V3). 

Using this and relations (2.1) for the tensor A we obtain after some computations that 

(s W ) ( J X ,  JY, Z) + (Eotr)(V, W)(X,  Y, Z) = 2 < TvW, A x A r Z  - A r A x Z  > . 

Or the vanishing of dHOtT = 0 and ~Ot T implies (cf. Lemma 3.4) that of/~Ot T hence 

< TvW, A x A y Z  - A y A x Z  > =  0 

for all X, Y, Z in H and V, W in V. Taking in this last equation Y = J X  we arrive at < 
Ax(Tv  W), A x ( J Z )  >----- 0 and the conclusion is straightforward. [ ]  

For each m in M we define Ym ~ to be the vectorial subspace of Vm spanned by {Ax Y : 
X, Yin Hm} and let H ~ be the linear span of {AxV  : X in Hm, V in )2m}. By (3.2) and using 
parallel transport with respect to the connection V we see that we obtained smooth distributions 
V ~ and H ~ of T M  which are furthermore V-parallel. We denote by V 1 resp. H 1 the orthogonal 
complement of ~0 resp. H ~ in V resp. H. We moreover, define distributions O i : ~)i ~) H i ' i = 
0, 1 of TM. They are both V-parallel because D O already has this property and D O is orthogonal 
to D l (of course T M  = D O @ D 1, an orthogonal direct sum). Using Lemma 2.1, (ii) and 
Lemma 3.6 we find after a straightforward verification involving only the definitions of D ~ D 1 
that the tensors T resp. A are vanishing on D O resp. D 1 so as these distributions are in fact 
V-parallel. The proof of the Theorem 1.1 is finished by means of the decomposition theorem of 
DeRham. 
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