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Abstract

We develop a universal and algorithmic construction of invariant differential
operators between irreducible bundles in conformal geometry. The classifica-
tion of such operators in the flat case is well-known in terms of representation
theory. The main result of the thesis is a construction of curved analogues
of these. We obtain curved analogues in every case save for an exception
which exists in every pattern in every even dimension. The operators are
described via explicit formulae in tractor calculus. These are closely related
to the usual “V—formulae” for invariant operators in Riemannian geome-
try. The construction follows Eastwood’s curved translation principle which
we implement in the conformal tractor calculus. We work in both real and
complex setting and for all signatures.

Further, we use the developed calculus to study one class of these oper-
ators — the conformal Killing operator on forms — in detail. We construct
invariant prolongations of the corresponding systems of partial differential
equations. Using these, we obtain information about the solution space. In
particular, we develop a helicity raising and lowering construction in the

general setting, and also on conformally Einstein manifolds.
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Chapter O

Introduction

Riemannian geometry is a basic structure studied in differential geometry.
Tangent spaces are equipped with an inner product therefore we have a no-
tion of length. Less is known about conformal structures. There are many
ways to approach these. A conformal structure on a manifold M is a class [g]
of conformally equivalent (pseudo)metrics on M. The equivalence is given
by conformal rescaling i.e. multiplication of the metric by a positive smooth
function on M. An alternative description of such structures exists. Con-
formal structures may be viewed as Cartan geometries of the parabolic type
and it will be occasionally useful to have this point of view.

Invariant differential operators are those differential operators which are
well-defined on a given class of structures without needing any additional in-
formation. They have been studied for more than one hundred of years. For
example the famous Maxwell and Dirac operators from theoretical physics
are conformally invariant. Invariant operators are well-understood in the
Riemannian case, all of them can be expressed via polynomial formulae in
the Levi-Civita connection V (corresponding to the metric g), its curvature

R and various algebraic operations. The conformal case is much more in-



volved. Conformal structure is less rigid than the Riemannian one hence we
can expect fewer invariant operators. Beginning with operators invariant for
a Riemannian structure g from the conformal class, conformally invariant
are simply those among them which do not depend on the choice g € [g].
However, this characterization is of limited value for higher order operators.
A universal and algorithmic construction of all conformally invariant oper-
ators, with a single exception in every even dimension, expressed via their
formulae, is the main result of this thesis. (The exception corresponds to the
operator Lg in the pattern on page 63.) Moreover, one of these operators, the
conformal Killing operator on forms, is treated in detail. We will obtain in-
formation about solutions of the corresponding system of partial differential
equations (PDE’s).

Let us emphasize we shall construct formulae for conformal operators in
terms of basic and compact form provided by tractor calculus (see below).
Actually, there are many related results in the field. In particular, in the
literature one finds a complete classification in the conformally flat case and a
wealth of existence results in the curved setting. We give a construction which
recovers almost all known existence results while also giving, for the first
time, an explicit computable and universal algorithm for the construction
of formulae. Explicit formulae are important in the study of corresponding
systems of PDE’s. Solutions of these PDE’s have often a straightforward
geometrical interpretation. For example, flows corresponding to conformal
Killing vectors (conformal Killing forms of tensor rank 1) are automorphisms

of conformal manifolds.

In 1980, Eastwood and collaborators devised a curved adaptation [23] of
the Jantzen—Zuckerman translation principle [56]. Curved translation is a

technique how to build complicated operators from simple ones. Here our
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construction uses broadly similar ideas. We implement the “curved transla-
tion principle” using the conformal tractor calculus. For example, so called
standard operators can be “translated” from the exterior derivative d. We
will obtain them in the form S;dS; where S; and S, are differential (splitting)
operators which act between tensor bundles and tractor bundles. Tractor
bundles are nondecomposable (but not irreducible) natural conformal vec-
tor bundles. It is well-known that there is no invariant connection on the
tangent bundle 7'M . The main point in the tractor calculus is the tractor
connection V (actually d is twisted with V in S;dS;) which is conformally
invariant and gives rise to an invariant conformal calculus, exploited in this
thesis. Tractor bundles are tensor products of the standard tractor bundle
E 4. The connection V on E4 is a simple tool well-understood in terms of
a Levi-Civita connection from the conformal class. Hence one can rewrite
the tractor formula S;dS; as an explicit formula in terms of the underlying
conformal structure on M. Such formula may be very long for operators of
higher orders and can be computed by computers.

Let us review briefly the content of the thesis. Chapter 1 presents the
necessary algebraic and geometric background. We will need the represen-
tation theory of semisimple (reductive) Lie algebras and we use both Weyl’s
construction (generalized to spinors and densities) and the symbolism of
Dynkin diagrams [2]. Details are in 1.1.3, see especially Tables 1.2 and 1.3
for a summary and relations between the different approaches. The confor-
mal (and spin conformal) structure and the tractor calculus, both in a form
suitable for the thesis, are summarized in Section 1.2. Finally, we review
some well-known facts about conformally invariant operators (namely the
complete classification in the flat case) in Section 1.3. Also, we sketch our
version of the curved translation in more details here.

Splitting operators in the cases discussed above (the standard ones) are
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known to exist [20]. These, so called gBGG splitting operators (constructed
for the whole parabolic class) are formulated in terms of semi~holonomic jet
prolongations. Here we give an alternative construction of splitting operators.
We obtain the operator denoted by DSplit, which is defined by an explicit
tractor formula and does not require any sort of Casimir computation used
in [20]. (In particular, it does not require inverting operators.) Actually,
DSplit differs from the splitting constructed in [20] in curved cases. Our
construction of standard operators works for any such curved modification.

In the literature there is a less complete treatment of the so—called non-
standard operators. In particular, almost nothing has been published about
appropriate splittings for these operators. DJSplit is well-defined in both
standard and nonstandard cases and the construction of DSplit in Section
2.1 is the core of the thesis. This is algorithmic in the following sense. First
we define the bottom, middle and top splittings B, M and T, respectively,
for differential forms where the notation indicates position of a form section
“put” into a form tractor. Then we decompose an irreducible bundle into
the Cartan product of forms corresponding to columns of the Young diagram
and define B, M and T for each column. This yields an inductive procedure.
However, the construction of 7" in the general case is rather complicated
and we need a significant development of new notation (see 1.2.6) for this.
Similar ideas yield splitting operators for spinors. Finally, DSplit is defined
as an appropriate composition of B, M and T. These operators are com-
puted explicitly in many examples throughout Section 2.1. For example, the
form bundle and the tensor bundle corresponding to Young diagram with
two columns are treated in details.

It is easy to obtain formulae for formal adjoints of DSplit. (Note we
have suitable inner products on tensor and tractor bundles.) We need for-

mal adjoints for the final step of the construction of invariant operators on
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irreducible bundles in Section 3.1. As mentioned above, the standard op-
erators are of the form DSplit; o d¥ o DSplit,. Similarly, we obtain the
nonstandard ones as DSplit; o o DSplit; or DSplitjo D o DSplit; where
[J denotes the conformal Laplacian and J) the Dirac operator. (Exceptions
in even dimensions do not admit construction of this type.) This result is
demonstrated on the bundle corresponding to the Young diagram with two
columns: all strongly invariant differential operators are described in the
“BMT”—calculus in Example 3.1.6.

There are many possible variations on DSplit. Some of them are ex-
ploited in the study of the conformal Killing equation on differential forms
in Section 3.2. This corresponds to the null space of the conformal Killing
operator on forms o — Proj*Vo where ¢ is a section of A" T*MIk + 1],
1 < k < n — 1. Here Proj¥ denotes projection to the Cartan component of
the O(g)-decomposition of the tensor product T*M @ A" T*M[k + 1] for a
given metric in the conformal class. (One easily verifies that this does not
depend on the choice of the metric.) Solutions are called conformal Killing
forms. Conformal Killing vectors are the special case for k = 1. In general,
the issue of their global existence in the Riemannian setting has been pursued
recently by Semmelmann and others, see [46, 47| and references therein. Our
treatment here concerns primarily the local issues.

The conformal Killing equation is an overdetermined system of linear
homogeneous PDE’s. This system is equivalent to a finite dimensional pro-
longed system, i.e. “closed” in the following sense. All first partial derivatives
of the dependent variables are determined by algebraic formulae in terms of
these same variables. From the linearity it follows that the prolongation gives
a 1-1 correspondence between sections A* T* M [k+1] satisfying Proj*Vo = 0
and sections of a vector bundle V' parallel with respect to a connection I

In the case of conformal Killing equation, the prolongation is constructed



explicitly in [46] (see also [9] where a wider class of differential equations
is treated). However, neither of these results addresses the conformal in-
variance of the conformal Killing equation. Using the operator 1" discussed
above, we will construct a conformally invariant prolongation in Section 3.2,
see particularly Theorem 3.2.11. That is, the bundle V' will be a tractor
bundle and T" will the normal tractor connection modified (invariantly) by
curvature terms. This captures succinctly what conformal invariance means
for components of the prolongation. Moreover, the curvature of I' provides,
at least in principle, obstructions to existence of conformal Killing forms.
Another result of Section 3.2 is an explicit realization of conformal helicity
raising and lowering along the lines of [43] (see also [13]). This is an idea
that two (or more) solutions of conformal equations can be combined to a
solution of other equations. Among others, we shall describe explicit formulae
and curvature obstructions for this technique applied to conformal Killing
forms and (almost) Einstein metrics. (The latter are considered as densities
of the weight 1 satisfying the corresponding conformal Killing equation.)
This should have important consequences for manifolds where the conformal

Killing forms are known to exist [46].
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Chapter 1

Preliminaries

We shall introduce various notation and terminology in this chapter. The
brief summary below can help the reader during subsequent chapters with

symbols he or she is not familiar with.

Basic notation. Roughly speaking, objects studied in this dissertation
are a smooth manifold M with a conformal structure, smooth sections of
conformal bundles on M and invariant differential operators on M. We will
also consider analogous objects in the complex case. We shall work mostly
in both global and local setting but if certain tools are not available globally
(e.g. the spin structure), we will assume the local setting implicitly. The
dimension of M will be denoted by n and we will work under the assumption
n > 3. We will often distinguish between the even dimensional case n = 2n/
and the odd dimensional case n = 2n’ 41 where n’ = |7 ]. But to the extent
possible we formulate the results in a uniform way for both cases.

The calculus developed later requires considerable notation. The details
of this are introduced throughout this chapter, especially (but not exclu-
sively) in Sections 1.1.3, 1.2.5 and 1.2.6. A main point is a generalization

of the usual abstract index notation to form—indices. That is, we replace a



sequence of k indices a!, ..., a* which are skewed over (i.e. [a'...a¥] in the
usual notation) by one form—index a.

Beside the form—indices, we will need many other types of abstract in-
dices. They will be distinguished by various fonts. A section f with one
index can be of the form f, for a (usual) tensor index, f4 for a tractor index,
[ for a spin index, fj for a tractor spinor index, f, for a form index and fa
for a form tractor index. We will use the Euler Fraktur font to indicate more
complicated systems of indices. If not stated otherwise, f, shall denoted “f
with any set of tensor or spinor indices” and fy shall denote “f with any set
of tractor or tractor spinor indices”. The number of indices in systems a and
2, where every form is considered as a system of several tensor or tractor
indices, will be denoted |a| and ||, respectively.

In general, we denote bundles by V', U, W ..., the spaces of their sections
by V, U, W ..., and the corresponding representation spaces by V, U, W
..., respectively. Natural bundles are bundles which can be given by systems
of indices. We denote by ) the tensor product of these objects and by ()
and /\ the symmetric and skew symmetric tensor product, respectively. The
Cartan product will be denoted by X.

The flooring function (integer part) and the ceiling function will be de-

noted by |z and [z], respectively, for x € R. Given a sequence of numbers

Cps - - -, Cq Where integers p, ¢ satisfy 0 < p < ¢, we will use the notation
m q
™ :ZCZ', Em:ZCl (11)
i=p i=m

where p < m < ¢ and we put ¢ =& =0 for k < p and | > ¢q. Beside C, R,

Z, Z+, Ng = NU {0}, we shall also use %Z, %NO etc. For example,

1 a
—Z::{— Z}.
5 2|a€



1.1 Algebraic background and notations for
representations

The main purpose of this section is to establish notations for bundles rele-
vant for invariant differential operators studied in this dissertation. These
linear bundles can be (as associated bundles) described via corresponding
representations of appropriate Lie groups or algebras.

We need especially irreducible representations of the (complex) conformal
algebra so,,(C) @ C. We shall approach them mostly using Weyl’s construc-
tion for orthogonal groups from [26]. We also introduce form indices in detail
and how to use them for complicated bundles. Another notation for represen-
tation, developed in [2], is provided by Dynkin diagrams and will be referred
as notation or symbolism of Dynkin diagrams. This is briefly recalled in

1.1.1.

1.1.1. Weyl group, weights and parabolic subalgebras. Let us con-
sider a complex semisimple Lie algebra g with a Cartan subalgebra fh C g
and the set of simple roots A C h*. Choosing positive roots A, C A, we
obtain the set of simple roots I C A, which forms a basis of h*. Weyl group
W is generated by simple reflections, i.e. the reflections corresponding to the
simple roots. The number of positive roots a € A, which are transformed to
w(a) € A_ = —A, is called the length of w for which we write |w|. Equiva-
lently (see [26]), the length of w is the minimal number of simple reflections
in any expression for w in terms of simple reflections.

The weights of g can be described by labelling the nodes of the Dynkin
diagram by the integer coefficients referring to the linear combination of
fundamental weights [2]. The weight is dominant for g if and only if all the

coefficients are nonnegative. Such a labelled Dynkin diagram describes an



irreducible representation of g.

The affine action of the Weyl group is defined by
wA=wA+R)—-R

for the weight A where R = % Y ac A, VIS the lowest strictly dominant weight
of g. It means (in the terms of the Dynkin diagram) to add one over each
node, then act with w and finally subtract one over each node.

The standard parabolic subalgebra p C g is defined by a set of simple
roots X C II and it is generated by the Cartan subalgebra, root spaces
corresponding to the positive roots and root spaces corresponding to the
negative roots which can be expressed as a negative linear combination of
roots from IT \ ¥. The corresponding Dynkin diagram for p is obtained from
the Dynkin diagram for g by crossing out nodes corresponding to the simple
roots from X. Using Satake diagrams, a similar notation can be established
for the real case. Each parabolic subalgebra is conjugate to some standard
parabolic subalgebra so we will deal only with standard parabolics. The
set Y induces the decomposition g = g_ & go b g where p = go ® g.. The
reductive part gy includes the semisimple part of p and the rest of the Cartan
subalgebra; g, is the nilradical of p.

It follows from the standard parabolic theory that irreducible represen-
tations of p are irreducible representations of gy with the trivial action of
g+. Weights of finite dimensional representations of gy can be described by a
labelled Dynkin diagram, where coefficients over non—crossed nodes are inte-
gers. Such a weight is p—dominant if the coefficients over non—crossed nodes
are nonnegative integers and g—dominant if all the coefficients are nonnega-
tive integers. A weight with positive (but possibly non—integer coefficients)
over the non—crossed nodes will be called p—dominant non—integral weight.

For each set > C II, and the corresponding parabolic subalgebra p C g,

4



we define WP C W as a subset of all elements, which map the weights
dominant for g into the weights dominant for p. Equivalently, W? is the
set of all elements w for which the set ®, = w(A_) N A, contains only
roots corresponding to g, i.e. the positive roots of g which are not roots
of the semisimple part of gy (see [40]) and also WP = {w € W;|S,w| =
|lw| + 1 for all @ € ¥ }. We connect w,w’ € WP by an arrow, w — w’, if
w' = S,(w) for a root @ € A and |w'| = |w| + 1. We say w < v’ if w = v/
or there is a directed path from w to w’. This defines structure of the Hasse
diagram on WP,

Actually, we are more interested in the real case. A real parabolic subal-
gebra p’ C ¢’ of a real semisimple algebra is defined via the complexification

i.e. by the property that p’(C) C ¢/(C) is parabolic.

We shall use properties of parabolic subalgebras only in the conformal
case. The algebras relevant for the complex conformal geometry can be

described via block matrices

a 0 0
go = 0 M 0 ||Mes0,(C)p=-s50,C)aCC
\ 0 0 —a
([0 0 0 (1.2)
Cp= X M 0 ||Meso(C),XeC")C
0 —X' —a

\

C g =150,42(C),

cf. the flat conformal geometry in Section 1.1.2. The Dynkin diagrams for

the algebras p C g (with numbered nodes) are displayed in Table 1.1. Later



Description of p C g = 50,,,2(C) and WP C W
n Dynkin diagram with numbered nodes Correspor.ldm.g simple
reflection in W
/O nl
0 1 n'—2
Even p= ko---—o\ SO?”' JSn/727Sn’17STL/2
onj
Odd p=3205.. "ok Soy 5 S
W* with the Hasse graph structure
T
Even W» = Wop—= --- —>Wyp' Wyl —> - —>Wp
Odd Wp = Wp—> -+ —Wp'—>Wp/i41—> - —Wp,
w € W expressed via simple reflections,

{1,...,n' =1} neven
1€

{1,...,n'}

the length |w]|

n odd.
Even|wy = id 0
w; = Sp -+ Si1 i
Wpr = S+ Spr—25n, n’
Wy = So*++ Spr—2Sny n
Wpry1 = S0+ Sp—25n, Sy n' +1
Wyt i1 = S0+ Swr 2 Sy S 2+ Spr i1 n+i+1
Odd |wy = id 0
w; = Sp S i
Wyrpi = S0 Sp—1SwSpr—1+++ Spr—ig1 n' +i
Wy, =S80+ Sp—1SwSw—1-++S0 n

Table 1.1: Description of p and WP in the conformal case.



we will need the grading element defined as

1 0 O
E=10 0 0 | €go. (1.3)
0 0 -1

This has the property that any finite dimensional representation W of g
decomposes into W = @f:_k W, where E acts by multiplication by 7 on
W;. For example, k = 1 for the standard and the adjoint representations of
50, (C).

The tools mentioned above can be adapted to study of real parabolics but
their description is more technical. The main point is to study real cases via
their complexifications. In conformal geometry, the semisimple part is the
orthogonal algebra so0,, with the complexification so,,(C) where n = p + gq.
The algebras g, p’ and g’ are real forms of the complex algebras go, p and

g, respectively, of the form
50, OR =g, Cp' C g =50,11441-

The elements of WP can be expressed as compositions of simple reflections,
see Table 1.1. Here the notation for simple reflections follows the numbering
of nodes of the Dynkin diagram. The Hasse graph structure on W¥ yields
the corresponding structure on the set of weights {w.A|lw € WP} for a weight
A of g which will be referred as the weight of the pattern. Such a pattern is
called reqular if A is a g-dominant weight and singular if A is not g—dominant
but A + R is.

Let us note that the algebra p is usually represented by upper triangle
block matrices (and not lower as shown above). Our version corresponds
better to the usual matrix description of the conformal tractor calculus (see

1.2.3) and its development in [16].



1.1.2. Flat model of conformal geometry. Following [27], we briefly
recall the construction of the flat model of conformal geometry of signature
(p,q) because it is closely related to algebraic structures discussed above.
Details can be found e.g. in [49]. Let T denote R"™ equipped with a bilinear
form of signature (p+ 1,¢ + 1), given by the block matrix

0 0 1
0 Id,, 0
1 0 0

where Id, , is the diagonal matrix with of signature (p, ¢) with +1’s and —1’s
on the diagonal. The space of generators of the null cone h is the pseudo-
sphere S®%_ The bilinear form h on T induces a flat conformal structure
on S®9_ Let us denote the identity component of O(h) by G := SOS+1,q+1'
Then G acts on S®% as the group of all orientation preserving conformal

automorphisms. Fixing the point

eT
0

1
on the null cone, the stabilizer of the corresponding point on S®9 is the
subgroup
At 0 0
P = x m 0f|lmeSO,,zeR" CG
Atz /2 —Xx'm A
where 2! denotes the transpose of . Therefore we have identification S®4) ~
G/P and G — S®9 is a principal P-bundle. Later we will need the
subgroup Gy C P of matrices above with « = 0. Lie algebras gy of Gy and p

of P are similar as in (1.2) where the complex case is displayed.
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Analogous construction in the curved case leads to the notion of the
Cartan geometry on a manifold M. At this point, we need only the fact that
the Cartan bundle G — M is a P-bundle and all conformal bundles are
of the form V = G xp V for a p-representation V. In particular, T"M =
G xp (g/p)" = E, where the latter is the notation for 7*M from [43].

1.1.3. Form index notation for representations. The aim of this section
is to introduce a notation for representations derived from the abstract index
notation in the sense of [43]. Recall irreducible representations of p are just
irreducible representations of go. We shall start with the complex algebras

(1.2) and then comment briefly upon differences in the real case.

Representations of s0,,(C) are in bijective correspondence with represen-
tations of the complex spin group Spin,(C), the simply—connected 2—-fold
cover of the group SO, (C). Those which factor through the covering map
to representations of SO, (C) will be referred as tensor representations, the
remaining ones as spinor representations. The corresponding terminology
will be used on the algebraic level and for go— and p-representations (and
other related cases such as O,,(C)) without further mention.

Our notation for representations is motivated by the abstract indices for
bundles and their sections in the sense of [43] (recall T7*M = E,) and by
the relation between conformal bundles and p-representations described in
1.2.2. Following [43], we define representations E,, E[w] and E, as displayed
in Table 1.2. That is, spinor indices shall be denoted by Greek letters. Now
all irreducible representations of gy can be found in tensor products of E[w],
E, and E,. Actually, we do not necessary need all of them — it is sufficient to
consider only tensor products (Q) E,)® E[w] — but we prefer to work primarily
with tensor powers of E,. We shall use the spinor representation E, only if

it is necessary. Using the highest weights in Table 1.2, the representations

9



Representations of gy(C) = s0,(C) ¢ C
on densities, forms and spinors

Even dimension Odd dimension
0
w0 0
E[w] &2 %-o---—g Elw] =2 £3...8:3
00
o —i10 010 o °° ; ;
E* =~ Ho---o—o—o---fo\ E = ’@;8...8,(13_8...((%;8
. 00 .
1<i<n -2 1<i<n -1
1 is over the (i + 1)th node 1 is over the (i + 1)th node
o1
, -0 0
EvV-1o~ 2 5. —o/
Nos
02
-n'-10 0 /
En/ X—=0: -+ —C
* Noo
B~ ¢ o R =
A
E? o o<
02

Notation: Ef = A'E, = B = E(i) = E{0,...,0,1,0,...,0} where

1 is on the #th position

o1
-10 o0/
]E)\/ X—0---—0
00
-10 0 1
Ex= ¢ = D 00 Eyx= %06...050
-1
E)\N kg...go
o1

Notation: E) = E(3) =E{0,...,0, 3}
Ev = (Ex)+ = E(3) =E{0,....0,
3 0
2

%} }forneven
Ex = (E\)_ =E (1) =E_{0,...,0,1}

Table 1.2: Notation for basic representations

10




Representations of gy = s0,(C) & C:
Weyl’s construction and Dynkin diagrams

Notation for
space:

Young
diagram
for tensor
indices:

Additional

parameters:

Notation for
elements:

Vi

=Ew)(lst, ., 800 )o[w] = Ey{ry, ..., o olw]

[ e {0,%}, L’I"J eEN, ry € %No, rn — 1 € Ny

T, & Ny if and only if V(4 is a spinor repre-
sentation

s; € Nfori e {1,---,|r]} and r; € Ny for
je{l,---,n -1}

T1y -y Tni—1, |Fnr | are numbers of occurrences of
their subscript j € {1,---,n’ — 1} in the se-
quence sq, ..., 8, and rpy = |1y | +1

n'>s > >52>1

The sign appears if 7, > 0 (equivalently s; = n’
or = 1) and n is even.

o =)0 T

o 7l = Zzlzjrk, J €Ny

o s =1+ s = 1+ (00 i)+ 1w
o s :l—l—zkzlsk, i €3Ny

f=Jatasr = faja, € Vi) for 1 =0
f= f)\ail---asr = f/\a1-~~a7» € V(i) for [ = %

T

(Here we consider implicitly the integer
part |r| in place of r.)

Table 1.3: Notation for representations: the general case
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f=farrar € Vo) = g"" f =0 and
Trace—freeness: f=Fatar €EB = ghYf = B%2 =0
where df € a’, db €ay and 1 < j,7< |r], j #]

F=Fupoa € Vi = &, = £f

Signs for n even - _
g f:anil---aﬁf'eVi:ijan: 6)\,)\f::|:f

and 7, >0: n
where s; = |a;| = §
orn’71+27‘n’
w—s—r T1 Tn/—2
Dynkin Vi 2 x—o-- S
diagrams: O n/—1
w—s—7r T1 Tnl—1 27,
V 2 X—O0 - - .joxon

The inclusion D is isomorphism for r,, € Nj.

Table 1.3: Notation for representations: the general case continued

living in By, .. [w] := (R’ E,) ® E[w] are tensor representations and the
spinor ones can be found in Ey,, .. [w] := Ey ® (RQ°E,) @ E[w], see [26].
That is, we need at most one spinor index in the general case.

We shall construct representation we need from E,, .. [w] or Ey,, . o, [w]
using various symmetrizations of indices, the metric, the volume form and
the Clifford matrices. The results described below in detail are summarized

in Table 1.3 for go-representations.
Tensor representations of so,(C): Weyl’s construction

The algebra s0,(C) is the semisimple part of go. We will consider repre-
sentations of sl,,(C) D so0,(C) first. Following the abstract index notation we
shall denote the trivial representation by E, the standard representation by
E* and its dual by E, = (E*)*. All irreducible representations of sl,,(C) can
be extracted from E,, ..., for an appropriate s > 1 using certain symmetriza-
tions of the indices aq,...,as. The simplest example is the decomposition

Eo = E@p) ® Ejg) to sl,(C)-irreducibles. That is, we use [...] for skew—

12



symmetrization and (...) for symmetrization of the enclosed indices.
Henceforth we follow Weyl’s construction from [26]. The representations
Efg1..qt) and Egi..4¢) are sl,(C)—irreducible. In general, we can consider
(skew)-symmetrizations of various indices of E,,...,,, s > 0. Proper compo-
sitions of these operations leading to all sl,,(C)—irreducibles are described by

Young diagrams. We shall use the following two notations for them:
Young(sy,...,s,) = Young{ry,...,r,}

where n > s; > --- > 5, > 1 are lengths of columns and r; € Ny is the
number of columns of the length j € {1,...,n}. We shall denote the number
of columns by r := 377 | r; and the number of boxes by s = Y/, s;. See
Table 1.3 for displayed diagrams. Let us note we also admit the “empty”
Young diagram i.e. r = 0.

Here, following [43], we only briefly review this result. We shall apply
Young symmetries or Young projection (for a given Young diagram) to the
indices of E,,..,,, which now correspond to the boxes, in the two following
steps. First, for each row, we symmetry over all indices therein. Second,
we each column, we skew over all indices therein. The result is an sl,(C)—

irreducible representation denoted by
E(s1,...,8) =E{ri,....m} =E(0;s1,...,5,) (1.4)

(the last of these is used for the sake of compatibility with the spinor case,
see below) and every irreducible representation can be obtained in this way.
The irreducibility means any further (skew)-symmetrization either loses no
information or vanishes. For example, skew—symmetrization over any set
of s; + 1 or more indices is zero. Subdiagrams consisting from columns
i,-++,7 (of lengths s;,...,s,), 1 < i <r satisfy the similar property: skew—

symmetrization over any set of s; + 1 or more indices from columns %,--- ,r

13



is zero. (Analogously, symmetrization over r + 1 or more indices is zero
etc.) Also, whole columns of indices are mutually symmetric, if they are of
the same length. This follows from the structure of Young projection, in
particular from the first step where we symmetry over all indices in every
row. Example 1.1.1 below demonstrates some of these properties.

We will often deal with representations E,1....¢ = E(K), 0 < k < n. Also
we need r-tuples of skew—symmetric indices in the general case because every
column of Young diagrams is skewed over. To simplify the notation, we will
‘]

abbreviate [a! - - a¥] via multiindices. That is, we will use the form indices

a¥=[a'---d"], k>0

where a’ simply means the index is absent i.e. Ego = E. In the other words,

Eoe = N\ E,.

Irreducible representations of sl,(C) we have constructed are (in general
reducible) representations of s0,(C) C sl,(C). Representations of so,(C)
correspond to bundles on complex oriented (pseudo)riemannian manifolds.
These geometric structures are defined by two distinguished sections - the
metric g and the volume form e. We shall use the same notation on the
representation level to obtain so,(C)—-irreducibles. The first step is to use
the metric g, € E(). For example, this yields the decomposition E,, =
E (ab) DE(ap), E[ap) where the index 0 indicates the trace—{ree part. The metric
provides an isomorphism E, = E® i.e. we can raise and lower indices. Now
in the general case, we can apply ¢%% to E(sy,...,s,) forany 1 <i < j <s.
The intersection of kernels of all these mappings i.e. the trace—free part will
be denoted by attaching the index 0 to (1.4) i.e. by E(sq,..., ;)0 etc.

The next step is to employ the volume form e € E,n. This (together with
the metric) yields the Hodge isomorphism € : E,x =, Epgn-v, 0 < k < n.

Hence it is sufficient to consider Young diagrams with s; < n' = [§] or

14



equivalently 7; = 0 for j > n’. In the even dimensional case n = 2n’, we
can assume ¢ : E_,» — E_. satisfies ¢ = id after normalization of € by a
complex scalar. Thus we have the decomposition E_.» = (E_./)+ & (E v )-
of to the eigenspaces of € : E . — E_.» with the eigenvalues +1 and —1,
respectively. In the general case Eyy(s1,...,5,), s1 = n/, n even, we have
many columns of the length n’ and we can apply € to any of them. However,
they are mutually symmetric hence an eigenvalue v € E(4)(sq, ..., s,) satisfies
é(v) = +v and this sign called sign of the representation does not depend on
the choice of the form index a? of v. (We use the term sign to cover both
orientation in the tensor case and chirality of spinors, see below.) We will

denote these representation by

E(:I:)(Sh ey 87.)0 = E(:I:){le ce 7T’n/}o = E(i)(O, Sty 757“)0 (15)

where n’ > s; > --- > s, > 1 and the sign applies only in even dimensions,

then in the case s; = n'.

Theorem (Weyl, see e.g. [26]). The representations of 0,,(C) of the form
(1.5) are irreducible. That is, if the sign applies, the representation corre-
sponding to both signs are irreducible. On the contrary, every irreducible

tensor representation of 50, (C) can be obtained in this way.

The form (multi)indices provide a manageable way to deal with elements
of v € E(sq,...,8:)o. We shall indicate the structure via (form) indices

attached to v i.e.

S E(Sl,...,ST)O (16)

U= Yarea, = Yaltear = Yialeafl) - fal-air]

where a; = &' = [a] -

;- -a:']. We will usually omit the superscript indicating

the valence s; on indices of v, as they will be known from the context. Ob-
viously, this notation can be used also for elements of the whole (reducible)

space K, or possibly for valences s; > n'.

ar
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To able to deal effectively with various traces in formulae for differential

operators, we will use the following abbreviations

a¥:=a'--.d"=[a'---d¥], k>0,
a"i=a* - df=[a® - d", k>1,
ab=a® . d"=[d®--d¥], k>2,

where, in an obvious way, if for example & = 1 then a*

simply means the
index is absent. Also if, for example, £ = 1 then a means the term containing
the index a is absent.

For example, the following possible structures of indices are equivalent:
Va3 = V[gla2a3] = Ulala3] = Vlala2a3] € Eas = E(S) = E{O, 0,1,0,... ,0}.

Ezample 1.1.1. Let us consider vape € E(k,l,m), k > 1> m > 1. This means

a=a" b=al and c = a™. The structure of E(k,l,m) yields

Vlaptjbe = Vlablelle = Valbelle = 0

where, as usually, |..| denotes indices excluded from the skew—symmetrization

[act]. From this, it is easy to show the first two equalities of

1 1
Ubl[élal]Bc = Evabm Ucllalblalle = Evabc and Uacl[Bbl}é = 7Uabc- (17)
The last of these follows from vanishing of [bc!]. We shall use these relations
(and analogous for the general case) often in examples and without further
mention. Further, the form indices of the same valence are symmetric i.e.

Vabe = Upac if k = [. Finally, the trace—freeness means

1 1.1

1b1 1 b
v E E(k,l,m)g <~ ga Vabe = ga ¢ Vabe = ¢ ¢ Vabe = 0.
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Representations of so,(C): the general case

Now we employ Clifford matrices, an analogue of Clifford section which
defines a spin structure on spin manifolds. The representation on Dirac
spinors is E* and its dual Ey. Details about spinors are postponed to 1.2.1.
At this point, we need only that Clifford matrices (3, € E, ® End E, satisfy
26y = —gapid. Also we will need E, = E*, see 1.2.1.

The volume form € € E4n yields the endomorphism € := ce®” 341 -+ - Bqn €
End E,, ¢ € C called chirality operator. For an appropriate choice of ¢, € = id
for n odd and € = id for n even [44, Appendix]. In the latter case, ¢ has
two eigenvalues +1 and —1 hence we have the corresponding decomposition
Eyx = (Ey)y @ (Ey)_ for n even. The eigenspaces are interchanged upon
replacing ¢ by —c therefore we can assume Ey = (E,); and Ey» = (Ey)_
similarly as in Table 1.2 where representation of gy are displayed. In the
terminology of [44], Ey and E,» are called reduced spinors. It follows from
the notation of Dynkin diagrams (cf. Table 1.2) that (E,)+X(Ey); = (E )+
and similarly for the —1-eigenspace. That is, (Ey)+ has the coefficient 1 and
(E,w )+ the coefficient 2 over the same nod.

Now we describe the general spinor case. We will denote E\QE(sq, ..., s,)
by E(%, S1,...,8-). On the other hand, it follows from the notation of the
Dynkin diagrams that all spinor representations are the Cartan products
E\XV (for n odd) and (Ey); XV and (Ey)- KV (for n even) where
V =E(sy,..., S )o with appropriate Young symmetries.

We will use 3 to identify better (Ey)+) X V() inside (Ey)@) ® V(1). We
can consider % as a homomorphism on the latter tensor product by applying
(3% to the spinor index and contracting the index a with one of (lower) indices

of V. The intersection of kernels of all these homomorphisms will be denoted
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by
1 1
E(i)(§; S1yeeny Sr)O = E(i){Tl, e, Ty 5}0 (18)

where the sign in the last display called sign of the representation applies for
n even. If the sign is not attached for n even in last display, this will mean
direct sum of both component. Elements shall be denoted similarly as in the
tensor case with one additional index A (or possibly X' or \”).

The irreducibility of these representations is a delicate question. This
can be proved easily for E)(1,...,1) (spinor valued symmetric tensors) and
E(+)(k) (spinor valued forms) by computing their dimensions. But I am not
aware of a proof of irreducibility for the general case (1.8) and we do not

need this fact for the subsequent constructions.
Representations of gy = 50, (C) ¢ C

These representations correspond to bundles of complex spin oriented
conformal manifolds. The key objects for these geometrical structures are
the conformal metric g, the conformal volume form € and the conformal
Clifford section 3. Corresponding objects on the representation level are
now g, € Ewy[2], €an € Ean[n] and B8, € E, ® End (E))[1] satisfying
28uBy = —gid. Recall E[w] is defined in Table 1.2. We will use them
analogously as g, € and [ above i.e. the representation we will deal with

throughout the thesis, is of the form

Ew (551,580 )olw] = E@y{r1, ..., 7w folw] (1.9)

where [ € {0, %} and 7,y — [ € Ny. This an irreducible tensor representation

for { = 0 (or 7y € Np) and a spinor representation for { = 1 (or r,y €

%NO \ Np). Generalizing the notation that s denotes the number of boxes

and 7 the number of columns of Young diagrams, we put s := [+ Y, s;

and r = S

i—1r; now. That is, s, r and 7,/ are integers (half integers) if
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they correspond to a tensor (spinor) representation. At the same time we
will use the convention that in expressions with the subscript r, namely s,,
a, and A,, we consider implicitly the integer part of r i.e. s, := 5|,| etc. so
(1.9) is consistent. Beside this we define “subsums” s* also for nonintegral

superscripts as
sH2.=1/24 " i€{0,...,|r|} for spinor representations,  (1.10)

cf. (1.1). Let us emphesize we will use both descriptions from (1.9) and often
switch between them without a further mention.

Although we need primarily irreducible representation, it is sometimes
convenient to work with nonirreducible ones. Firstly, we shall approach irre-
ducible spinor representation (Ey)) X Vi [w] where V = E(sq, ..., s)o[w]

using (1.9) and the inclusion and the projection

1
(E)\>(:|:) &V(i) ‘—>E(i)(§;81,...,87~)0[w] (111)
1
E(i)(§§317 o sp)olw] = (Ex) ) XV (g)[w], (1.12)

respectively. Secondly, our calculus will be mostly independent of the sign
and we will work preferably with the whole representation E{r1, ..., 7, }o[w].

For r,, > 0 and n even, we have the inclusion and projection

E {ry,...,rv}olw] = E{ry, ..., rw}o[w]

E{ry,...,rwolw] = Ei{ry, ... 7w }olw],

respectively. We shall use them without a further mention.
We shall often suppress the spinor indices in the notation for elements.
However, if necessary, we follow (1.6) and attach the spinor index A (or

exceptionally N and A\"). That is, we will use

1
GE(—'Sh...,ST)O (113)

V=" 5

aj--a, U)\al---ar
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where a; = aj' = [a} - - - a]'] etc. as in (1.6).

Finally, we describe duals of representations (1.9). Clearly E[w]* =
E[—w], (E,)* = Ey[2] using g® € E@®)[-2] and (E,)* = E,[1] using e’ €
EAA2[—1] (the spinor inner product, see 1.2.1 for details). In general, we

have the isomorphism

(E@y{rs, o fo[w])” = Ewy{ry, ..., 7w fo[—w + 2s]. (1.14)

The sign applies for n = 2n’ and r,, > 0. One can show that the signs are

the same on both sides for n’ even and different for n’ odd.
The real case: representations of g; = s0,, &R

Most of the construction above is independent on the choice of scalars
and we shall use all the developed notation also for so,, ® R. In particular,
we have the real representations E,x, Ey and E[w] for w € R, and we can use
Weyl’s construction. That is, the Theorem above holds if we replace so,,(C)
by so,,. However, the condition “if the sign applies” in the Theorem has
now different meaning because we can normalize the volume form € € E,n[n]
by a real scalar only. Summarizing the real case, we have the so,, ® R~

representations
V(i) = E(i)(l;sl,...,sr)o[w] :E(i){’f‘l,...,Tn/}o[w], w e R (115)

and we need to know when endomorphisms € € End E_,» and € € End E,
have real eigenvalues. Assume n is even. For g of signature (p,q), we can

suppose €,€* = (—1)9n! where a = a™. Using this, one can compute
€bc€d® = kl(n — k)!(=1)7idga  hence epce®d = kl(n — k)!(—1)" ™+ idga

where |bc| = n and b = b* and d = d*. For n = 2n’ and k = 7/, the

sign (—1)" ="+ for €,.€% is equal to (—1)"' "9 = (—1)" 7 as revealed by a
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short computation. This is exactly the sign of € i.e. contrary to the complex
case, we can assume only € = (—1)"~?id. The computation for € is similar,
the result is €2 = (—1)%("_2‘1)("_2q+1)id after an appropriate normalization by
a real scalar [44, Appendix]. For n = 2n/, this sign is (=1)""9 = (—=1)"~?
hence we can assume €2 = (—1)" ~Pid.

We have shown the eigenvalues of € and € are +1 for n’ — p even and there
are no real eigenvalues for n’ — p odd. Thus the sign in (1.15) applies i.e. we
have the decomposition V =V, @& V_ if and only if n is even, r,» > 0 and
n' — p is even. We shall use this convention for the remainder of the thesis.

We can use the symbolism of Dynkin diagrams corresponding to so,,(C)®
C also for an irreducible representation W of so, , & R. It turns out [42, 48]
that W corresponds either to one labelled Dynkin diagram or to a couple of
labelled Dynkin diagrams. In the latter case, both highest weights are either
equal or mutually symmetric with respect to a symmetry of the Dynkin

diagram.

1.2 Geometric structure and tractor calculus

1.2.1. Riemannian, conformal and spin structure. Let us consider an
n—dimensional smooth manifold M, n > 3. We shall use the notation for
representations developed in 1.1.3 also for bundles and their spaces of (local)
sections by replacing E in (1.9) by E and &, respectively. The indices here
are abstract in the sense of [43]. Recall we raise and lower tensor indices
using the metric g or the conformal metric g. There are certain topological
obstructions to existence of some of structures discussed below. Nevertheless,

they exist at least locally.

Pseudo—Riemannian structure
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A pseudo—Riemannian structure on M is a pair (M, g) where g = ga €
E(ap) 1s a pseudometric. The Levi-Civita connection corresponding to g will
be denoted by V. That is, V is torsion—free and Vg = 0. An oriented
pseudo-Riemannian structure on M is a triple (M, g,¢) where (M,g) is a
pseudo-Riemannian structure on M and € € E4n is a volume form satisfying
%6363 = 1 and Ve = 0. The prefix pseudo- will be usually omitted. Complex
(oriented) Riemannian structures are defined analogously.

In the language of bundles, an (oriented) pseudo-Riemannian structure
on M is a reduction of the linear frame bundle P'M over M to the subgroup
O, (or SO,,), n = p+ g in the real setting and O, (C) (or SO,(C)) in
the complex one. Here (p,q) is the signature of the pseudometric g. Recall
any tensor so, , representation lifts to a SO, ,representation. In particular,
TM=T*M =: E, =G Xs0,, Ea.

Curvature R of V is given by

(VaVi = VoVa) f© = Ry 1

for f¢ € £° It satisfies R = Rupea € £(2,2) because V is torsion—free. The
structure is called flat if Rapeq = 0. We can decompose £(2,2) into £(2,2),

and the trace part. This yields
Raped = C1abcd + 2gc[an}d + 29d[bpa}c (116>

where Cypea € €(2,2)0[2] is the Weyl curvature and Py, € ) is the Rho—
tensor. The Rho tensor is a trace modification of the Ricci tensor Ricy, =
R..% and vice versa: Ricy, = (n — 2)P,, + Pg,, where P = P, € £. The
Cotton tensor is defined by

Aabc = QV[ch}w

Via the Bianchi identity V[, Ryqq. = 0 this is related to the divergence of the
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Weyl tensor as follows:

VPCpape = (n — 3)Agpe and VP, = V,P. (1.17)

Spin pseudo-Riemannian structure

We can define the spin pseudo-Riemannian structure on a manifold M as
a principal Spin, ,~bundle G over M. Equivalently, this a 4-tuple (M, g, 3, €)
where (M, g,¢€) is an oriented pseudo-Riemannian structure on M and the
Clifford section 3, € & ® End &, satisfies the Clifford relation 28,6, =
—gapid. Note all so, ,—representations lift to Spin, ,representations. In par-
ticular, we have the spin bundle E* & Fy, = G X Spin,. 4 Fox. Non-oriented and
complex versions are defined analogously.

The Levi—Civita connection V on FE, determines a connection on FE),
determined uniquely by the property V3 = 0. We will term this also the
Levi-Civita connection. Furthermore 3 and e yield a canonical form € €
End &, and an inner product ¢ € £ on E, called spin metric. Both are
preserved by the connection i.e. Vé = Ve = 0. We shall describe them in

detail in the conformal setting below.
Conformal structure

A conformal structure of signature (p,q) on M is a pair (M, [g]) where [g]
is a class of conformally equivalent pseudometrics of signature (p, q). Recall
that metrics g and § are conformally equivalent if ¢ = §2%g for a smooth posi-
tive function 2 on M. An oriented conformal structure is defined similarly as
the class (M, [(g, €)]) where (g,€) and (Q2%g, Q") are conformally equivalent.
The complex versions are defined analogously.

We may equivalently view the conformal structure as a smooth ray sub-
bundle @ C E;) whose fibre over x € M consists of conformally related

signature-(p, ¢) pseudometrics at the point x. Sections of Q are pseudomet-
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rics from [g] on M. The principal bundle 7 : @ — M has structure group
R, , and so each representation R, > 2 +— ~*/? € End R induces a natural
line bundle on (M, [g]) that we term the conformal density bundle Efw].

Using principal bundles, oriented conformal structure on M is a principal
CO,,bundle G over M where CO, , = SO, , x R. (Non-oriented and com-
plex versions are defined analogously.) In this setting, the density bundle is
Elw] = G xco,,E[w]. In general, any tensor representation of so, ,®R yields
a conformal bundle in this way. In particular T*M =: E, = G Xco,, E, and
TM =T*M[2] = E,[2] = E“.

We write g for the conformal metric, that is the tautological section
of E) ® E[2] determined by the conformal structure. This will be used
to identify E* with FE,[2]. Given a choice of metric g from the conformal
class, we write V for the corresponding Levi-Civita connection. With these
conventions the Laplacian A is given by A = g®*V,V, = V’V,. Note E[w]
is trivialised by a choice of metric g from the conformal class, and we write V
for the connection corresponding to this trivialisation. It follows immediately
that (the coupled) V, preserves the conformal metric.

Beside the conformal metric g € &£,[2], we have also the tautological
section of Fan ® E[n] i.e. the conformal volume form € € Eun[n]. This satisfies
Ve =0 and €,€® = n!. Hence we can define conformal structures as triples
(M, g, €) where g and € are conformal metric and conformal volume form,

respectively.

We will often need to compare the Levi—-Civita connection V and V cor-
responding to metrics g and g, respectively, from the conformal class. We
will always suppose the relation § = €2Tg for a smooth function positive T
on M and use the notation T, = V,T. Quantities corresponding to g will be

denoted by hats. In particular we have the curvature I%abcd of g and also the
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components éabcd, Pab and P defined by (1.16). One computes that g and
g have the same Weyl curvature i.e. C' = C. In the dimension 3, moreover
ViePye = @[apb]c-

We will need the difference between Vf and Vf for various sections f.
This is computed in Appendix B in detail, here we only summarize the results.

First,

@af = Vaf +wTaf

Vafs = Vafs — Tafs — Tofa + T, g

for f € E[w] and f, € &,, respectively. Since both connections satisfy the

Leibnitz rule, we easily compute the general case

Vo =Vaforbe + (W = 8)Cafory = Toy fabgs == — Lo, forbesa

+ Tp.]C;lJlJQ~--l)kgab1 R Tpfb1-~~b571pgabs
(1.18)

for fy,.., € &b, [w]. This simplifies on forms. It follows immediately from

the last display that

@[bofbk} = V[bofbk} + U}T[bofbk}

- 1 1 (1.19)
VP for = VP for + (n+w — 2k)Y° for

for fyr € Epr[w]. Recall we use the form index notation developed in 1.1.3.

Let us also note the transformation of the Rho-tensor

~

1
Pab = Pab - VaTb + TaTb - iTCTCgab' (120)

A conformal structure is called conformally flat or just flat if there is a
pseudo—metric g in the conformal class such that the corresponding pseudo—
Riemannian structure is flat. For dimension n > 4, this happens if and only
if ¢ = 0. In dimension 3, a manifold M is conformally flat if and only if

Vi = 0. The flat model is the pseudosphere S gee 1.1.2.
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Spin conformal structure

We say that two oriented pseudo—Riemannian structures (g, [, €) and
(§,3,€) on M are conformally equivalent if § = Q%g, § = Q8 and é = Q"¢ for
a smooth positive function €2 on M. An oriented spin conformal structure
of signature (p,q) on M is a pair (M, [(g,3,€)]) where [(g,[,€)] is a class
of conformally equivalent oriented pseudo-Riemannian structures of signa-
ture (p,q) on M. Equivalently, this structure is a 4-tuple (M, g, 3, €) where
(M, g, €) is defined above and and 3 is given by (1.24) and satisfies V3 = 0.
We have also the spinor metric €,, € £,,[1] which we use to raise and lower
spinor indices. Non-oriented and complex versions are defined analogously.

Using principal bundles, an oriented spin conformal structure of signature
(p,q) on M is a principal Spin, , x R-bundle G over M. Every representation
V of s0, ,®R integrates to a Spin, , x R-representation and yields the bundle
V' =G Xspin, ,xr V. Hence we have a 1 —1 correspondence between so,, , x R-
representations and oriented spin conformal bundles on M. In particular, we
have the spin bundle E* and its dual E\[1] & E* with respect to €.

As in the tensor case, we can compute the difference between V f and \Y f
for a spinor section f. (Here we consider the (coupled) spinor Levi-Civita

connections.) It is computed in Appendix B that the result for f € &y[w] is
Vf=Vf+w—1)Tof = B,TpB"f. (1.21)

Notation for spinors

We will consider both the real case of signature (p,q) and the complex
case. (We formally put p := n and ¢ := 0 for the latter.) Here we review
the basic tools for the study of spinors. We will mostly follow [44, Appendix]
but we will adapt this to the setting of conformal structure and pass to the

bundle level.
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As mentioned above, the spinor bundle is denoted by E* but shall usually
work with its dual Ey. (See Table 1.2 for the corresponding representations. )
That is, the spinor indices will be denoted by greek letters. In even dimen-
sions, F) decomposes in the complex case and if n’ — p is even in the real
one. Then two irreducible components of F\ will be denoted by primed and

two primed indices i.e.

E)\ = E/\/ @ E)\//

where Ey = E.(3) etc. But we will mostly consider the whole bundle E,.

The Clifford relation is

ﬁa)\wﬁwa + ﬁb)\w aw’y - _gab5>\y7 /Ba)\w S ga)\w[l]ﬂ 9ab S g(ab) [2] (122>

where 3 and g are the conformal Clifford symbol and the conformal metric,
respectively. The normalization on the right hand side differs from [44] and
follows [8].

We have a non-degenerate density valued spinor metric on E), denoted be
e. This can be shown using a direct construction (see [44] how to construct
e from 3 in the complex case) or proved by theoretical means (see [12, 54]

for a general treatment). The spin metric € and its inverse are sections
e’ € &%[—1] and ey, € Exull].

This yields the identification Ey = E*[—1]. In the other words, € allows us
to raise and lower spinor indices but since € is not, in general, symmetric,

we have to state conventions. Following [44], we write
Ai=eMf, and f:= fYeun (1.23)

for fy € & and f* € £*. Let us note the composition of “lowering” and

“raising” applied to a given upper index (and similarly for a lower index) is

27



the identity. This is due to the relation
€)Y = €\, =€ ,ne™ = 65.

Uniqueness and symmetry/skew—symmetry of € depends, in general, on
the residues [n]s and [p—q|s where (p, ¢) is the signature, see [12, 54]. We will
not need these details. But let us note that in the complex case such that
[n]s & {[2]s, [6]s}, € is unique (up to a complex multiple) if considered only for
irreducible bundles. (That is, Ey for n odd or Ey and E,» for n even.) In the
complex case [n]s € {[2]s, [6]s}, € exists only on the whole (reducible) bundle
FE)\ and can be both symmetric or skew and interchanges Fy and Ey.. The
real case depends on the signature and we have generally many possibilities
for e. But for both scalars, we can choose € on E), which is symmetric
for [n]; € {[0]4, [3]4} and skew symmetric for [n']y € {[1]4,[2]4}. This will
be henceforth our assumption. Then in the complex case, B,) € &M is
symmetric for [n']y € {[0]4, [1]4} and skew symmetric for [n']y € {[2]4, [3]4}
on the spinor indices [44]. (See [12, 54] for information about real cases.)

We shall use notation with all the spinor indices when necessary but
actually we can often suppress them completely. (Recall the description of
irreducible spin conformal representations/bundles from 1.1.3 does not need
more than one spinor index.) In the spinor index—free notation, the conformal

Clifford relation becomes

BBy + BiBa = —Gaps  Bu € &[] ©End &y, gy € En[2],  (1.24)

cf. (1.22). Note the symbols possessing “hidden” spinor indices are noncom-
mutative and to avoid confusion, we have to state certain conventions. First,
the omitted spinor index is always located downstairs e.g. f, € Exq. (Here a
denotes any system of indices.) Further, omitted spinor indices in the Clifford

section are distributed as above i.e. B, = 3,,“ (and not e.g. 3,% or B,).
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Then the application of 3, is defined uniquely e.g. BV, fo = B°*V, fua oI
BB’V pfa = BBV, fra ete. If we need to violate any of these conven-
tions or work with more complicated expressions, we shall write all the spinor

indices explicitly.

1.2.2. Background: parabolic geometries. The aim of this section is to
indicate that many tools and methods we use and develop in the thesis have
analogues for a broader class of so called parabolic geometries. Their theory
can be found in [18] so the reader should look there for exact definitions.
Also we develop a notation for go—components (see below) that we will need
later.

Cartan geometries of a type (G, P) are “curved analogs” of homogeneous
spaces G/ P where P is a closed subgroup of a Lie group GG. This means that
the bundle G — G/P and a Maurer—Cartan form w € Q!(G, g) are replaced
by a principal P-bundle G — M equipped with a one—form w € Q'(G, g)
which satisfies some (but not all) of the properties of the Maurer-Cartan
form. Here M is a smooth manifold, g denotes the Lie algebra of G, G
is called Cartan bundle and w is called the Cartan connection. Note that
Cartan connection is not the connection in the classical sense.

Having a principal P-bundle G over M, we can construct an associated
bundle V = G xp V for each P-module V. For example, we can identify the
tangent bundle as TM ~ G X p g/p where p is the Lie algebra of P and g/p

is a P-module via the adjoint action of G on g. If V is a G-module then
V= g Xp A\

is called a tractor bundle. (Here we consider the action of P as a restriction
of the action of G.) In the flat case, this is the canonical trivial bundle

V ~ (G/P) x V and therefore V' admits a canonical (flat) linear connection.
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In the curved case, a Cartan connection w on G induces a linear connection
on V, called tractor connection.

The construction of principal bundles equipped with Cartan connections
from underlying structures is non—trivial. It is solved for parabolic geome-
tries i.e. if P is a parabolic subgroup of semisimple Lie group . This will
be henceforth our assumption. Moreover, we obtain normal Cartan connec-
tion by an appropriate normalization of the curvature. The same is true for
tractor connections and it turns out [15], tractor bundles with the normal
tractor connection can be characterized directly from the underlying struc-
ture and these determine the normal Cartan bundle and connection. We
will use especially the standard tractor bundle corresponding to the standard
representation of G.

Since tractor bundles are vector bundles, their geometrical interpretation
is usually easier than in the case of Cartan connections on G. Moreover,
we have a construction of tractor bundles and connections for so called ir-
reducible parabolic geometries directly from the underlying structure (i.e.
without use of Cartan bundles and connections), see [15, 16]. Recall that ir-
reducible parabolic geometries (also known as almost Hermitian structures)
are characterized by the fact that g, is irreducible as a representation of
go- [15, 16] use the following data which are easily available from underlying
structures: a Gy—principle bundle over M, a certain class of preferred affine
connections on M, an appropriate interpretation of the their curvatures and
a G—module V. The result is the normal tractor connection on V= Gy xp V.

The conformal geometry is an irreducible parabolic geometry where the
groups Gy € P C G = SO, , are mentioned in 1.1.2, the G,-principal bundle
over M is the set of all conformal isometries g- — T, M (where g_ plays
the role of coordinates), the class of preferred connections consists of Levi—

Civita connections etc. In the case of the spin conformal geometry, P is
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an appropriate parabolic subgroup of G = Spin,,. See 1.2.3 and 1.2.4 for
details about the tractor connection on the standard tractor bundle and the

tractor bundle corresponding to the spin representation, respectively.

The advantage of parabolic geometries is the relatively well-known alge-
braic structure of parabolic subalgebras (or subgroups) and their representa-
tions. Since the subgroup G| is reductive, we can consider the decomposition
of P-modules V into irreducible Gy—modules. To do this on the bundle level,
we need a Gy—structure i.e. a reduction G — M of G — M to the sub-
group Gy. Then, for a Gyp—submodule W C V| we can consider the subbundle
W =G xg, W CV and the corresponding inclusion pr : W — V. We will
call pr a go—component of V. The corresponding projection will be denoted
by pr* : V. — W. Irreducible go—component is a go—component corresponding
to an irreducible Gy—module W.

A go—component pr of V yields a go—component of any subbundle V/ C V/
denoted also by pr in the obvious way. However two different go—components
pry and pry can yield the same go—component of V’. (For example, both can
be trivial for V’.) Further pr yields a go—component of the bundle V @ U for
any bundle U which will be also referred as pr. Strictly speaking, the latter
is actually pr ® id but we shall use this in the situations when there is no
danger of confusion.

The corresponding terminology will be used for a section f € V of V
i.e. pr*f denotes a section of W C V. A projecting part of f will mean go—
component pr of V' such that pr* f is invariant i.e. pr* f does not depend on
the reduction of G — M to Gj. Let us note if f # 0 then there is always a
nonvanishing irreducible projecting part of f. We have always a filtration on
V as a P-module. If every go—component pr’ of V' of degree (with respect to

the filtration) higher than pr satisfies (pr’)* f = 0 then pr is a projecting part
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of f. More details can be found in 1.2.6, in particular in Lemma therein.

If U is a bundle and ® : i/ — V an invariant differential operator, we will
use the analogous terminology i.e. pr*® := pr* o ® is a differential operator
U — W. A projecting part of ® will be any go—component pr of V' such
that pr*® is invariant. From the same reasons as above, every nontrivial

invariant differential operator has a nontrivial irreducible projecting part.

1.2.3. Standard conformal tractor bundle. Using the notation from
Section 1.2.2, the standard tractor bundle E4 is defined as E4 := G xp E4
where the g-module E4 is given by the standard representation of so,,,5(C)

1.e.

o0
10 00 10 0/
O-0 -+ - 0=0 or 0O—0¢+++—0

Noo

for n odd or even, respectively. Hence we immediately get the algebraic

structure of £4. The g-module E4 is

A_ 10 0 0 -1 1 0 0 -10 0 0
E = %-0--:0=0 &'X_o”.@m &'X_o.”oy) or
o0 00 o0
4 10 0/ -11 0 / -10 o /
E4 = X_OH.AQ\ G—X_o.ngg\ G—X_o“.fq\
o0 00 o0

as a p—module for n odd or even, respectively. Using the index notation (cf.

Table 1.2) and passing to the bundle level this means
EA = E[1]& E,[1) & E[-1]. (1.25)

The real case is analogous, in particular we also get the semidirect sum in
the previous display. Let us note the semidirect sum notation means that the
subspaces E[—1] and F,[1] & E[—1] and quotient spaces E“/(E,[1] & E[-1])
and E4/E[—1] of E# are conformally invariant.

There are other constructions of E4 more suitable for our purpose than

the associated bundle G x p E4. We will prefer the approach whose starting
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point is the conformal structure as the class of metrics rather then the Cartan
bundle G. A choice of a metric provides an isomorphism of E4 with the direct
sum E[1] ® E,[1] ® E[-1]. Our aim is to describe sections of E4 and the
tractor connection on E4 for a chosen metric together with their behaviour
after rescaling.

One way of the constructing E4 is to define this bundle as the quotient
of the jet bundle J?(E[1]) by its smooth subbandle E(4),[1] i.e. by the exact
sequence

0— E(ab)o[l] - JQ(EDD — F4— 0,

see [16]. A Levi-Civita connection V from the conformal class provides the

isomorphism
w €Y — g @ & @ E[-1], by
j’c +—  (0,Va0,—(A+ P)o)
for o € £[1]. This is not conformally invariant; denoting the image of j?c cor-

responding to vy and g by (o, i, p) and (U,//L: p) = (G, fia, p), respectively,

and using the matrix notation, one can easily check the transformation rule

o 1 0 0 o o
flo | = T, S 0wl = Lo + Too . (1.26)
p —%TPTP -rb 1 p p—Tou*— %T20

Another possibility is to define [E4], = E[1]® E,[1]® E[—1] for each g €
[g] and identify (o, p, p) € [E4], with (&, i1, p) € [E4]; by the transformation
(1.26). It is straightforward to verify that these identifications are consistent
upon changing to a third metric from the conformal class, and so taking the
quotient by this equivalence relation defines the standard tractor bundle E4

over the conformal manifold M.
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Let us note all these constructions yield the same bundle E4 (up to
isomorphism) due to uniqueness of the normal conformal tractor bundle [15].
Henceforth we shall follow the last one as this suits best for the calculus we

will develop in Section 2.1.

The bundle E4 admits an invariant metric h4p and an invariant connec-
tion (unique after a proper normalization [15]), which we shall also denote
by V., preserving h4p. This connection induces a connection on (X) EA (also
denoted by V,) and is called normal tractor connection. In a conformal scale

g, the metric hyp and V, on E4 are given by

0 0 1 o Va0 — lg
hap =10 g, 0| andVa |y | = | Vaps +gup+ Puo |- (1.27)
1 0 0 p Vap — Papit®

It is readily verified that both of these are conformally well-defined, i.e.,
independent of the choice of a metric g € [g]. (See [21] for the detailed
computation.) Note that hsp defines a section of Eyp = F4® Ep, where E4
is the dual bundle of E4. Hence we may use hap and its inverse h4Z to raise
or lower indices of E4, E4 and their tensor products. Clearly if the conformal
structure has signature (p, q) then hsp will have signature (p +1,q + 1).

In computations, it is often useful to introduce the ‘projectors’ from £4
to the components £[1], &,[1] and £[—1] which are determined by a choice of
scale. They are respectively denoted by

XAGEA[l], ZAaESAa[l], YAGgA[—l],

where Eq.[w] = €4 ® E, @ E[w], etc. Using the metrics hap and g,, we can
raise indices and lower indices and define X4, Z4% Y4, Then we immediately
see that Y X4 =1, Z474. = g, and that all other quadratic combinations

that contract the tractor index vanish. In the other words, the metric hyp
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defined by (1.27) is the section
hap =YaX4+ ZaaZyg +XaYp € Ean).

The sections X, Y and Z give rise to the “XYZ”—calculus for tractor
bundles [16, 29, 35] which is less evocative than the matrix notation but
more suitable for many computations. We shall describe this for tractor
forms. Using X, Y and Z, sections f4 € €4 of the form [fa], = (0, ita, p) can
be expressed as

fa=Yao + Zjpa + Xap (1.28)

where 0 € E[1], p, € &[1] and p € E[—1]. Here [fa], denotes fa € E4 for
a given choice g € [g]. Since o, p,, p will transform according to (1.26) if
we change a metric ¢ to § = e?Tg and we require f = f, the corresponding

transformation of X, Y and 7 is
N 1 N A
Yi=Ys— 175 - §TbTbXA, 7% =7%+7"TX,, Xa=X4 (129

Comparing (1.28) with the form of V,fa given by (1.27), we immediately
get

VoYa=P,Zh VoZb=—-P° X, —0"Ys, VoXu=Z4. (1.30)

Since the tractor connection V, is invariant on £4, its curvature called

tractor curvature Quop € Euycp) given by
(VaVi = VVa) f€ = Qu“ p f P

for f€ € £, is invariant as well. Using (1.27) or (1.30) and the formulae for

the Riemannian curvature, a direct computation yields the curvature tensor

Qavep = ZEDCoped — 2X o fr Adap- (1.31)
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The tractor connection V cannot be iterated in conformally invariant way
i.e. VoV fp for fe € Eplw] is not, in general, invariant. (V, is not invariant
on Ej therefore also not invariant on Ej,y etc.) However, we have a 2nd order

operator which partly addresses this problem, called tractor D—operator

DA : 8%[21)] — 5A%[w - 1] (132)

Dafe =w(n4+2w—2)Ysfe + (n+2w—2)Z5V, fs — Xa(A+wP) fp

The definition (1.32) is for a given choice of the conformal scale but actually
D 4 is conformally invariant as can be checked directly using the formulae
for rescaling (1.29) above. It is sufficient to do this for densities (i.e. when
B = (), see [21] for a detailed computation. The general case follows from the
observation that the relation between V, faw and V, fg is formally the same
as for densities and that one does not need to commute V’s in the calculation
of invariance. (Let us note there are also conformally invariant constructions
of D4, see e.g. [30].) Furthermore, since Dahge = 0, the tractor D—operator
commutes with the raising and lowering of indices. We can consider also the
commutator (DyDp—DpgDy)f for f € Eglw]. The result is of the first order

and depends on w, see [35] for details.

We can demonstrate the notion of projecting parts and its importance
for invariant operators. It is clear from the definition of D4 which is given

in the matrix notation by

w(n+ 2w —2)f3
Dafz=1(n+2w—2)V.fz

that Yy : E5lw] — Eazlw—1] is a projecting part of D4 fz and the projection

yields a nonzero multiple of fz if w # 0 and w # 277" For w = 0, Z% is

a projecting part and the projection yields V,fz. If w = 2_7" then X, will
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be a projecting part. The corresponding projection shows invariance of the

operator

for fz € E5[1 —n/2] i.e. invariance of tractor twisted conformal Laplacian.

1.2.4. Spinor tractor bundle. Now we describe tractor spinors and de-
velop an equivalent of the “XYZ”—calculus from 1.2.3. We shall mostly follow
8] but adapt the notation therein to be consistent with the conventions used
in the thesis.

As in the case of the standard tractor bundle, there are several ways
to define the spinor tractor bundle E* for the spin conformal structure
(M, g, [, €) of signature (p,q). We denote tractor spinor indices by greek
capitals. From the Cartan bundle point of view we have E» := G xp EA
where P C G = Spiny;1,4+1 is the corresponding parabolic subgroup, G is
the Cartan bundle and E* the spinor representation of G. We shall con-
sider directly the dual E, = (E*)* because we prefer the form notation and
actually E, = E*. To describe E,, let us pass to the algebra level and to
the complex setting first. Then E, is a g = $0,,42(C)—module and we have
the structure go C p C g, see (1.2) for details. Considering E, as a go—
module, we obtain the decomposition to gy—irreducibles and the semidirect

(p—) structure on Ejy:
_00 00_00 01a 10 01
]E'A_o,o...o>o_>%o~"0>o 6_ X—O:+ - -0=0

for n odd and Ey, = E, @ Epr for n even where

/Ol /Ol 1 /OO
00 0 0 0 0 =10 0
Ej = o0 —d = o) ~—o\ & x—o -—o\ and
\OO 00 o1
o0 00 o1
00 0 0 0 0 -1 0 0
Epr = 0-0 -—o/ — %Xo0- -o< & x—o o<
\01 01 00
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We will use the primed and two—primed tractor spinor indices in a similar
way as for spinor ones but we will mostly work with the whole bundle Fy.
One can derive the decomposition in the real case from the complex one
[42, 48]. The details depend on the signature, g-irreducible modules are E,
(for n even such that n’ —p is odd and for n odd) and E;, and E,~ (for n even
such that n’ — p is even). These g—irreducible modules are always semidirect

sum of two gp—component. Summarizing, we have
E\y = E\[1|GE, (1.33)

(in all cases) in the index notation. The normal Cartan connection on G
yields an invariant connection on FEj.

Another way to construct E is to define this bundle as the quotient of
the jet bundle J'(E,[1]) by its smooth subbandle Ej.,[1] := E(3;1)o[1].
That is, |..]o denotes the “Clifford free” part of E,y[1]. (This means, [
vanishes for all sections of Ejqz,[1].) Let us note the operator oy — V|05
is conformally invariant for oy € £,[1], cf. (1.21). E, is defined by the exact
sequence

0 — Eaxp[l] — JY(EA[1]) — Ex — 0.
A Levi—Civita connection V from the conformal class provides the isomor-
phism
Ly - EA — E)\[l] D E,\, by
2
jlo — (o, E,prpcr)
for o € &£,[1]. This is not conformally invariant; denoting the image of jlo

corresponding to ¢ty and t¢ by (0, 7) and @7,\7) = (0,7), respectively, and

using the vertical notation, one can easily check (using (1.21)) the transfor-
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mation rule

id 0 o o
= _ = . (1.34)
1B, id T T+ T80

Q>

>

Following this, we put [E4], := E\[1] ® E) for every metric g € [g] and
define F, as the equivalence class of [E,], in the following way. We identify
(0,7) € [Erly with (6,7) € [En]; by the transformation (1.34). It is straight-
forward to verify that these identifications are consistent upon changing to
a third metric from the conformal class, and so taking the quotient by this
equivalence relation defines the spinor tractor bundle E, over the spin con-

formal manifold M.

The bundle E, admits an invariant connection (unique after a proper
normalization [15]), which we shall denote by V,. In a conformal scale g, the

connection V, on FE, is given by

o V.o + 8,7
V. = b (1.35)
T Vo7 + Pap,Bpa

8]. Tt is readily verified that this is conformally well-defined, i.e., independent
of the choice of a metric g € [g].
Now we want to introduce spinor-tractor analogues of the tractors X4,

Z4 and Y4 we have for the standard tractor bundle. We define the projections
Y =Y € EX]—1] = Hom (E,[1],Ex) and X = X} € £3 = Hom (&), &)
by the relation
f=Yo+X1r=Y)o, +Xpr, forevery f €&, (1.36)

where [f], = (0,7) € E[1] @ €y denotes f in a metric g € [g]. That is, X and

Y are defined for a fixed metric g. Since o and 7 transform according to (1.34)
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if we change the metric g to ¢ and f = f, the corresponding transformation
of X and Y is
V=Y -T1XB, Xi=Xa (1.37)

Comparing (1.36) with the form of V,f given by (1.35), we see that
V.Y = P’XB3, V.X =Y8,. (1.38)

The conformally invariant tractor D-operator for spinors D = D} :
Exw] — EpJw — 1] is defined by
(n+2w—2)f
Df = = 2w —2)Y 2X3°V 1.39
1= ("o ) =2 axee,s 3
for f € EyJw] [8]. More generally, this is a conformally invariant operator

D : Explw] — Epss[w — 1] for a system of tractor indices B.

We have also tractor analogues of 3, and €. These are the tractor

Clifford section and the tractor spinor inner product
Ba=PBu €E4@End (£,) and e e &M

respectively, such that 8,85 + BpB4 = —hapid and V,B, = V> = 0.
We will use them only rarely (so there will no danger of confusion with 3,
and ") as we actually need mainly their existence. This is established in
8] for 3, and then, existence of e follows by theoretical means [12, 54].
We will use e and its dual er to raise and lower tractor spinor indices. It

will be convenient later to use the conventions opposite to (1.23) i.e.
fA = €QAfQ and fA = fQE:AQ. (140)

In the complex setting, we know exactly whether € and 3, are sym-
metric or skew (depending on [n']4), see 1.2.1. Using this we can describe

e explicitly. First, denoting by (o, 0’) := EMU,\Ufy the spinor inner product
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for 0,0’ € &, we define the formal adjoint B, € &, ® End (&,)[1] of B, by
the relation

Vo,0' € Ey: (B,0,0") = (0,8.0"). (1.41)

From this and (skew)symmetry of 3,7 and €V, it is easily checked that
/6: = (_1>n/16a'
Now we define e, denoted also by (f, f') := e foff for f, f' € Ex in

the index free notation. We put

0 eM o o' ,
€AF - ’ A Le. < ’ > = (_1)n +1<T7 Ul) + <07 TI>'
(—1)" e 0 )\

(1.42)
One easily computes that the conformal transformation for metrics g, § € [¢]
of the second expression yields the term Tp((—l)”/“(BPU, o) + (o, Bpa’))
using (1.37). But the latter vanishes using (1.41) because 3 = (—1)"3,.
Let us note that €Al symmetric for [0’ + 1], € {[0]4,[3]4} and skew for
[n'4+1]4 € {[1]4,[2]4}, cf. with € in 1.2.1. Further (1.40) yields the projectors
YM e £M[—1] and XM € M. They satisfy X*Y] = (—1)"*+1e* and

YA X =eM. Hence
e = YAXTA 4 (—1)VHXAYTA € g (1.43)

1.2.5. Tractor forms. This was pioneered in [11] but we will use a modi-
fication of the notation therein. Following the tractor calculus for E4 from
1.2.3, we will prepare similar tools for the bundle

k+1
T% = Eperr =G xpBEprr where TF=Epen = \Ea,  (144)

0 < k < n/ now. This notation is designed so that the superscript in 7%

corresponds to the tensor valence of the top slot and this will be convenient
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later. It follows from the semidirect composition series of £4 that the corre-

sponding decomposition of Epx is
Ear = Earan = E K] & (8’“[/{:] ®ETk — 2]) GE R —2], (1.45)

see [11]. Given a choice of metric g from the conformal class this determines
a splitting of this space into four components (a replacement of the &s
with @s is effected) and the projectors (or splitting operators) X, Y, Z for €4

determine corresponding projectors X, Y, Z, W for Eprt1, k > 1 as follows.

YE =V, 08 =Y, =YeZ4 2% € -k —1]

/A A s Y/ R L W4 € €2\ [—H] )
k al-ak ak al ak ak '

W :WA/AOAlAk :WA/AOAk :X[A/YAOZAl ZAk} 6 gAk-!—Q[_k]

Xk - XAozllzljc = XAOKI; - XAO Xi e Zkk c 52’;+1 [—k' + ].]

where k > 0. The superscript k in Y*, ZF, W* and X* shows always the
corresponding tensor valence. (This is slightly different than in [11], where k
concerns the tractor valence.) Note that Y = Y° Z = Z! and X = X° and
WO = X(aY 401. Using these projectors, a section far+1 € Eqrt1 written as a

4-tuple [far+1], = (uZ@) for a metric g € [g] is of the form
farn = YAOXIZO—ak + ZZ%ZZuaOak + WAOESC Pak + XAOZI;pak

for forms o, 1, ¢, p of weight and valence according to the relationship given
in (1.45).

The conformal transformation (1.29) yields the transformation formulae
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for the projectors:

— ok
a

© k 1 -k
YAOZk :YAOXIC - T(J/OZAOZIC — kTa WAOZ}“

AOAK

]_ ak al ak
— §TkaXAOAk +ET,TX 5

2o =793, + (k+ 1)TX 4o 24 (1.47)

—

Ak ak ak
WAOZk =W joar — TaleoAk

— L

XAOZIZ =X poar
for metrics g and g from the conformal class. The normal tractor connection

on (k + 1)-form-tractors is

VpO'ak - (/{5 + 1)Mpak = Gpa1 Pak

O ok
— Vpltg0 4k Vo@ak
Vo | tgoar Qar | = {+Ppa0;;k+9paopak } {JrkP;ankfké;lpak} (1.48)
Pat vppak - (k + 1)Ppaoﬂaoak + Ppal()pii’C

or equivalently

ak _ al ak al ak
VY joar =PpagZjopr + kP, W 4oan

VpZaoan = — (k+ 1)02"Y 403k — (k+ 1)P, "X 10 3%
- (1.49)

Kk k
VPWA():k - — gp(llYAOZk + PpCLlXAOa;A?C

ak aY ak al ak
VpX joar =GpaoLjonr — Koy W 4o s

where the sequentially labelled indices at the same level are skew over i.e.

[a'a*] or [a’a*] in the last display.
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For later use we need also the formulae
AY 5100 =Y, 3n(A = P)og + L5 5. [(Voo P) + 2P, 7V, ] 0
+ kW a (V% P) + 2PV |0
+ X, %0 [2kP, PP, 0 4. — P Pyyoar]
AL R0 == 20k + DY 4 2V 1,000

+ Z5 Ak [ Dt — 2(k + )P, bt

— (k+ )X, 22 [(VPP) + 2P™V | 1 (1.50)
AVVA AlAk = 2YAOZIZV@1 Ugk
+ W, o5 (A= 2P)vy +2(k — )P 2, ]

+ X, 3 [(Va P) = 2P, PV v
AX, 2epar =(—1+ 25)Y 1 3rpar + 225 ar Vg Pk

— 2kW , BV par + X, 30 [A — Ppar

The volume form €, € E,n[n| determines the conformally invariant tractor
volume form
GA”H‘Q = WA1A21§77‘+2 eC E gAn+2 .

This satisfies ea€® = (n + 2)!. Using the tractor volume form, we can

decompose the bundle Eg./41 into two eigenspaces of the appropriate action
of €a if n =2n’ and n’ — p is even. Here (p, q) is signature of the conformal

structure.

Beside the form tractor bundle £5x+1, it will be convenient to introduce
also invariant quotient spaces and invariant subspaces of this bundle. Their
existence is visible form the composition series (1.45). For example, the

subbundle

(Ex) Akt = {fAk-H € Earir | Xpao farn) = XAlfAk+1 = O} C Eprtr
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Invariant subspaces of Exr+1 and &y

. Invariant condition for Composition )
Notation Figure
fartr € Epqrtr Or fr € Ep series
(€X)Ak+1 X[A()fAk+1] = XAI fAk-H =0 Sk[k - 1] (USO)

EME +1]
(Exz) ar+1 XAlfA’f+1 =0 il <*20)
EFk —1]
EFLk —1] o
(gXW)Ak-H X[Ao fAk-H] =0 (5 < U** )
EFk — 1]
(EX)A Xaﬂf/\] =0 Ex (2)
Invariant quotient spaces of £pr+1 and &y
Composition
Notation Invariant definition Figure
series
(E)asn | Ear /(Exz)arar @ (Exw)ara) | E+1] | ()
EF[k +1] .
(SYZ)Ak+1 5Ak+1 /(gXW)Ak+1 4 ( * - )
EFFE + 1]
£k + 1 .
(SYW)Ak+1 gAk+1 /(gXZ)Ak+1 P ( - )
EFLk —1]
(Ev)a En/(Ex)a E] (X)

Table 1.4: Invariant substructures of Exr+1 and E,.
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is conformally invariant. Other possibilities are shown in Table 1.4 on p. 45
including spinor tractors. The last column shows a schematic description in
the matrix notation. Here x means “arbitrary form of admissible valence and
weight” and - indicates an invariant subspace in the definition of invariant
quotient spaces. Obviously, sections of these bundles can be described via
an appropriate modification of transformation rules for X, Y, W and Z. Let

us note that we do not have an invariant connection on these bundles.

1.2.6. Notation for go—components. Given a choice g € [g] of the metric,
we have defined a gp—component pr of a tensor/tractor bundle V' as the
homomorphism pr : W «— V for a go—subbundle W C V| see in 1.2.2. Here
we introduce a notation for gg—components based on the X, Y, Z, W-notation
for form tractor bundles and a similar X, Y-notation for the tractor—spinor
bundle.

The go—components of sections of tensor/tractor bundles have certain
features which sometimes give rise to properties of the full tractor section or

operator. For example, the tractor D-operator on E[w] is
Dy=c1Ys+c2Z5Ve — Xa(A+wP) (1.51)

for appropriate scalars ¢; and co. The three summands of Dy are Yy, Z4V,
and X4(A + wP) up to scalar multiples. We can observe the sum of the
homogenity of Y4, Z4 and X4, which is +1, 0 and —1, respectively, plus
the order of the corresponding operator which is id, V, and (A + wP),
respectively, is equal to 1 for all three slots. That is, the sum is an invariant
quantity for D 4. We can also consider the tensor valence of these three slots
which is 0, 1 and 0, respectively. The purpose of this section is to define

these quantities for more complicated tensor/tractor bundles and operators.
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We will usually consider tractor operators in the form
O = Z cipri®;, where & :V; — ), (1.52)
el
where ®; is a tensor operator, ¢; a scalar, pr; is a string of X, Y and I a finite
set, cf. (1.51). We will need this notation especially for bundles V; and V,
which are tensor products of form tractor bundles.

We apply tools developed below in crucial constructions in 2.1.5, in partic-
ular in the Theorem therein. But let us note these tools are merely technical
(this section is indeed rather technical) and necessary for proofs but not for
the formulation of main results.

We will call a bundle U natural if U lives in a tensor product of Efw],
E., E\, E4, E5 and their duals. In particular, a bundle Ez|w] is natural
for any system of indices ¥. Let us consider systems 2l of tractor/spinor
tractor indices and a of tensor/spinor indices. The number of indices in a
and A, where every form index is considered as a system of several tensor

or tractor indices, will be denoted |a| and |2|, respectively. For example,

APBIA| =k +1+1.
Tractor form product bundles and components

Let us start with a simple example of a gop—component pr : W — V' see

1.2.2 on page 29. The tractor X ;3 (see 1.2.5) yields the go—component
XAoz : Sa[w] — E[AOA}[UJ —k+ 1}

of the bundle E|40aj[w—k+1] where A = A* and a = a*. The corresponding

projection pr* is given by the section YAO‘Q as
(Kaod)" = Y2+ Eppoafw =k + 1] > Eafu].

Similarly, we can consider Y, Z and W as go—components of K04 and also

X =X} and Y =Y} as go—components of Ex. The go—components X, Y, Z,
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W and X, Y will be called TFP-components of Ejqa) and Ey, respectively.
Note they are, in general, not irreducible.

We generalize this notion in the following way. Bundles of the form
Ea,..a, and Ep,..a,a will be called tractor form product bundles or TFP—
bundles. (That is, they are tensor products of form tractor bundles, possibly
with the spinor tractor bundle.) For a TFP-bundle V' we define the set of
tractor form product components or TFP-components denoted by TF PC (V)

inductively as follows. Firstly,
TFPC(Ejoa) ={X,Y,Z,W} and TFPC(E))={X,Y}.

Secondly, if bundles V; and V5 are TFP—bundles and also the bundle V; ® V5
is a TFP—bundle, we put

TFPC(Vi®Vy) = {prlprg =pry pre | pr; € TFPC(V;), i € {1,2}}.

(1.53)
Further we put TFPC(V[w]) := TFPC(V) in an obvious way and we will
consider all the notation for pr € TF PC(V') developed in this section also for
V]w]. Recall pr € TFPC(V) defines also a go—component of any subbundle
W C V and the bundle V ® U for a natural bundle U. (The former is just
pr followed by the projection on W and the latter pr ® idy, see 1.2.2 on p.
29.)

As we denote the tensor product of two TFP—components simply by jux-
taposition (see pripry in (1.53)), TFP—components of V' are denoted by jux-
tapositions of p symbols X, Y, Z, W, followed by X or Y in the spinor
case. (We can use W or Z only if the tractor valence of the corresponding
form tractor bundle is at least 2 or at most n, respectively.) For exam-
ple, XaYp € TFPC(Eag). To simplify the notation, we will write also
XY € TFPC(Eag) if the order of the form tractor indices AB is fixed.
Therefore XY # YX in this case but XaYg = YpXa.
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In general, let us consider the system of indices A = A;--- A, or A =
A;--- A A with the fixed order of the indices in A. We will often write
TFP-components of Eg as pr = pro = prg € TFPC(Eg) for an appropriate
system a of tensor/spinor indices. For example, possible notations for the

bundle Fg, A = A;AsA with the fixed order A;AsA of indices are

pr = XWY = prog = (XWY)Q[ - XAlwAQYA = YAWA2XA1
= pry = (XWY)g = XE WY = WYXy

€ TFPC(Fy)

where a := ajasA and the valences of a; and as are |A;| — 1 and |A,| — 2,
respectively.

Another possible way to indicate valences and avoid the indices is to
replace X, Y, Z and W by X*, Y?, Z" and W', see (1.46) for the definition. As
mentioned above, X!, Y¢, Z! and W’ and also X and Y are not necessarily
irreducible for i = n’, n even. If they decompose, we shall use also the

notation
X7 EY [w] — T [w—n' + 1] (1.54)
and similarly Y7, Z%, W%, Xy and Y to distinguish the (two) irreducible

components. Recall here the superscript n’ always denotes the tensor valence,
cf. (1.44).

Consider a TFP-bundle V' = FEy. Using the developed notation, it is
easy to describe explicitly the projection pr* for pr € TFPC(V). Recall
pr: W — V and pr* : V.— W is the corresponding projection, see 1.2.2.
We define the dual TFP-component prt € TFPC(V) of pr € (V) in the

following way. Firstly, we put

Xt=Y,Y'=X, 2t =2 Wt=W, Xt1=Y, vyt=X (1.55)
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for TEFP—components of V= E and V = FE,. Secondly, if V; and V5 are
TFP-bundles and also V; ® V5 is a TFP-bundle, we put

(pr)*t = pripry for pr = pripry € TEPC(Vy @ V3), pr; € TFPC(V;)

where i € {1,2}. Now consider pr = pr§ € TFPC(Ey). That is, pr :

EqJw] — FEy and raising/lowering the indices, we observe
pr = (pr)% = (prH)%: By — Eyw]. (1.56)

This follows from the definition of raising and lowering indices if % = A and

2 = A. From this, the general case follows.

We have defined TFP-component as a string of X’s, Y’s etc. Now we
introduce several quantities for TFP—component related to the notions of
valence and homogenity. Also, we introduce parameters related to the order
of differential operators and formulae for them. Below we use the term order

of a differential operator in the sense usual in differential geometry.
Valence and homogenity

Let us consider a TFP-bundle V' = Ey and pr = pry € TFPC(Ey).
We define the (tensor) valence as the mapping v : TFPC(V) — Ny where
v(pr) counts the number of tensor indices in a. (That is, v(pr) = |a| if there
is no spinor index in a and v(pr) = |a] — 1 otherwise.) Further, consider
a go—component pry of a natural bundle U. Then pr’ := pr ® pry is a go—
component of V ® U and we define the (tensor) valence of pr' restricted
to V as vy (pr') = va(pr’) := v(pr). We shall use vg(pr) especially for
pr € TFPC(V) considered as a go—component of V @ U.

We define the homogenity as the mapping h: TFPC(V) — %Z defined

inductively using the relations

1 h(Y) =1, (W) = h(Z) = 0, h(X) = —1, h(Y) = L, h(X) = —



2. h(pripre) = h(pr1) + h(pre) for pr; € TFPC(V;), i € {1,2} and
pripra € TFPC(V; @ Va).

Note h(prt) = —h(pr) which follows immediately from the definition of pr*
above. As mentioned above, we use the definition of the homogenity also
for weighted bundles V' = Egfw]. If this is an unweighted tractor bundle,
it is easy to verify the following fact. Let us consider pr : W — V where
W is irreducible. That is, W is an irreducible go—submodule of V where
V =G xpV, (see 1.2.2). Then the grading element E € gy defined in
1.1.1 acts on W C V as multiplication by h(pr). That is, the homogenity of
TFP-components of V' corresponds to the grading on V.

Further we define the highest homogenity as the mapping hh on TFP—
bundles with values in %Z inductively using the relations hh(Ex) = 1,
hh(Ey) = 1 and hh(Vy ® Vo) = hh(Vi) + hh(Va). Clearly every pr €
TFPC(V) satisfies h(pr) < hh(V) and the equality is possible only for the
(unique) TFP—component which can be expressed as juxtaposition of only
Y’s and Y'’s.

If pr € TFPC(V), V = Eyw] and pry is a go—component of a natural
bundle U then pr’ := pr ® pry is a go—component of V' ® U and we define
the homogenity of pr’ restricted to V as hy (pr') = hy(pr') := h(pr). Here we
suppose that if U is associated with a system of indices then these indices are
distinct from the indices in 2. We shall use this especially for pr € TFPC(V)
considered as a go—component of V ® U, see 1.2.2. Similarly, we shall define

the highest homogenity of V@ U restricted to V as hhy(V @ U) = hhy(V ®
U) := hh(V).

Proposition. Consider a TFP-bundle V = Egw]. That is, A = A;--- A,
orA=A---A,A. Then every pr € TFPC(V) satisfies

v(pr) < |24 = [Ih(pr)[1- (1.57)
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More generally, consider a natural bundle U. Then an analogous statement

holds for the bundle V @ U if we replace v and h by vy and hy, respectively.

Proof. Assume 21 = A;---A, first. Clearly if pr € TFPC(V) satisfies
v(pr) = || then pr :=Z---Z. Let us try to replace some of the Z’s in pr by
X, Y or W to obtain a given pr € TFPC(V). Since any single replacement
changes the homogenity by at most one and h(pr) = 0, we have to replace
at least |h(pr)| of them. But any single replacement lowers the valence by at
least one hence we will reduce the valence by at least |h(pr)|. This means,
v(pr) < A — [h(pr)|.

Assume 2 = Ay --- A,A. Then every pr € TFPC(V) satisfies v(pr) <
|2 — 1. Clearly if v(pr) = || — 1 then either pr = Z---ZX or pr =
Z---ZY. These two possibilities for pr satisfy h(pr) = j:% by definition
hence [|h(pr)|] = 1. Now using the same arguments as for A = A;--- A,
the inequality (1.57) follows. The statement for V' ® U is obvious. O

Recall that if pr is a gop—component of a bundle V and f € V is section of
V', the projection pr* yields the section pr* f, see 1.2.2. Let us demonstrate
this on f4 = Do, o € E[w]. (Note E4 = E1 is a TFP-bundle.) Then e.g.
X = X, is a go-component of F4 and X*f = YA f, = —(A +wP)o because
(X))t =Y, and (X)) = (XH)4 = Y4, Recall we defined go—components
also for differential operators, see p. 31.

We need especially to know when is pr*f invariant i.e. when is pr a
projecting part of f, see p. 31. In the example above, Y, is a projecting part
because (Y*)f = XAf4 = cy0, see (1.51). If w = 0 then also Z = Z9% is a
projecting part because (Z*)2fa = ZAf4 = c3V,0 etc. A general sufficient
condition for pr to be a projecting part of f € V was given in 1.2.2 using the
gradation on V where V = G xp V. The following Lemma formulates this

observation using TFP—-components.
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Lemma. Let V = Eyw] be a TFP-bundle and W, U natural bundles.
(i) Consider a section f € V and a TFP-component pr € TFPC (V). If

the condition
Vpr € TEPC(V) : h(pr) > h(pr) = pr'f =0 (1.58)

is satisfied then pr is a projecting part of f. More generally, if f € V QW
and (1.58) is satisfied then pr (considered as a go—component of V@ W) is
a projecting part of f.
(ii) Similarly, if E : U — V is an invariant differential operator such
that
Vpr € TEPC(V) : h(pr) > h(pr) = pr'E =0 (1.59)

then pr 1s a projecting part of of E. More generally, if E : UQW — VRW is
an invariant differential operator and (1.59) is satisfied then pr is a projecting

part of E.

Proof. Let us consider a TFP-component pr € TFPC(Fgyw]). This is a
bundle homomorphism pr§ : E4w'] — Eg[w| for an appropriate system
of indices a. Then we have (prt)§ € TFPC(Ey[w]), see (1.55), and the
projection (pr*)%* = (prt)% : Eglw] — EJw']. All these homomorphisms
depend on the choice of a metric g € [g] from the conformal class. Recall
pr is given by a string of X, Y, Z, W, X and Y. Each of them is a TFP—
component of a tractor form bundle or a tractor spinor bundle.
Consider another metric § = e?Yg. This yields TFP-components X, Y,
... of a tractor form bundle or a tractor spinor bundle, see (1.47) and (1.37).
Consider the string which defines pr where we replaced X, Y, ... by X, Y,
.., respectively. This defines a TFP-component of Fy|w] which we denote

by pr. That is, pry, pre : Eqw'] — Eyw] but, in general, pr # pr.
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We need to know the difference (pr*)2 — (5r*)* = (prH)% — (prH)% -
Eyw] — E,[w']. It follows from (1.47) and (1.37) that
p?"l - ﬁ‘i = Z %‘(T)Wz‘L
pri€TFPC(V)
h(pri-)<h(pr*)
where 9;(T) is a homomorphism depending on Y. But if h(pri) < h(prt)
then h(pr;) > h(pr) which means prif = 0 = (pri-)% fy using (1.58). If we
apply the last display to fg, the right hand side will vanish and the left hand
side will be (pr* — prr*)f = 0. Therefore pr*f = pr*f ie. pr*f does not
depend on the choice of g. That is, pr is a projecting part of f.
The same proof applies for f € V ® W and clearly the statements for

invariant operators follow from the statements for sections. O

Formulae for differential operators

We shall work with differential operators given by formulae throughout

the thesis. First we define explicitly what a “formula” means for us.

Definition. (i) Tractor formula or formula (for a differential operator) is a
finite sum ® = ), ¢;Proj;®; where ¢; denote scalars, Proj; projections and
®; is a juxtaposition of X, Y, Z, W, X, Y, V, R, P, g, B, €, €, h with
an arbitrary position of indices which makes a sense. That is, X possess one
form tensor and one form tractor index of appropriate valences, V one tensor
index etc. Every index is used either once (a free index) or twice. The latter
indicates a partial contraction. We assume Proj, can be expressed by Young
symmetrizations of free indices and projections to kernels of g, h, € or 3 on
free indices of an appropriate type. Proj, will be omitted if Proj, = id.

(ii) A tensor formula is a formula without tractor or spinor tractor indices.

(iii) Let ®; and ®5 be juxtapositions, ¢; a scalar and Proj, a projection

as defined in (i). We put
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e ¢;Proj,®,V, X®y ~ ¢;Proj,®,Y 3,92 + ¢;Proj,®, XV,P5 and similarly
for all relations in (1.38) and (1.49)

e ¢;Proj,®; YV dy ~ ¢;Proj, &1 V'V, for W U € {XY,--- € h} from
(i) such that W' ¥ # V

° ciProijlXAYACI)Z ~ ZProj;®; Py, A = AF and analogously for all

remaining (partial) contraction and raising/lowering of indices

Then ~ generates an equivalence relation (on the set of the formulae), de-

noted also by ~. We say that the formulae ® and ®’ are equivalent, if & ~ @',

Remarks. 1. Consider a formula ® and f € V for a natural bundle V. Let us
suppose @ f, equipped with indices, makes sense as in the Definition (i). Then
the formula ® yields a differential operator on V. We will interpret ® in the
usual way: V is the tensor product of a Levi-Civita and spin connection (from
the conformal class) and the normal tractor connection, R is curvature of the
Levi—Civita connection (for a given scale), P the corresponding Rho—tensor
or its trace, g the conformal metric, h the tractor metric, 3 the Clifford
section, € the volume form, € the spinor metric and X, Y, Z, W and X,
Y sections defined in 1.2.5 and 1.2.4, respectively. We will consider V as
acting to the end of the juxtaposition. That is, ®;V®,f means &V (D, f)
for juxtapositions ®; and ®s.

We will not always distinguish between formulae and corresponding op-
erators, if the source space is specified. Also note, if & ~ @’ then ® and &’
yield the same differential operator.

2. We will often use Proj; = id as any projection from Definition (i) can
be expressed as an appropriate sum, cf. V(,Vy) = %vavb + %vaa. If we
write a formula in the form ® = ). ¢;®; we will always assume that the

®,’s are juxtapositions as in the Definition. We shall also use the notation
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$ = Oy where 2 denotes the system of free (spinor) tractor indices of @ if
they are all covariant (“downstairs”).

3. @ =3¢, and ¥ =3, d;®; are two formulae, we put

QoW =0V =) ¢d;d;
i.j
If V¥ is a formula (i.e. if this expressions makes sense as in the Definition),
it corresponds to a composition of differential operators.
4. Using the relation ~, see the Definition (iii), all the symbols X, Y,
Z, W, X, Y in a juxtaposition can be “moved to the left”. Also we can
avoid contractions of tractor form and spinor indices. That is, every tractor
formula & = &y = >, ¢; P} is equivalent to a formula of the form
P = Z cipri®;
el
(cf. (1.52)) where ®; are tensor formulae and I C Ny a finite set. Suppose
gy is as in the last display and Fgy is a TFP—bundle. Then the pr; in (1.52)
are formally TFP-components pr; € TFPC(FEy). Consider an arbitrary
pr € TFPC(Ey) and the projection pr*. Then we get the tensor formula
prid = Zcipr*pnq)i ~k Z ¢; P,
iel il s.
where k is a (nonzero) scalar multiple. In particular, any tractor formula
without free tractor (form or spin) indices is equivalent to a tensor formula.
Recall pr*® is a go—component of the formula (or the corresponding operator)

o.

Our next aim is to define a quantity for formulae reflecting the order of
differential operators. (Cf. the discussion of the tractor D-operator at the
beginning of this section.) We define oh(¥) € $7Z (which stands for “order

homogenity”) for a formula ¥ inductively as follows.
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1. If U e {X,Y,Z,Y,X,Y} then oh(¥) := h(T).

2. oh(V) = 1, oh(R) = oh(P) := 2 and if ¥V € {g,0,€, h,e} then
oh(¥) :=0

3. If W is such that oh(¥) is well-defined and cProjV is a formula, then
oh(cProj¥) := oh(¥)

4. If Wy, Uy are such that oh(¥y), oh(¥y) is well-defined and W,V is
a formula then oh(V,Vy) := oh(¥;) 4+ oh(¥,). If moreover oh(¥;) =
oh(WU3) then oh(¥; + Uy) := oh (V).

For example, oh(D,) = 1, see p. 46. In general, oh(®) is defined for a
formula ® = ", ¢;Proj;®; such that oh(®;) is defined for every ¢ and moreover
oh(®;) = oh(®;), i # j. Throughout this thesis, we shall always work
with formulae ), ¢;Proj,®; satisfying this property. This is actually
natural and non-restrictive. The conformal invariant calculus can be build
on the tractor D—operator and this property is satisfied for formulae of the
form of a projection to the composition D --- D.

It is an important property of oh that if oh(®) and oh(¥) is defined for
two formulae ® ~ W then oh(®) = oh(V). It is straightforward to verify this
from the Definition (iii) above.

Assume the formula ® has no free tractor or spinor tractor indices. (It
follows from the Definition (iii) that if & ~ &’ then also ®’ has no free (spinor)
tractor indices.) We define the formal order fo(®) of ® as fo(®) := oh(®) if
the right hand side is defined. Clearly if a differential operator of the order
o is given by a tensor formula ® such that fo(®) is defined then o < fo(®).
Moreover

fo(@)=1= P=0o0ro= fo(P)=1. (1.60)

where ® = 0 means that the operator ® vanishes. This follows from the

definition of oh. If oh(®) = 1 then every summand in & = ). ¢;Proj,®;
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involves V once hence there is no summand of the zero order.

Let us consider a TFP-bundle Fy = V; ® V5 and a formula & = &gy

such that oh(®) is defined. If pr € TFPC(V;) then oh(pr*®) = oh(®P) —
h(pr) using h(prt) = —h(pr) and (1.56). Thus, if pr € TFPC(Ey) then
fo(pr*®) = oh(®) — h(pr).
Example. The following simple examples follow directly from the correspond-
ing definitions. Clearly oh(Xa) = —1 and oh(X, VPV, + wX,P) =1 for a
scalar w. Note, e.g. Xa defines the operator f — Xaf. Also fo(VPV,) =
fo(P) = 2 but the latter operator (which acts by muplitplication by P) has
the order 0. Since also oh(c1Z%V, + Y 4) = 1, we verified that oh(D4) =
1. Further, it follows from (1.39) that oh(D3) = 3. Thus, for example,
oh(D4Dy) = 3.

Summary. We briefly summarize the notation developed above.
e We will use gop—components pr§. These take the form of a string or

‘word” of X, Y, Z, W, X and Y

o We will use formulae ® of differential operators of the form a of (formal)
sum of strings of X, Y, Z, W, X, Y, V. R, P, g, h, 3, € and €

e v(prg) counts the number of tensor indices in a

e h(prg) counts 1 for every Y, —1 for every X, £ for every Y and —3 for

every X

e oh(®), for a chosen string in the sum ®, counts 1 for every V, 2 for
every R and P, and +1, —1, % and —% for every Y, X, Y and X,
respectively, if the result is independent on the choice of the string

e fo(®) = oh(P) for a formula ¢ with no free tractor (form or spinor)

tractor index.
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1.3 Invariant differential operators

In this section we mainly review basic facts known about conformally invari-
ant differential operators. This is especially the classification in the flat case
based on parabolic representation theory. Also we review methods available
for curved cases. The (real or complex) algebras p C g have been defined in
1.1.1 (see also 1.2.2). We will use the notation E, V., W ... for representation
spaces, E,V, W, ... for bundles and £, V, W, ... for sections.

1.3.1. Notation for representation spaces.

Let us consider a highest weight A of a complex irreducible go—, p— or
g-representation. We denote by V* the representation dual to the repre-
sentation with the highest weight A. In the other words, V* denotes the
representation with the lowest weight —A. We will use V* also for corre-
sponding representation of Lie groups.

There are two reasons for this notation. First, we will need certain
cohomology of Lie algebras H(g_;V) where V is a g-representation. (See
Appendix A for the definition.) The p-representation on H(p,;V) decom-
poses into irreducibles and we can easily compute highest weights I" of these
p—components [40]. (See also Theorem A.1.1.) Moreover, we have the
duality H(g_;V*) = H(py;V)* of p-representations. Now the notation
V' C H(g_; V") means that I is a highest weight of a p-irreducible compo-
nent of H(p; (VA)").

Expressing a highest weight a in the basis of fundamental weights (see
1.1.1 for details), we obtain coefficients of a highest weight. Later we will
write a highest weight using its coefficients as labels of the nodes the of
a Dynkin diagram from Table 1.1. This notation requires a choice A, of
positive roots, see 1.1.1. We will always consider such labelled Dynkin dia-

grams with respect to A, corresponding to upper block triangular matrices
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in the matrix presentation of s0,,(C). (This is the usual setting.) However,
p is given by lower block triangular matrices, see (1.2). From this it follows
that an irreducible p-representation V' is given by a Dynkin diagram with

coefficients of I' over the nodes.

1.3.2. Flat parabolic geometries. Assume the complex setting. Recall
that a flat parabolic geometry is the homogeneous space M = G/ P together
with the P—principal bundle G — G/ P equipped with the Maurer—Cartan
form w € Q'(G, g). We shall consider linear differential operators i.e. opera-
tors between homogeneous vector bundles VIt and V2. These are associated
to the P-bundle G — G/ P with respect to the P-representations V! and
VP2, respectively. Here P is a parabolic subgroup of a semisimple group G,
see 1.2.2. An operator is a mapping V'* — V2. A kth order differential
operator can be described as a bundle map J*V'* — V2 on the k-jet
prolongation J*VT1. This operator is G—invariant if it commutes with the
induced action of G on sections V' and YV 2. The real case is analogous.

To classify these operators we can use the Lie representation theory. We
have the identification J*VT' = G xp J*VT! for an appropriate P-module
J*VT1 . Then the invariant differential operators V't — V' correspond
bijectively to P-homomorphisms J*VI't — V2 (a version of Frobenius reci-
procity) or dually to (V'2)* — (J*VI1)*. Now we need the identification
of the latter with generalized Verma modules. Recall that these are (g, P)-
modules

Vi = 4U(g) @y V*

for algebras p C g and a P-module V' where {(_) denotes the universal
enveloping algebra. We have VpF = H(g_) ® VI as vector spaces (by virtue of
the Poincare-Birkhoff-Witt theorem) and (J*VV)* = 4, (g_) ® (VF)* where
e (g-) C U(g_) is given by the filtration of (g_) by degree. Here we have
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used the identification g_ = T, M = (T*M)*. Moreover, the identifications
(JkVF)* ~ ﬂk(g) ®Ll(p) (VF)* SN Vg* o (JOOVF)*

can be realized as P-homomorphisms and the last isomorphism is actually a
(g, P)-homomorphism. Therefore, instead of P~homomorphisms J*VI't —
V2 we can consider dually P-homomorphisms V' — V1 where I and
I'5 denote the duals of I'y and I'y, respectively. The last step is Frobenius
reciprocity

Hom p (V'3,V,1) = Hom (o) (V32 V37).

So we have passed from k-order G-invariant differential operators V' —
V2 to homomorphisms of generalized Verma modules ng — VPFT.

To simplify the situation, we omit the discussion of possible Lie groups P
with the Lie algebra p i.e. we will consider generalized Verma modules as g—
modules. In the complex setting, the Harish-Chandra theorem (see e.g. [37])
provides a necessary condition for existence of a homomorphism Vi — Vg’:
the weights I' + R and [" + R (where R denotes the lowest form, see 1.1.1)
have to be conjugated by an element w € W i.e. w(I' + R) = ' + R. That
is, I' and I" are on the same orbit of the affine action of the Weyl group W.

All the homomorphisms are injections and determined uniquely up to a
scalar multiple by the source and target spaces. Their complete classification
is known in the conformal case (see below) and is also known in the case of
true Verma modules i.e. when p = b is a Borel subalgebra of g [55, 3] (see
also [4]). The complete classification for the general parabolic subalgebra

p C g is probably not solved yet.

1.3.3. Flat conformal geometries. The classification of conformally in-
variant differential operators described below is essential for the thesis. All

of them appear in the pattern corresponding to the Hasse graph structure
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on W? displayed in 1.1.1 in the complex setting. We shall describe this in

detail. Then we briefly comment upon the real case.

The classification of homomorphism of generalised complex Verma mod-
ules corresponding to the parabolic subalgebra p C g = 50,,12(C) is known
due [5, 6]. Some of them are provided by homomorphisms of true Verma
modules corresponding to a Borel subalgebra b C p since every generalised
Verma module Vg is a quotient of the Verma module Vi. Of course, many
homomorphisms of true Verma modules will vanish when we pass to the
quotients. Those who survive are called standard and the remaining ones
non—standard. The same terminology will be used for operators ‘dual’ to
these and their curved analogues. In the case of regular pattern, standard
homomorphisms correspond exactly to the arrows in the pattern and to com-
position of two arrows in the middle diamond for n even, see 1.1.1 for the ter-
minology. Some homomorphisms appear on the pattern with a p—dominant
non—integral weight or on singular patterns, see p. 7. In the latter case, the
homomorphisms and corresponding operators will be said to be singular.

This terminology and the summary of results below is taken from [24]
which demonstrates the classification from [6] together with the Hasse graph
structure on WP. We formulate these results for operators which go in the
opposite direction than the dual homomorphisms of generalized Verma mod-
ules. They are given uniquely up to a scalar multiple (and hence deter-
mined by the source and target bundle) and operate between local sections

of these bundles. For a given weight A, the pattern consists of vector bun-

dles Vi, := VA wy € WP and of V,y := V%™ and Vo= V4™ for n

even, see the patterns in Table 1.1. The subscripts k& = |wy| € {0,...,n}
and n' = |wy | = [wy,| will be referred as the degree. We shall display the

patterns on the level of sections. This notation makes sense only for those of
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weights wy. A, wy,, . A and wy,.A which are p-dominant. We shall describe the
results separately for n even and odd, respectively. In both cases, Vj = VA

where A is the weight of the pattern, see p. 7.
Even dimensional complex cases

The pattern obtained from 1.1.1 by replacing elements of W? by the
space of sections of corresponding associate bundle together with all possible

G-invariant operators is the following:

Vo
SZ,/, v \Sfi
So S1 Sn’ —2 V

Vo—=V—= —+ —=Vy_

1
\Si{’— 1 Sf’
Vn

/
X

Sn’+1 Sn72 Snfl

A e nflg)vn

L,/

n’—1

Ly

Lo

where {ny,n{} = {n},n,}. (We shall comment upon the latter notation
below.) Let us suppose first A is g-dominant i.e. we have a regular pattern.

The operators denoted by S together with the operator
Ly =8y 08y 1 ==Su oSy,

are standard, the remaining ones Ly, ..., L, _o are nonstandard. (Note we
shall construct L,/ _; in a different way, without use of SY,_| and SY.) We

shall also use the notation V,, = Vn/X @ Vn/Y and
Sn’—l : Vn’—l I Vn’u Sn’ : Vn’ — V41

for the direct sums SY, |, ®SX | and S}, & S, respectively. Positions in the
pattern will be denoted by the subscripts 0,1,...,n'—1,n'y,ny,n'+1,....n

and called regular positions. We distinguish the two positions in the middle
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in such a way that order of the operator SY, | is lower (or equal) than order
of ¥ . Using the symbolism of Dynkin diagrams, it is easy to see whether
V”'x = Vo, any =V or Van = Vi, any = Vi, see 2.2.1 and 3.1.2 for details.
The regular pattern without nonstandard operators is known as generalized
Bernstein—Gelfand-Gelfand (¢BGG) resolution or sequence.

In the case of singular pattern i.e. when A is a singular weight, not all
weights in the pattern will be p-dominant. Actually [24], a p—dominant
weight appears only if there are two coefficients —1 in A and they are over
“the legs” (nodes labelled by n} and n) in Table 1.1) or there is only one
coefficient —1, cf. the pattern in Table 2.1. (Here we consider A as a vector
of coefficients over the Dynkin diagram.) The former case with two coef-
ficients —1 is completely degenerated with identical bundles in the middle
diamond and there are no nontrivial operators. The latter case yields oper-
ators Ly, ..., L, as shown in Table 1.5. (The case Ay = —1 is not displayed
since this is completely analogous to the case A; = —1.) These homomor-
phisms are non—standard with the exception of L, and all of them are sin-
gular. Positions in singular patterns will be denoted by couples of subscripts
of identified bundles “0,1”,..., “n — 1,n” in cases with one coefficient —1
and by the word “middle” in the case with two —1’s. (We will not need to
distinguish between couples “n’ — 1,n'y” and “n’ — 1,n{”. Both will be re-
ferred as “n’ — 1,n/” and the similar convention will be used for the position

“n’;n’ 4+ 17.) All these position will be called singular positions.
Odd dimensional complex cases

Contrary to the previous case, there are only standard operators denoted
by Sp,...,Sn,_1 in the regular pattern

S, Sy Sn/+1 Sn—2 Sn—1

So S1
VO > Vl > = Vn > Vn’—l—l > > Vn—l > Vn

which therefore coincides with the gBGG sequence. These operators will be
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The pattern for singular weights

OA;
Ao A1 An/—z/
X—0O- - - o\
O Asg
V"'Y
_ _ = ~
A=A =-1 VY, Vi
\ /
VY,
X
A =-1 Vi =Vin Vi—ic1 = Vni
0<i<n/-2 Lit T
any
_ L, A
N
VY,
X

The pattern for nonintegral weights

AO A1 An’—l A
H¥—0-+ + + —O===0
Y Vn
Ao € AN\N)U{-} ’0 ; T
0
Ai—lyAi € (%N\N)U{—%} Vz Vn—i
1<i<n -1 ‘ Li T
Aw—1 € (GNAN)U{-3 Vo — Vi1

Table 1.5: Operators on non-regular patterns.
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referred as short operators. Positions in this pattern are called reqular and
denoted by subscripts of the bundles 0,1,... n.

If A is a singular weight, some of weights w.A, w € WP can be p—dominant.
It follows from the pattern in Table 2.1 that the coefficient —1 can be only
once in A. Corresponding singular positions will be denoted by couples
“0,17,...,“n—1,n" as in the even dimensional case. However, there are no
nontrivial operators in this case i.e. there are no singular homomorphisms
for n odd.

We can obtain more operators — non—standard ones — on patterns with
a p—dominant non—integral weight A. This patterns will be called non—
standard. There can be at most two non—integral coefficients and they have
to be half integral greater or equal —%, cf. Table 2.1. Possible choices for
half integral coefficients are shown in Table 1.5. Positions on these patterns

will be called non—standard positions and will be denoted by subscripts of

bundles from Table 1.5 i.e. by 0,1,...,n.

In all dimensions, we denote the operators using the developed notation
Le. by S;, Lj, S:2¥_, ete. possibly with specification of positions i.e. S; : i —
t+1,L;j:j—1,j—n—jn—j+1, L;: j — n—j etc. This determines
an operator uniquely. The operators denoted here by L and S will be called

long and short operators, respectively.

We have seen that if an irreducible conformal bundle admits an operator
from the pattern then the coefficient over the crossed node (in the notation of
Dynkin diagrams) is an integer for n even and an integer or a half integer for
n odd. Translating this to the notation developed in 1.1.3 (based on Young

diagrams) the same is true for the conformal weight. Such a weight shall be
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called admissible. That is, the set of admissible weights is of the form

7 n even

AW = (1.61)
%Z n odd.

Real cases

A real irreducible bundle V appears in a (real) pattern if any (equivalently
every) irreducible component of V(C) appears in a complex pattern. This
determines uniquely the positions of V', the type of the real pattern (regular,
singular, non-standard) and the operators.

The structure of real patterns can be classified in exactly the same way
as in the complex case with one exception, see e.g. [48]. If n = 2n’ and the
signature (p, q) satisfies n’ — p is odd then the bundle V;,; can be irreducible.
This happens if and only if VA = E{r, - ,ry_1,0}¢[w] where A is the
weight of the pattern. That is, V/ is a tensor representation and there is
no column of the length n’ = % in the Young diagram corresponding to VA,
Then the latter property is satisfied for all positions in the pattern with the

exception of n/. (Recall n" — p odd means the action € on V,, has no real

eigenvalues.) If Vs is irreducible, the middle diamond degenerates to

S S,
anfl Vn’ . Vn’+1

Ln’—l T

(We do not need analogues of complex operators SY, ;| and SY, for L, ;.)

With this exception, we can use the same notation for real and complex flat

operators.

1.3.4. Curved conformal geometries. Let us consider conformal struc-
ture as P-principal bundle G — M equipped with the Cartan connec-

tion w. Vector bundles natural for the conformal structure are of the form
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VI = G xp V! for a linear P-representation V'. Differential operators be-
tween V't and V' are, as in the flat case, bundle mappings J*VT1 —s VT2
on the k—the jet prolongation. Inwvariant differential operators are, roughly
speaking, differential operators V' — V' defined for fixed representations
V't and V2 for all conformal structures in a universal way independent on
any other choices. (See [39] for a general theory). Contrary to the flat case,
we shall not provide a precise definition because we do not need it. The
operators discussed in this thesis will be natural in the following sense. An
operator between tensor/spinor bundles is natural if, for a given metric from
the conformal class, it can be expressed by a tensor formula defined in Defini-
tion 1.2.6 (i) on p. 54. More generally, an operator between natural bundles
® )V, — V), is natural if pri®pr; : W, — W, is a natural tensor operator
for any irreducible go—components pry : Wy <— Vi and pro : Wy — V5 of V)
and V5, respectively. In particular, if an operator is given by a tractor for-
mula in the sense of Definition 1.2.6 (i) on p. 54 then it is natural. A natural
operator is invariant if the formula does not depend on the choice of the
metric. Henceforth, if we use the term ’operator’ without any specification,

we will mean a differential operator which is natural and invariant.

We are primarily interested in operators on general (curved) structures
which are non—trivial upon restriction to the flat case. In the other words, we
would like to know which operators on conformally flat manifolds extend to
all conformal geometries i.e. which of them have curved analogues. Most of
them do (see below) but some so not and the complete answer is not known
yet. Moreover, there can be more curved analogues for a given operator on
flat manifolds.

In the discussion on operators in flat parabolic geometries 1.3.2 we con-

sidered operators V' — V2 via the composition J*VI = G x p JFVTT —
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V1. Tt turns out this approach fails in curved cases for k > 2, see e.g. [18].
However, the situation is simple for £k = 1 and we have the following propo-
sition. See [25] for the proof in the (spin) Riemannian case and [49] for the
(spin) pseudoriemannian one. (See also [18] for the same result treating all

parabolic geometries.)

Proposition. Fvery first order operator on flat conformal manifolds has

a unique curved analogue.

There are algebraic techniques [24] which provide existence results for
curved analogues of the operators from the pattern in 1.3.3. [24] shows
existence of curved analogues for all operators from 1.3.3 with the exception
of Ly in the even dimensional case. Actually, the operator Ly has a curved
analogue if it acts on functions but this result is more subtle [36]. All these
results are summarized, together with a nonexistence result from [33], in the

following theorem.

Theorem. Let us consider the classification of the operators on conformally
flat manifolds from 1.3.3 and the notation therein. Then:

(i) All operators from the pattern with the exception of Ly for n even have
curved analogues and also Ly for n even has a curved analogue if acting on
functions. The latter is the operator Ly : £ — E[—n).

(ii) The operator Ly : Elw] — E]—w — n], w € R for n even has no

curved analogue for w > 0.

The construction developed in this thesis shall not treat all operators
mentioned in Theorem (i). We say that an operator V; — Vs is strongly
invariant if it can be written by a formula (in the sense of Definition 1.2.6 on
p. 54) which, interpreting the Levi-Civita connection as the coupled Levi-

Civita—tractor connection, yields also an operator V; ® £ — Vo ® E5 where
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&« denotes any tractor bundle. We will also say that the formula is strongly
invariant. It is shown in [30] that there is no strongly invariant operator
£ — &[—n] for n even with a leading term A" i.e., a curved analogue of
the flat operator Lo : € — E[—n]. (See [21] for a detailed treatment of the
operator Lo : &€ — E[—4] for n = 4. This operator is given by a formula
which does not depend on the choice g € [g]. However, to verify the latter
fact we need to use V|,V f = 0 which is satisfied for f € £ but not for
fef®é&.)

1.3.5. Main aim of the thesis. We will construct formulae of strongly in-
variant curved analogues of all invariant operators in the flat case for which
such curved analogues are known to exist. These are all operators from the
pattern with the exception of Lo in the even dimensional case. The formu-
lae will be strongly invariant and provided in a compact form in the tractor

calculus.

Formulae for many operators in conformal geometry are known. In par-
ticular, there is an algorithm for all short operators [28], see also [19, 14]
where other parabolic geometries are treated. The latter exploits represen-
tation theory (namely Casimir computation). Among these, [14] provides
the simplest algorithm for short operators. This result does not concern the
operator .S, for n odd.

A route for getting formulae for long operators is shown in [24] but we
have no algorithm for these operators comparable to the results mentioned
in the previous paragraph. (Of course, this thesis provides one.) Formulae
for the critical operator Ly on densities for n even are available in [35]: fol-
lowing [17], the result from [36] is translated to the tractor calculus and an
algorithm for formulae is developed. (They are computed in terms of the

Levi-Civita connection for small orders.) Recall our construction does not
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concern this operator. A special form of long operators on density—valued
forms is constructed in [11]. See also references therein for other related
Branson’s results.

Our formulae in the tractor calculus will not require any additional in-
formation from representation theory. Also note that it is straightforward
to express tractor expressions in terms of the Levi-Civita connection and
its curvature using the definitions of the tractor connection and tractor D—
operator from 1.2.3 and 1.2.4 (eventually 1.2.5). This procedure is tedious for
operators of higher orders and can be done by computers using, for example,

the software developed for [35].

1.3.6. Curved translation principle. This is a general procedure which
can build complicated operators from simpler ones. In the flat case, this is
provided by the Jantzen-Zuckermann translation functor [56]. This result
yields the translation for (dual) homomorphisms of generalized Verma mod-
ules. A key point here is to use the action of the centre of 4(g). See also [24]
for more details.

The “simple” operators we start with are the exterior derivative d, the
conformal Laplacian [J and the Dirac operator }). Considering the pattern
from 1.3.3, d : EF — EF1 is the short operator Sy, for A = 0 (the weight

of the pattern). This pattern is the deRham complex. Operators O : E[1 —

|3

| — E[-1-5F]and P : Ex[1—-5] — Ex[—%] appear on appropriate singular
and non—standard patterns as L, _;. In fact, these are strongly conformally
invariant operators on all curved manifolds.

The curved version of the translation functor is the Eastwood’s curved
translation principle introduced in [23]. We obtain the results promised in
1.3.5 by an implementation of this technique in the tractor calculus. Before

we discuss the general case, we demonstrate the translation on curved ana-
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logues of the flat operator AF : E[k — 2] — E[—k — %], k > 1. (See [22]
for the invariance of A* in the flat case.) O is a curved analogue of A% For
k > 1, we follow Eastwood and Gover in [21] (see also [35] for more details).

We define [, := [0 and we “translate” this operator to a curved analogue of

A¥ denoted by [y, as follows. We define

Ogx : E[k—n /2] — E[—k —n/2]
k (1.62)
DA ... DY%OD,,  ---Daf = (H(n —20)(i — 1)) Oar f
=2
for k > 2. The scalar on the right hand side is nonzero for n even and
k=mn"—i<n"ie. i>0orfor n odd. Note the condition k < 5 for n even
means that [y, does not provide a formula for Ly on functions. This was
inevitable because the operator [y, given here as a composition of strongly
invariant operators, is necessarily strongly invariant whereas L is not.
The first step in the translation is to apply a splitting operator (or just
a splitting) which is a differential operator between natural bundles Split :
Y — V' such that there is a gop—component pr : V — V' of V' satisfying
pr*Split = idy,. Typically, V' will be a tensor bundle and V' a tractor bundle
and Split “puts” or “extends” the section f € V into tractors. A trivial
example is fo — Xafqa. (See [21] for several nontrivial (but simple) examples.)
In the translation (1.62) above, f — Da, ,---Da, f is a splitting on E[k —
n/2].
To give some idea of the translation in the general case we give an in-
formal account of this construction. Suppose we need a curved analogue of
an operator () from the pattern, acting on a bundle V;. First we need an

appropriate (invariant) splitting

Vs feSplit(f)=| § | eV

*
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Then we apply a (strongly invariant) operator Op € {d,J, )} which yields

Vi3 fres OpoSplit(f)=| o | € Vs
where @ = @’ in the flat case. That is, we will be always able to guarantee
that such @Q'f appears among the slots on the right hand side and the slots
affecting invariance of )’ (i.e. the slots displayed “above” @)') are zero in the
flat case. In the curved case, there can be curvature terms in these slots
which means the projection to )’ would not be invariant. To solve this
problem, we will replace the projection to " by formal adjoint of (generally
another) splitting operator Splits. This will be denoted by Split} : Vi — Vs.
Note formal adjoints of splitting operators are sort of dual operations to the
splitting: Split} goes from tractors back to tensors in an invariant way, see
details in 2.1.8. This use of dual splittings was pioneered by Branson and
Gover [10]. So the resulting form of the operator () obtained by the described

realization of the curved translation principle is
Q = Splity o Op o Split;. (1.63)

1.3.7. gBGG splitting operator. The existence of appropriate splitting
operators is the crucial question for the translation. It has been established
for short operators in [20] (see also [13]). Let us start with the complex case.
Consider a regular pattern with the (g—dominant) weight A and a bundle
VA with w € WP, see 1.3.3. Denoting k = |w| the length of w, it follows
from Kostant’s theorem A.1.1 that the corresponding representation space is
a go-submodule V¥4 C Ex ® VA, The inclusion V¥ < E_x ® VA is unique,

see Theorem A.1.1.

Definition. In the complex case, let us consider a g—dominant weight A, the

tractor bundle VA and the irreducible bundle V*A for w € WP, |w| = k.
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gBGG splitting operator is a splitting operator V¥ — &£ @ VA, In the
real case and for V irreducible, S : V — V' is the ¢BGG splitting operator
if the restriction of S(C) to any irreducible component of V(C) is the gBGG

splitting operator.

Proposition. Consider the bundle V in the regular pattern on the position
k or kx or ky. Then the gBGG slitting exists on all curved manifolds and
has the form V — Egx @ T where T is a tractor bundle. It is determined

uniquely in the flat case.

Proof. See [20] (or [13] or Chapter 2) for the existence and Appendix A for
the flat case. O

There are many differences between the construction in Chapter 2 and
20, 13]. Both build the gBGG splitting from simpler steps. Consider the
gBGG splitting Eqr[k + 1] — Earr = &0 ® Ear+1. Using the notation
for quotient spaces from 1.4, the [20, 13] construction can be schematically

displayed as

5ak[k+1]9fH(_f_>H

(*i*) — <*i*) € Epnt

whereas our construction will be

(—i»;) — ({}) EgAk+1.

Actually, we will later replace operators between quotient bundles by opera-

Exlk+1]3 fro (-f—) -

tors between (sub)bundles and (contrary to [20]) decompose the construction
of DSplit into invariant steps. We will provide strongly invariant tractor for-

mulae for all these steps.

We have no preferred splitting operator for non-regular patterns. How-
ever, DSplit is well-defined for all irreducible bundles. We shall see later

that it is actually suitable for the translation of long operators.
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1.3.8. Notes on zero and first order operators. The purpose of this
section is to state simple properties concerning invariant differential operators
of order 0 and 1. In the following Lemma, we shall use the notation from
1.1.3 describing Young symmetries and corresponding bundles by a sequence

of numbers (s1,...,S,).

Lemma. Let us suppose that we have the nontrivial operators

Ey: E(s1,...,8)0lwr] — E(sY, ..., 80 )o[ws]

,,,/

BEy: E(51,.. ., 8. )olwi] — ET® -+ @ Ewy] where s, >---> s,

gwen by a formula of formal order 0, which does not use the volume form €.
The conformal weights w1 and we are real or complex scalars. According to
the constructions in 1.1.3, this means that all free tensor indices of sections
of these bundles are covariant (“downstairs”). Recall s =73, s;.

(i) The operator E; satisfies r = 1" and s; = s, for alli € {1,...,r} and
the operator is a multiple of identity.

(ii) The operator Ey satisfies s' — s € 2Ny where s' =" | .

(iii) Assume E(S1,...,5r)olw1] C Eaya,[w1]. Let us suppose s = s" where
s =3"" s Then sy > s|. More generally, suppose s = s" and Es is given

by a formula ® satisfying that, for a fized k € {1,...,r}, the indices from

ai,...,a,_1 do not appear in ®. Then s; = sy,..., 8,1 = S)_, and s > s).

Proof. E; and Es, are nontrivial algebraic operator because their formal order
is zero. (The latter means that there are no V’s, R’s and P’s in formulae for
FE; and E».

(i) E, is a nontrivial algebraic operator. If the source space is irreducible
then £y = C'id, C' # 0 by Schur’s lemma and (i) follows. If s; = % then
either £y = C'id, C # 0 or E; is a projection to an irreducible component.

The latter requires the volume form.
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(i) Assume f is a section of the source space. Then Esf is a sum of terms
g---gf with all indices covariant and (ii) follows.

(iii) Following (ii), if s = ' we can suppose F,f is a sum of f’s (with
possibly renamed and (skew)symmetrized indices). Clearly s; > s} because
s1 < s} requires more than s; skew indices of f which vanishes, see 1.1.3.
The more general case follows from the (similar) property that a skew sym-

metrization over more than s; indices among ay, ..., a, vanishes. O]

Proposition. Let K = C or K =R and let U, V be natural tensor-spinor
bundles. Let ®(w) be an expression, polynomial in w € K, such that for
every fivzed w, ®(w) is a formula in the sense of Definition 1.2.6 on p. 54
satisfying fo(®(w)) = 1. Suppose ®(w) defines a 1-parameter family of
differential operators E(w) : Ulw] — V[w'] where w' € K depends on w.
(That is, ®(w) possesses no free (spinor) tractor indices.) Suppose E(w) is

invariant for every w. Then E(w) is trivial for every w.

Proof. Assume U, V are irreducible. Note for a given w, E(w) is either of the
first order and not algebraic or E(w) vanishes. (fo(®(w)) = 1 guarantees V
appears once in every summand of ®(w) and any term involving the curvature
requires fo(®(w)) > 2.) That is, if F(w) does not vanish, it will be an
irreducible gradient E(w) = ProjyV where V — T*M ® Ulw] is unique
[51]. Summarizing, E(w) = ¢(w)ProjyV up to an isomorphism. (Recall
E(w) is an operator — not a formula — here.) Here ¢(w) is a scalar depending
on w. Since ®(w) depends polynomially on w, it has the form of a finite
formal sum ®(w) = >, ¢;(w)Proj;®; where ¢;(w) are polynomials, see the
Definition, page 54. Therefore c¢(w) is polynomial in w. But every gradient
is invariant for a unique conformal weight. (See [25] for the Riemannian
case and [49] for a generalization to nondefinite and complex cases.) This

means that c¢(w) can be nonzero only for a unique w € K. Therefore the
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c(w) vanishes for every w.
If U, V are not irreducible, we can apply the same reasoning to all irre-

ducible components in U and V. O]
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Chapter 2

Splitting operators

2.1 Construction of splittings

Let us start with k—forms and splitting operators of the form Eur|w] —
Eat[w']. Looking at possible projecting parts of Ea: in (1.45), we have espe-
cially the following possibilities for f € Eur[w]:

B:f (0;0), M: f (f%), T:f (f) fo (00f>. (2.1)
(We will not need more details about the last of these. See also 2.1.9 and
the operator M therein). All these splittings were constructed in [11] via
ambient metric. As we work directly on the tractor bundle, we will obtain
explicit formulae for B, M and T.

The operators B, M and T in (2.1) are called the bottom, middle and top

operator and are generalised to irreducible tensor bundles in 2.1.1, 2.1.4 and

2.1.5, respectively. That is, they are constructed as operators
ExAri, .y tolw] — Exar{rt, oy Th—1, Tk — LTkat, -, T fo[w] (2.2)

where r, > 1 and the tractor indices in ¥ indicate the strong invariance.

Obviously [ = k+1 for the operators B and 1" and [ = k for the operator M.
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For reasons that will soon become clear preferred choices are k := min{i |
r; # 0} for the operator M and k := max{i | r; # 0} for the operator B
and T'. These choices are sufficient for the aim of the thesis. However any
value k such that r, # 0 is possible, see 2.1.9 for details about M and T
(the case of B is obvious). The operators (2.2) concern tensor bundles. The

generalisation to spinors is then straightforward, see 2.1.6.

We shall demonstrate the calculus for operators B, M and T mainly on
spaces £(k)[w] and E(k,)o[w] and their spinor versions. The case £(k, 1)o[w],
although a simple one from our point of view has not been studied much
previously and formulae for many operators are not known. The Example
3.1.6 shows the result - tractor formulae for curved analogues of all (strongly)
invariant operators on E(k, [)o[w] which exist in the flat case. These formulae

are expressed in terms of B, M, T and their formal adjoints.

The results in 2.1.1 below are in a sense obvious but important for the
reader as they demonstrate the notation and properties which become more
complicated in the case of M and T

On the other hand, 2.1.2 is not essential for the general construction.
The aim here is to demonstrate in special cases the techniques we will use
for the construction of M and T". These special cases will be (density valued)
2-forms and the space £(2,2)o[w] i.e. the trace—free Young symmetries H.
Another motivation for 2.1.2 is that it can be applied to the Weyl curvature
tensor C' € £(2,2)0[2].

Throughout the thesis, we shall use the bundles E(I;sq,--- , s, )o[w], | €

{0, 3}, or equivalently E{rq,--- 7 }ow], which have no attached indices.

However, they are defined as subbundles

1
E{ri,--- ,rw}olw] = E(ﬁ’ $1, 5 8p)o[w] C Eyay.a, W]
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where a; = a;*, 1 < ¢ < r in the spinor case, and similarly in the tensor one.
We shall use this index structure implicitly. For example, we will consider
XA?Z as an operator on E(%, S1,++ , 8r)o[w]. Using the previous display, the

subscript ¢ determines this operator uniquely.

2.1.1. Bottom operator. The bottom operator on k—forms f, € Eur|w]
is the algebraic operator B2 f, = X 04 f, where A = A", B lowers
the conformal weight w by k — 1. Let us consider the the general case
f = fzaya. € E(l;51,...,8)o[w], [ € {0, %} Obviously, we can apply X ;03
to any form index a = a® or to use the spinor projection X3. However,
it will be convenient for our subsequent constructions to define the bottom

operator B as

BA?: 1 Ex(05 51,0 8y )o[w] — Expaoa (52, - -+ Sp)olw — s1+ 1] 2.3)
BAQZ f5a1~~ar = XA?Z fTalwar
for tensor representations and
By : 8;(%; S1y -y Se)o[w] — Exalst, .., Sp)o[w] (2.0

A — YA
BAfT)\almar - XAfT)\aynaT

for spinor ones. That is, we use X3 or, if there are only form indices, we use
X 04 where a is a form index of the maximal valence.

Since the bottom operator is of the zero order, it is strongly invariant
and can be used repeatedly. Let us suppose we want to apply the bottom
operator b times, 1 < b < r, b € N in the tensor case. The result, also called

the bottom operator, is the composition

(b) apar | a .. :
(B) aga,ara, = Bagay - Baga (2.5)

Ex(s1,- -5 8r)o[w] — ST[AgAb]-~-[A?A1](5b+17 coes 8 )olw — 8"+ ).

In the spinor case, we compose the bottom operator B} and |b| € N tensor

bottom operators and we put b:= [b] + 1 € IN where § <b=[b] + 35 <.
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This will be denoted by

() B WA p oAy p aip).
(B )AgAbmA?AlA - BAgAb BA(l’AbBA :

2.6

5(5; Sty -5 8r)0 — Epgia9a, ) [a0A,] (Sb+1s - -+ Sr)o[w — s+ 0] 20
Recall that in connection with spinors we use the following conventions from
1.1.3. We consider implicitly the integer part |b| of b in expressions with
non-integer subscript like a; or s, but s* = % + sl Finally note that since
oh(X3) = h(X}) = —3 and oh(X03) = h(X4) = —1 according to the
notation in 1.2.6. Therefore (2.5) and (2.6) yield

oh(B®) = h(B®) = —b. (2.7)

Definition /Terminology. The operator B®) will be called bottom splitting

or bottom splitting operator.

Theorem (Properties of the bottom operator).
Let us consider the bottom operator B®) given by the relation (2.5) or (2.6)
and the system of indices A = [AIA] - - - [A(EbJALbJ]' The TFP-component

Xyoal - X i € TFPC(Ex) breN

pry =
X;\\X M X0 e TFPC(Epyy) byr €N

ATA, APA,

is the only non-vanishing projecting part of B®.

We shall not always strictly distinguish between operators and corre-
sponding formulae. (We study operator which are natural, i.e. given by a
formula, see 1.3.4.) But we will write = 0 (or # 0) only for operators. That
is, if ® is and operator/formula then ® = 0 means that this operator van-
ishes. (The formula may be nontrivial.) On the other hand, if we write

oh(®), this always concern the formula ®.
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2.1.2. Simple examples of M and 7. We shall describe the operators B,
M and T for f, € Eqz[w] first and then the operator M for fap, € £(2,2)o[w].
The symmetries of the latter will be referred as Weyl tensor symmetries.
Recall that Cap = Cargzene € £(2,2)0[2].
According to 1.3.8, the bottom splitting fa € Euxw] is just fa — X 102 fa,
A =A% e
X104 0
Ja <0fo)

in the matrix notation. Now let us try to use this to construct the middle

operator. Following [11], we shall use the notation

(LUO)VF) ju = OMEps

for an operator ® on Er[w] increasing the valence by one.

Middle operator on Ex2[w]. Let us start with Z3 f, according to the matrix
notation in (2.1). While this is not invariant as a section of Eaw — 2], it is
invariant as a section of the quotient bundle (Eyz)a[w — 2]. So we need an
invariant operator (Eyz)a|w — 2] — Eaw —2]. On the other hand, we have
the bottom splitting X ;4 and so we can consider D4°X ;o3 = 1,(D)e(X).
We are going to show this composition applied to Z3 f, provides the desired

middle operator. (This was used in [27] on the tractor curvature.) In the

matrix notation we get

VAN 0 L ~
fa =2 (fa —) UDE), (C(w)ifa 0) =: fa (2.8)

where c¢(w) is a scalar depending on w. We have to show the Y and W-
slots of fA vanish and the Z-slot reveals a multiple of the identity. Since
oh(Za) = 0, oh(X4) = —1 and oh(D4) = 1 we get oh(u(D)e(X)Z3) = 0,

see p. 56. That is, every summand in ¢(D)e(X)Z3 (i.e. a juxtaposition
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of X, Y, Z, W and a tensor formula in the sense of Definition on p. 54)
satisfies this property. Using oh(Yp) > 1 for any tensor formula ¢, it follows
from oh(u(D)e(X)Z3) = 0 that Y does not appear in any summand of
(D)e(X)Z%. Therefore the Y-slot of fa vanishes. Similarly, if Z3 ¢ is (up to
a multiple) a summand in «(D)e(X)Z3 then oh(Z3p) = oh(«(D)e(X)Z3) =
0 hence fo(p) = 0. That is, ¢ is algebraic. Since also oh(W) = 0, we
have shown that the W— and Z-slots of fa can be only multiples of the
identity. Since W 41 42 possesses no tensor indices, the W—slot of fA vanishes.
Similarly, the X-slot of fa (i.e. the star in the matrix notation above) is a
first order operator on f,2 and since X Alfé possesses only one tensor index,
the X-slot is ¢/(w)V? f,q2 for an appropriate scalar ¢ (w).

It remains to identify c(w) in (2.8) and ¢(w) above. First, ¢(X)Z§ =
3X j0a- Recall that the formula (1.32) for DA has three summands in a
scale. We shall refer them as the Y4°, Z4° and X4’ —term. Since 3X soafa €
Eaoa)lw — 1], the YA term contributes to ¢(w) with (w — 1)(n + 2w — 4).
Looking at the formula for V?X .4 in (1.49), we see that the contribution
of the Z4"—term is given by 3(n+2w— 4)Z‘2§Z;§ggfa which yields the scalar
(n 42w — 4)(n — 2). Finally, looking at the formula for 3AX % fa in (1.50),
the contribution of the X4”term is determined by —X4"(—n 4+ 4)Y ;02 fa

and this yields the scalar (n — 4). Hence the scalar c¢(w) is equal to
(w=1)(n+2w—4)+(n+2w—4)(n—2)+(n—4) = (n+2w—2)(n+w—4).

The computation of ¢(w) in the X-slot of fa is similar. The contribution
of the YA’ ~term is zero. The contribution of the Z4"—term is is clearly given
by 3(n+2w—4)ZAOpXA02foa which yields the scalar —2(n+2w—4). Finally,
the contribution of the X4"—term is given by —XAO(—12WA0A1§§)V“1fa
which yields the scalar —4. The result is ¢(w) = —2(n + 2w — 2).

Summarising the scalars c¢(w) and ¢ (w), we can define the middle operator
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either as the operator M3 on Ezz2[w] or M on (Eyz)az[w — 2] by the formulae

a 0 0
fa Ma, <(n+w—4)fa o) or <f30_) M, ((n+w—4)fa o) (2.9)
_Qfopa2 — —QVpraz
respectively, for f, € Eu2[w]. (See [21] for an analogous operator on 1-forms.)
Using an obvious polynomial continuation, we removed the scalar n + 2w — 2

from both c¢(w) and ¢/(w). This does not affect the invariance, see 2.1.4.

Clearly the middle operator is a splitting operator for w # 4 — n.

Top operator on E,[w|. Having the middle operator at hand, we can
use the tractor D-operator once more and consider D40 M3, f,. In terms of

invariant quotient spaces, this is the composition

Y a € L m a 5 L w
PR <_fa_> M( ) ) D), (“*)Ja) (2.10)

*

where m(w) = n+w —4 and t(w) is another scalar (depending on w). Using
oh(Y) =1 and oh(e(Y)Mu(X)) = oh(e(D)(X)) = 0, we see that oh of the
whole composition is 1. Since the top slot of £ 4042] has the homogenity
oh(Y) = 1, only an algebraic operator on f could be in this slot. It follows
from the tensor valence of Y Aoflll f}é that it is a multiple of f,. Similarly, it
follows from oh(Z) = oh(W) = 0 that the Z and W-slots yield first order
operators. Using the tensor valences of Z‘jg‘jﬁjﬁz and W ,, A1X227 these operators
can be only Vi, fa and VPf.2 up to multiples, respectively. An explicit

formula for the top operator on forms is computed in Example 2.1.6.

Middle operator on £(2,2)g[w]. The (two—dimensional) matrix notation
is getting complicated so we shall use only the XY Z-calculus. We cannot
use the operator M3 or Mg, constructed above, directly for fa,. But we can
use the bottom operator first which yields /o0, = X 103 fab € Epaoampw —1].

Then we can apply Mg. (The middle operator is strongly invariant.) We
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obtain
Mg froap = |(n+w = 5)Z8 — 2XEV"' | X 103 fob
= (n+w—5)X 0378 fap — 2X 03 XBV fup, (2.11)
= X3 [(n+w—5)Z8 - 2X59"] fup
where the first equality is just the formula (2.9) rewritten in the XY Z-
calculus. The essential part of the second equality is that we can commute
V" and X 0. This follows from a direct computation (see Example 2.1.2)
which uses properties characterizing the bundle F(2,2)[w]. We need the
trace—freeness and Weyl tensor symmetries (in particular the fact that the

skew—symmetrization [b'a'a?] vanishes for fap). Therefore we can define the

operator Mg on £(2,2)o[w] by
M]gfab = [(n +w— 5)Zg - ngvbl] fab € 5aB[w — 2].

Now we can continue and apply M3 once again. This puts fap to the
ZZ-slot of Eaglw — 4] and there is no other projecting part. The latter fact

follows from a direct computation which we describe in detail:

M3 fa, =M (M fa) = | (0 + w — 6)Z3 — 2X5 V™ | (M )
— [(n w— 6)Z4 — zx‘j;val} <(n Yw—5)Zh — 2X"Bv”1) fab
— [(n w—6)(n+w—5)ZAZE — 2(n +w — 6)Z3 X5V
—2(n +w — 5)X& (V"' ZB) — 2(n + w — 5)X& ZB V"
XA (VKB )V 4 4xE XB v vbl] fab.
Looking at formulae (1.49), we see that (V* ZR) fap = —2P“1b1XE]§fab be-

cause the second term vanishes due to trace—freeness. Similarly,

1

al b \ bl al b2 bl bl b2 al
(v XB)V fab = ZBlBQV fa1a2b1b2 = ZBlBQV fb1a2a1b2 == 2

bl b2 al
ZBIBQV fab7
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cf. 1.7 for the last equality. Now we can finish the previous computation:
MR fab = [(n +w — 6)(n+w— 5)ZAZy — 2(n +w — 6)ZaAXng1
+4(n+w — 5)X1XE§P“161 —2(n+w— 5)XéAZEV“1
+2XRZRV + 4XAXRV V| fa
(2.12)
= [(n +w —6)(n+w—5)Z3Zy
—2(n+w - 6) (ZAXRV" + X4ZR V")
AX4 XB (valvbl +(n+w— 5)P“1”1>] Fab € Eanlw — 4].
The result is the complete conformally invariant middle operator for the
bundle E(2,2)o[w]. This is a splitting operator if the scalars n +w — 6 and
n +w — 5 are nonzero.
M gg fap is clearly trace free on the tractor indices. Although M[ Xg] fab =
0, the tractor indices do not, in general, satisfy Weyl tensor symmetries.
Details are in Example 2.1.3. Here we only note that if we replace V¢ V'
by V(@' ¥ in (2.12) then these symmetries will be satisfied. Then M3, fap

will be indecomposable

We can apply the computed middle operators to the Weyl curvature ten-
sor Cap € £(2,2)0[2]. Let us start with MJ. This yields the tractor curvature
Q:

MBC, =(n — 3)ZBCap, — 2XB V"' Clap
—(n = 3) |Z8Cap — 4XBV 1 Pooyz | = (n — 3)Qup.
Here we have used (1.17) i.e. VY Oz = 2(n — 3)Viq Ppppe. Using this
relation in the case of the operator M3B, we get
M3ERCop, =(n — 4)ZAZE Cap,
— A(n — D) ZEXBV 1 Py — A(n — 4)XEZBV 1 Proy2

+ 4XA XB B2y
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where By = (V' VY 4 (n — 3)P*?")Cyp is the Bach tensor. The re-
sult Wap = MX%C’ab is the curvature of the Fefferman Graham ambient
metric if n # 4 (up to a scalar multiple), see [35] for more details. Let
us note the formula for Wag implies that the Bach tensor B,z is invari-
ant in the dimension 4 and the Cotton—York tensor Ai,2 = 2V 1 P2, is
invariant in the dimension 3. It is noted in [35] that Wap satisfies Weyl
tensor symmetries on tractor indices i.e. Wiapip2 = 0. This follows from
VI IO oy = %(n — 3)VPA,2,2 = 0 which can be obtained from (1.17)

after some computation (cf. Example 2.1.3).

Let us summarise the results and also problems we face in the general
case. First, the case of E,x[w] is not difficult — it is straightforward to rewrite
the procedures (2.8) and (2.10) from 2-forms to any valence k. See (2.14)
and Example 2.1.6 for the results.

Already the space E(k,)o[w], k > [ reveals some of the problems we will
meet in the general case £(p; s1,- -+, s.)o[w], p € {0, 3} and hints how to solve
them. For example, trying to generalise (2.11), we have two choices: either
MEX 02 fap, 0f MAX 508 far, Where A = A* and B = B’. We have to be care-
ful here to choose the former because the latter has generally two projecting
parts ZaXpgog and XpZpgog for k > [. Following (2.10), we will construct
the top operator T' from the middle one using the tractor D—operator but
again, it is not clear ab initio whether one should choose Do M, MEf,,, or
D[BOM|Z|M'§] fap- We will see later that the former is the right choice but
the proof for the general case (see Theorem 2.1.5) is rather technical.

Another issue is the scalar, depending on w, which appears as a coefficient
of the desired projecting part. For example, we have seen in (2.12) that
M3 Mg is a splitting operator on £(2, 2)o[w] only if (n+w—5)(n+w—6) # 0.

In the general case, we shall construct candidates for splitting operators as
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compositions of appropriate top and middle operators and collect carefully
scalars emerging in all steps of this composition. A very simple example of
such a composition follows.

Ezample 2.1.1. Let us consider the operator T®) = D, --- Dy,, p € Non
Ez[w] and the TFP-component pr? € TFPC(Ey), A = Ay --- A, of the
(highest) homogenity p = hh(Ey), see 1.2.6 for the notation. Then pr? is a
projecting part of T i.e. the operator (prp)*T(p) is invariant. However, it
sometimes vanishes. Namely, it follows from the term w(n + 2w — 2)Y, in

the formula (1.32) for D4 that (pr?)*T® = C -id where
p
C=]]w=i+1)(n+2w-2i)
i=1

Now consider the scalar s(p,0) := w—p+ 1. It is obvious from the form of C
that if s(p, 0) > 0 then C' # 0 and pr? is the only TFP-projecting part of T®).
(Note there is a unique irreducible projecting part of T® which is nontrivial
for C' # 0. This is a component of pr?.) On the other hand, if s(p,0) = 0 and
T = () then T'”) is not a splitting operator. Further, suppose prr € TFPC(Ex)
is of the highest homogenity hh(E<) and f € Ex[w]| satisfies pr*f # 0. Then
TWf € Eyslw — p] and similarly as above, prpr? € TFPC(AX) has the
highest homogenity hh(Esz) and (prpr?)*(T® f) # 0 for s(p,0) > 0.

2.1.3 Remark. The middle and top operators constructed until now can be
viewed either as operators between quotient bundles or subbundles of tractor

bundles. For example, we have
T: (5y>Ak+1 [w] — (Syw>Ak+1 [w] — SAkJrl [w] or
T: (Ex)arti|w+ 2] — (Exz)ari[w + 1] — Epnsr [w],

respectively, in the case of the top splitting. See (2.10) for the former case

in the matrix notation, the latter would be

X ,2 .
fo Ao, (000) “B), (m(w())fa 0) =0, (t(i”’J*‘) . (2.13)

a *
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The former view corresponds better to the idea of the splitting operator
as an operator which “puts” a tensor section to a given slot of a tractor
bundle and then “extends” this (noninvariant) section to an invariant one.
But we will prefer the latter approach i.e. we shall build splitting operators
via composition of operators between subbundles. They will be invariant as
operators between the whole tractor bundles (see ¢«(D) and €(D) in the last

display) and therefore more manageable.

2.1.4. Middle operator for tensor representations. We are going to
construct the middle operators as advertised in (2.2) with r,, € Z. We shall
start with the case of k—forms, which is considerably simpler than the general

case.
Middle operator on k—forms

We can use an analogue of the construction used for 2—forms in 2.1.2 i.e.
consider DA’X 0 fa for a k—form f,. That is, a = a* and A = A*. We shall

avoid this technical computation and state directly the result which agrees

with DAOXAOZfa up to a scalar multiple which vanishes if n+2(w—k)+2 = 0.

M3« Egar[w] — Esarlw — k]

M3 fza = ((n+w — 2k)Z% — kX4V") fza

Lemma. The operator (2.14) is conformally invariant.

(2.14)

Proof. Let us consider a rescaling ¢ = Q?g. The transformation of the Z-slot
for tractor k—forms is Z;ﬁfak = (ZZIZ + kT“lsz)fgak according to (1.47).
On the other hand, we have shown V' for = V' fior + (n+w— Qk)Tbl for
in (1.19). Thus the invariance of M} f«, follows. O

Middle operator on irreducible tensors

For the remainder of this section, we will consider the general case i.e.

the operator on a section f = fza,.a, € Ex(s1,...,8,)o[w]. This can be
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reduced to the middle operator on s,—forms by use of » — 1 bottom operators
on form indices ay,...,a,_; first. This yields B"™Vf € Ezgn, [w] where
w=w-—s+s.+r—1and A= A;---A,_1 is the corresponding system of
tractor indices. Now we can apply the (strongly invariant) operator (2.14).

We obtain

r—1

/ a, a, wal ar—1 aj
[(n +w' =258, )7y — STXA}ATV ’"] X0 A 'XAgAlf‘Ialmar

(2.15)

_ ar—1 ai / a, ar ai
_XAO N .XA?Al [(n +w — 23T)ZAT — STXA}ATV :|frza1_”ar.

r—1

Here the equality follows from

o a ala, Lo a
(VGTXAgAZ)fSalmaT = (ZAgAq - ngaTanAgAi)fTal'“ar =0,

see (1.49) for the first equality, where 1 < ¢ < r —1 and Vo acts only on
the section X. The second equality in the last display follows from the trace
freeness of f and Young symmetries (si,...,s.). (Recall this means skew
symmetrization over any s, + 1 indices among a, - - - &, vanishes.) Summaris-

ing, (2.15) yields the conformally invariant middle operator

My Ex(s1,. .., Sr)olw] — Exa, (S1, .-+, Sr—1)o[w — Sy]

T

My fzaya, = ((n tw—s—s+1r—1)Z — STXEI;VG%) fza,a,- (2.16)

Properties of the middle operator

The scalar in the relation (2.16) says immediately for which weights w
is M}y" a splitting operator on Ex(sy, ..., s,)o[w]. Since the middle operator
is strongly invariant we can use it repeatedly. Let us suppose we apply the
middle operator m times, 1 < m < r. The result, also called the middle

operator, is the composition

MNE A ppan A
( >A777,"‘Ar An A, ] (2'17>
Ex(s1,- -y 8r)olw] — Exapa, (81, .-+, Smo1)olw — §"
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where m = r — m + 1 and §™ is defined by (1.1). The following Theorem
(i) says when this is a splitting operator. Let us recall that contrary to the
bottom splitting, the order of M’s is now important. That is, every M in
the composition M is applied to the shortest (tensor) form index and this
order is necessary. (Otherwise M would not be invariant.)

It follows from (2.16) and the definition of the quantity oh in 1.2.6 that
oh(M) = 0. Therefore also

oh(M™) = oh(M --- M) = 0. (2.18)

Definition. The middle operator M(™) defined by (2.17) will be called the
maddle splitting or the middle splitting operator if this is a splitting operator
for T = 0.

Note if M ™ is the middle splitting then it is a splitting operator for any
%. (This is obvious.) However, for example M§ is a splitting operator for
Xpfa € Eapl2—n] (ie. f, € E4[2—n—1]) but M§ is not the middle splitting

operator on &,[2 — n].

Theorem (Properties of the middle operator).
Let us consider the middle operator M™) given by (2.17) and a section f €
Ex(s1, ..., 8 )olw] where w € R. Let Fy := Ea,..a,, m =7 —m+ 1 and
write
s(0,m) :=n+w—s— sz +m— 1.
(i) The TEP-component pr(m) = Zj" ---Z% € TFPC(Ey) of ho-

mogenity 0 is a projecting part of M and satisfies

Vpr' € TFPC(Ey) : (pr')*M™ #£0 —=

— [p'r” :p'r(m)} Vv [h(p'r’) < h(pr(m))]. (2.19)
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Furthermore (pr(m))*M) = C -id and the scalar C' satisfies the following.
If 5(0,m) > 0 then C' # 0 and M™) is the middle splitting and if s(0,m) = 0
then C' =0 and M) is not the middle splitting operator.

(ii) Let us suppose pr € TFPC(FEx) has the highest homogenity i.e.
h(pr) = hh(E<). Then the TFP-component pr(m)pr € TFPC(FEqx) of the
homogenity hh(Ez) is a projecting part of the section M™ f and satisfies

Vpr' € TFPC(Fyg) : (pr' ) M™ f #40 —

— o' =pr(m)pr| v (1) < h(pr(m)ir) .

Furthermore (pr(m)ﬁ“)*M(m)f = C-pr*f and the scalar C satisfies the same

properties as in (i).

We can demonstrate the Theorem (i) easily on the matrix form of M} in
(2.9). In the notation of the Theorem, pr = Z3 and pr’ satisfies (pr')*M # 0.
Therefore pr' = X4 for w =4 —n and pr’ € {X3,Z3} for w # 4 — n.

Proof. The TFP-component pr(m) is a projecting part of the formula M (™
because fo((pr(m))*M™) = oh(M™) — h(pr(m)) =0— 0= 0. It satisfies
(pr(m))*M™ = C -id for a scalar C. This is clear for m = 1 and in
the general case, we can decompose (pr(m))* into Z*---Z* and M into
M --- M. (Here every Z* is of the form Z4 for m < i <r.)

To prove (2.19), let us make the following observation. We shall denote
by P(q), m < ¢ < r the claim that all terms of the formula for M@ f are of
the form

{X7 Z: vu P}*f‘l'almar (220)

where all tensor indices of Z, V and P are upstairs and contracted with
indices in ay,...,a,. (Tractor indices of X and Z are omitted.) Here { }*

denotes any juxtaposition of the embraced terms. P(r) follows directly from
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the formula (2.16). Let us use (2.16) repeatedly. Obviously, we need to
discuss only the first order term in (2.16) i.e. Xj;vai. But it follows from
VPX4 = Z% and V*Z4 = —g®Y, — P®X 4 that P(q) = P(q—1). (The
term —g®Y, vanishes because f is trace—free.) This proves P(m) i.e. that
every term of the formula M is of the form (2.20).

According to (2.20), pr(m) is the only TFP—component of homogenity 0
in the formula M. Thus (2.19) follows. We need to discuss when C' #
0. Every formula MZ,, m < i < r is sum of an algebraic term (the Z-
slot) and a first order term (the X-slot). Clearly the only way to obtain a
pr(m)-component in M ™ is to use only the algebraic terms in all M’s. (To
eliminate any X-—term we need the first order term of M}’ . But the derivative
is always associated with a coefficient of X. So these operations cannot result
in a term free of X’s.) Hence C' is product of scalars of the Z —slots of all
MZ, m<i<r.

In the case of M}", this scalar is n +w — s — s, +r — 1. M} changes
the weight and removes the last column of the Young diagram. Thus the

ar—1

following application of M, "' yields the scalar

r—1
n+(w—s)—(s=58)—S1+r—1)—1l=n4+w-—s_1+7r—2.

We can continue by induction to show that the application of the last middle
operator, My™ , yields the scalar n +w — s — sz +m — 1 = s(0,m) where,
recall, m = r —m + 1. Since s(0,m) is the smallest among all the discussed
scalars, (i) follows.

The proof of (ii) is analogous to (i), namely for T = ) this is exactly (i).
The only point here is the (necessary) assumption h(pr) = hh(Ex). O

Remark. Let us note that also w € Z or w € C\ R implies that C' # 0 i.e.
M) ig a splitting operator. This follows from the discussion of the scalars

in the proof of Theorem (i) because they can be zero only for w € Z.
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Examples of the middle operator

The simplest case — the middle operator on k—forms — is described at the
beginning of this section. Here we describe mainly various middle operators
on the space E(k,l)o[w] where n’ > k > [ > 1. Sections will be denoted
[ = fab € E(k,1)o[w] and we will use the form indices a = a*, b = b’ and
form tractor indices A = A*, B = B!. In the formulae below we shall use

the scalars
cc=n+w—2k—-1 and c=n+w-—-k—20+1.

Ezample 2.1.2. The middle operator (2.16) can be applied to the “shorter”

form index b of fap. The result is
Mg+ E(k, Do[w] — Eqrpi[w — 1]
M fab, = €228 fap, — IXEVY fup.
Ezample 2.1.3. Having Mg fap at hand, we can compute
MXMBb 1 E(k, Dolw] — Eprpiw — k —1].
This requires some work. The result is

MR M fan =C12Z5 7 fab
— L ZAXEY fa, — KXAZR |2V far = [V fas]  (221)
+RIXAXE VOV o o+ e PO fab] .
Let us note that Fap := M& M fap is trace—free and but the tractor indices

of Fap do not, in general, satisfy Young symmetries corresponding to the

diagram (k, ). One can compute

1 arb T
F[ABl]B = §k(l - 1)X31AXI?C H

B al réqu

(2.22)
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Note that if fa, = Cap then actually Fap satisfies the Young symmetries

(2,2) on the tractor indices because the tensor C ,"" is symmetric in

a?rpq
indices a' and a*. (Cf. the middle operator on £(2,2)¢[w] in 2.1.2.)

If M4 M is not a splitting operator on &(k, )o[w] i.e. when c¢c = 0, the
possible projecting parts of (2.21) reveal invariant operators on & (k,1)o[w].
If ¢ = 0 then V' fap will be invariant and if ¢; = 0 then ¢, = k — [ + 1
and the operator o V® fap — (VP f[bl\ apfb) Will be invariant. However, a short
computation reveals that the latter is just the projection of ve' fab to E(k —
1,0)o[w] for k > [ and vanishes for k = [, cf. (1.7). Therefore, if both k = {
and ¢; = 0 then the bottom slot is invariant. Summarising, (2.21) yields the

operators

E(k, Do[k+20—n—1] — E(k, 1= 1)o[k+2l—n—3], fab— V* fab
E(k, o[2k+1—n] — E(k—1,1)0[2k+1—n—2], fap — ProjV® fap, k >
E(k, k)o[3k—n] — E(k—1,Do[Bk—n—4], fap — (V@) 4+ P £

where Proj denotes the projection to the target space. In the case of the 2nd
order operator, this projection is provided by the symmetrization \Caviol
The skew symmetrization V[ V'] would project to another irreducible com-
ponent, see (2.22). It is a straightforward computation to show directly that
these formulae are really independent on the choice of the metric from the

conformal class.

Ezample 2.1.4. The middle operator defined by (2.16) can be applied only to
the shortest form index (of tensor indices), in our case b!. Using the complete

middle operator M4 Mg fap one can define a middle operator applicable also

to the longer form index a* as

N2 E(k, Dofw] — Eprp[w — K]

M3 fap = 75 MaEME fac
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The conformal invariance follows from the Theorem (i). (In particular, from
the fact that Z3 Zb is a projecting part of of M3 Mg.) In the case of general
Young symmetries we can define analogously a middle operator applicable to
any from index: Proposition (i) guaranties that the necessary Z-projections

(like Z< above) are conformally invariant. Using (2.21) it is easy to compute

Mz.fab = Clc?ZZfab - anA szalfab - lvpfblépb]

where fap € E(k,1)o[w] and we skew over [b'b] on the right hand side. Of
course, now we can apply again Mg to M3 fap but the result will have gener-

ically two projecting parts, in particular in the slots ZaZg and Y Xg.

Example 2.1.5. In this example, we look briefly at the middle operator on
(density valued) symmetric trace free tensors £, .. .a,),[w]. To compute the
formula for the complete middle operator requires a lot of work but our
aim here is to compute only what we will need later for the top operator in

Example 2.1.9. This is the operator
Mfaingx: = Mfé T MZZ : g(al---ar)o[w] - 5111(142---1400[“} —r+1]

and actually only its three slots of the highest homogenity, see the next
display. We can obviously suppose r > 2 but since the case r = 2 is covered
by Example 2.1.2, we assume r > 3. Using repeatedly the formula (2.16),
one can compute (or check the conformal invariance of the formula (2.23)

below directly) that

M3 forea = Clele=1)Z8 25 furar

(V)= )Z8, - 257 X VN,

-1 1°Gr—1P

(2.23)

1 a Qr—2
5 (=D =2)28, - 25X Xy (VVIHCP™) o e}

2

+ {lower homogenity terms}
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where fy,..a, € E(a;...a,)0[w] and the scalars used are ¢ =n + w — 2 and

1 r=3,
C= (2.24)

[Ms(c—i+1) r>4

(Note it is not too difficult to verify the conformal invariance of the right

hand side of (2.23) directly.)

2.1.5. Top operator for tensor representations. Our aim is to construct
the top operators advertised in (2.2) with r,, € Z. If r = 1, we shall follow
2.1.2 and define the top operator as the invariant operator D[ oM zz} far for
a (density valued) k—form f,x. The general case is complicated and is one of

crucial parts of the thesis.
Top operator on irreducible tensors

For the reminder of this section, we will consider the section in the general
form i.e. f = fzay.a, € Ex(51,..., 8 )o[w]. The case r = 1 (i.e. p—forms) is
discussed above so we can assume r > 2. We shall define actually two

possibilities T and T for the top operator:

TAOE TAOA 1 Ex(s1, -, 8 )o[w] — Egpaoa,i(Se; - - -, 8r)olw—s1—1]
A0A1 fIal -ar _PrOJOZBT ’ 'ZaBle)[AO‘]MZl]‘]Mb2 o Mg:fimbzmbr
7 . BIB
A0A1 f‘Ial ar PrOJOZBT T ZaB;Y 2322D[A0 Mal ]XBOII;2 Mb3 MBb: fTa1b2~~-br

(2.25)
where Proj denotes the corresponding projection to the target space of T

and T. (That is, Proj is a projection on tensor indices.)

Before we discuss invariance of the top operator, let us observe the fol-
lowing properties of the space Ejarpe, Where p,q > 1 and the subscript 0

indicates the trace—free part on the enclosed indices. First observe
Elarba|, Nontrivial <= p+q < n. (2.26)
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Consider £(s1,52)0 € Ejarbe|, Where we allow the range n > s; > s,. Then
E(s1, $2)o is nontrivial if and only if s; + so < n [26]. This proves “<=".
To show the second implication, recall that symmetrization of any triple of
indices of &|arpa|, vanishes. Therefore irreducible components of &|arpe|, are of
the form £(s1, $2)0, m > s1 > $9 such that s;+s, = p+¢. Since E(s1,52)9 # 0
if and only if s1 4+ s < n, “=" follows.

In the Lemma below, we shall need the following property: the mapping

X : Ejarbe)y — Eartipati[2], (Xf)ap+1bq+1 = Garsrpan farbs (2.27)

vanishes for p+q¢=n

where we skew over [a?*1a?] and [b9"'b9] in g 115041 farbe. The proof follows

easily from the trace of x f . It is straightforward to compute

aPH1lpatl ~ . n—p—4q ~
g (Xf)ap+1bq+1 - (p+ 1)(q+ 1)fapbq.

Tt provides an inversion (up to a scalar multiple) of x if p+¢q < n

Hence g
and Y is an injection in this case. However if p+ ¢ = n then x f is trace—free

and hence zero according to (2.26).

Lemma. (i) The operator T is conformally invariant.

(ii) The operator T is conformally invariant if s, =n' = § and n is even.

Proof. To simplify the notation, we shall suppose T = () but the proof for
% # () is formally the same. (We shall comment upon the assumption ¥ = ()
briefly at the end of the proof.) Much of the notation and several observation
are drawn from 1.2.6. The proof, although rather long and technical, is
composed of several simple steps based on Lemma 1.3.8 and Proposition
1.3.8 as well as 1.2.6. Concerning the latter, note the volume form is not

used in the definitions of T and T , see (2.25).
(i) Using the notation 2 := [A9A,], B := By---B,, b := by---b, and

a:=a,---a, for systems of indices, a part of the formula (2.25) for T is the
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invariant operator

oY = D[A?MZE]MB% o MEE(s1, . 8 )olw] — Exm[w — s — 1].

We shall consider ®gop also as a tractor formula (recall M and D are given
by formulae) and use the notation from 1.2.6 for ®. We need to show the
projection fo x -ZaB;(I)ngQ...BT is invariant. Considering the Z-terms as the
TFP-component (Z---7Z)§ = Zy, ---Zg € TFPC(Ey), this means to
show ((Z---Z)%) @ is invariant i.e. that (Z---Z)g is a projecting part of
the formula . Since h((Z---Z)§) = 0, it is sufficient to show

Vpreg € TEFPC(Esg) : h(prs) > 0= (prg)"® =0,

see Lemma 1.2.6. (Recall (prg)*® = 0 means that the operator (prg)*®
vanishes.) It turns out that in treating the formula @, it is easier to consider
TFP-components of the whole bundle Eys. From this point of view, our

aim is to show that
\lermg - TFPC(EQ[%) : h&B(pTQ[%) > 0= (p?”g(%)*@ =0 (228)

which is obviously equivalent to the previous display and thus proves (i).

Let us summarise relations between the quantities h, v and fo of TFP—
components of Fgg and the formula ® we shall need later. Henceforth we
shall denote elements of TFPC/(Fyy) simply by pr ie. without attached
indices. Every pr € TFPC/(Fqs) satisfies

[h(pr) — has(pr)] < 1 (2.29)
v(pr) —vs(pr) < si+1 (2.30)
vs(pr) < (s —s1) — |has(pr)] (2.31)

and if the formula pr*® is a nontrivial expression (i.e. a nontrivial formal

sum of ‘words’, see Definition 1.2.6, page 54) then moreover
fo(pr*®) = 1— h(pr). (2.32)
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Let us comment upon these relations briefly. Recall Eq = Ejq04 ] is a form
tractor bundle where A, = A7* and, by the definitions of the homogenity and
valence in 1.2.6, we have h(pr) = hy(pr)+hs(pr) where hy(pr) € {0,£1} and
v(pr) = vy (pr)+vs(pr) where vy(pr) < s;+1. This proves (2.29) and (2.30),
respectively. The relation (2.31) is just Proposition 1.2.6 for the bundle Fg
where [B| = s — s;. Finally, note oh(®yp) = oh(DjaoMa,)) + oh(My) =
1+ 0 =1 (with omitted tensor indices) because oh(D) = 1 and oh(M) = 0.
Now (2.32) follows from the relation h(pr)+ fo(pr*®) = oh(®) for a nontrivial
formula pr*®.

Let us go back to (2.28) which we want to prove. We have observed

oh(®) =1 in the previous paragraph. Therefore

Vpr € TFPC(Egm) : h(pr) > 2 = pr'é =0 (2.33)

Vpr € TFPC(Eyy) : hg(pr) >3 = pr*d =0 (2.34)

where (2.34) follows from (2.33) using (2.29). From (2.34) and (2.33), it
remains to show the conditions hy(pr) € {1,2} and h(pr) < 1 imply pr*® =
0. Thus we have to consider the following cases: if hgg(pr) = 2 then (2.29) and
h(pr) < 1require (hg(pr), hs(pr)) = (—1,2) and if hg(pr) = 1 then there are
two possibilities (hy(pr), hs(pr)) = (0,1) and (hy(pr), he(pr)) = (—1,1) also
using (2.29) and h(pr) < 1. (In other words, we are using hyg(pr) € {—1,0, 1}.
Recall h(pr) = has(pr) = ha(pr) + hs(pr) by definition.) Summarising, we
are going to show
(—1,2) (0,1)

Vpr € TFPC(Eys) : (hg[([)?“), h%(pr)) € \ / = pr*® = 0.

(_17 1)
(2.35)

Here rows of the lattice correspond to cases with the same homogenity (either

1 or 0) and (a,b) is connected with (c,d) if (a,b) < (¢,d). We use the
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following ordering on pairs: we say (a,b) < (¢,d) if a < ¢, b < d and at
least one inequality is sharp. We shall discuss these three cases in the lattice

(2.35) separately.

(a) Assume (ha(pr), hs(pr)) = (=1,2), pr € TFPC(Eyy). That is,
h(pr) = 1 hence (2.33) together with Lemma 1.2.6 (ii) shows that pr is a
projecting part of ®. Thus the operator pr*® is invariant and fo(pr*®) =0
using (2.32). The formal order 0 shows that all terms in pr*® f involve only f
and the conformal metric g. Write pr with indices as prygy for an appropriate
system ¢ of tensor indices. Since ® f has no free tensor indices, ¢ is the system
of free indices in (pr*®@f), = (pr*)*®dynf. In particular, these free indices
are covariant. Since only g’s are used in pr*®, we can suppose all indices
of pr*®f are covariant and free. (That is, there are no contractions.) Let

us discuss their number i.e. the valence of pr. Clearly hg(pr) = —1 implies

vy(pr) = s; and this, together with (2.31) yields the inequality in
v(pr) = l¢| = va(pr) + ves(pr) < s1+[(s — s1) — 2] = s — 2.

Denoting the (tensor) valence of pr*®f by s := v(pr), we have shown s =
c| < s—2 where s is the (tensor) valence of f. Since fo(pr*®) = 0, it follows
from Lemma 1.3.8 (ii), page 75, that the operator pr*® vanishes.

(b) Assume (hm(pr),h%(pr)) = (0,1), pr € TFPC(Egs). Asin (a), pr
is a projecting part of ® (using h(pr) = 1, (2.33) and Lemma 1.2.6 (ii))
and fo(pr*®) = 0 (using (2.32)). The projection is again (pr*®f). with a
covariant system of free indices ¢. The valence vy(pr) € {s; £ 1} together

with (2.31) yields the inequality in
v(pr) = |¢| = va(pr) +vs(pr) <si+1+[(s—s1) — 1] = s.

We shall apply Lemma 1.3.8 to the operator pr*®. If the inequality is sharp,
Lemma 1.3.8 (ii) shows the operator pr*® vanishes. Suppose v(pr) = s. This
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requires vy (pr) = s; + 1 and we skew over s; + 1 indices in ¢. In other words,
this means s; < s} := s; + 1 in the notation of Lemma 1.3.8 (iii). Thus the
operator pr*® vanishes as well.

(c) Finally assume (ho(pr), hes(pr)) = (=1,1), pr € TFPC(Eqgs). That
is, h(pr) = 0. We cannot use the same reasoning as above to conclude that
pr is a projecting part of ®. However, this is satisfied, nevertheless. The
point is the following. Although we do not have (pr)*® = 0 for h(pr) > 0
(to use Lemma 1.2.6), (2.35) and (2.34) together with (a) and (b) yield a

(weaker) statement

Recall pr*® = 0 means that the operator pr*® vanishes. (The formula pr*®
may be nontrivial.) Now it is straightforward to modify Lemma 1.2.6 and
its proof to show that from this it follows that pr*® is invariant. That is, pr
is a projecting part of ®. But from (2.32), fo(pr*®) = 1 and from this it
follows pr*® satisfies assumptions of Proposition 1.3.8, page 75. Therefore

the operator pr*® vanishes.

(ii) Let us suppose that n is even, 7 > 2 and 51 = s, = n’ = 7. We shall
follow the proof of (i) but the steps (a), (b) and (c) corresponding to the
lattice as in (i) will be more complicated. We will need also the observation
(2.27).

We will use slightly different systems of indices 2 := [AJA,], B =
[BSB,|B;---B,, b := by---b, and a := ay---a,. The invariant operator

® is now given by the formula

M (r=2)
—N—
Poiy = Diag M3, X pop Mg+ My : E(s1,-.. sp)o[w] — Easlw — 5],
. 5, g
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cf. the formula (2.25) for T. We will also need the operators (formulae) @’
and M2 marked on the display.

Considering ® as a tractor formula, we need to show the projection
ZBr - IBY B0 imomym.m, = ((XZ---7)§) P is invariant where
XZ---72)§ = XngzZaBz -7y € TFPC(Eg). That is, we need to show
that (XZ---7Z)§ is a projecting part of the formula ®. Since this has the
homogenity h((XZ---Z)g) = —1, it is sufficient to show

Vpre € TFPC(Eg) : h(pres) > —1 = (pra)"® =0,

see Lemma 1.2.6. As we prefer to consider TFP—components of the whole

bundle Egg, we shall prove the equivalent property
Vpras € TFPC(FEqysg) : he(pras) > —1 = (pras) ® = 0. (2.36)

Since the bundle Ey is the same as in (i), the TFP—components of Egsy
satisfy (2.29) and (2.30). But we have to modify (2.32) and (2.31) because
B| = 5 — 51+ 1 and oh(®) = oh(DaoMa,)) + oh(Xpem,)) + oh(MU2)) =
1 —1+0 =0, respectively. Cf. discussion on (2.32) and (2.31) in the proof

of (i) above. Summarising, every pr € TF PC/(Fqs) now satisfies

v(pr) < (s—s1+ 1) — |ha(pr)| (2.37)

fo(pr*®) = —h(pr) if pr*® is a nontrivial formula. (2.38)
We want to prove (2.36). Following (i), we get

Vpr € TFPC(Egsp) : h(pr) > 1= pr'é =0 (2.39)

Vpr € TFPC(Eysg) : hg(pr) > 2= pr*® =0 (2.40)

where (2.39) follows from (2.38) (recall pr*® # 0 means fo(pr*®) > 0) and
(2.40) follows from (2.39) and hy(pr) € {£1,0}. Using these and (2.29),
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it remains to show the conditions hg(pr) € {0,1} and h(pr) < 0 imply
pr*® = 0. Thus we have the following cases: if hg(pr) = 1 then (2.29) and
h(pr) < 0 require (hy(pr), hs(pr)) = (—1,1) and if hg(pr) = 0 then there
are two possibilities (hg(pr), hes(pr)) = (0,0) and (hy(pr), hs(pr)) = (—1,0)
also using (2.29) and h(pr) < 1. Summarising, we are going to show
(0,0) (—-1,1)
Vpr € TFPC(Eqys) : (ha(pr), he(pr)) € \ / = pr*® =0.

<_17 O)
(2.41)

Here the lattice is formed in the same way as in (i) and we use the same
ordering for pairs (a,b) < (c,d).

Before we discuss the three cases in the lattice (2.41) separately, we need
the following property which follows from the construction of the middle
operator on E(n/,n’)o[w’], page 90. (Here w’ is an arbitrary weight.) Using
the notation B := B;--- B, and similarly b= bs---b, and a := a3---a,,

the formula @ (a part of ®) satisfies

b b r—2)\ b b r—2)\ [
CI)’E%:MfIXBng(M( 2))%:XB(Q)B22M211(M( 2))%

where M}! on the left-hand side is the formula for the middle operator on
Ep(n')[w — s +n'+ 1] and MZ! on the right-hand side the formula for the
middle operator on Eg(n’,n’)olw — s + n]. (That is, the middle operator
on Eg(n',n')olw — s + n] is constructed using this relation, cf. page 90.)

The right-hand side shows every pr’ € TFPC(Ea,») such that (pr')*®’

ap
BiB,’

XBSEZ (M("_l)):i’-%, it follows from Theorem 2.1.4 (i) that (pr’)*®’ nontrivial

is a nontrivial formula, involves the factor X Further, since @' Aaib% =

requires hy g(pr') < 0. Summarising the last two observations, (pr')*®’
nontrivial implies heg(pr’) = hpop, (pr') + hg(pr’) < —1. (We have used
hg(pr') < hy @(pr') here.) Moreover, the equality can happen only for
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TFP—components

pri(r=1) = Z3 Xy’ Zg), - Ly, € TFPC(Ea, ) (2.42)
pra(r—2) = X*”AIIXBSEZZ%; 2% € TFPC(Ex, ) (2.43)

of the B-homogenity —1. Summarising, the formula ®’ satisfies

Vpr' € TFPC(Ea,) : (pr')*® nontrivial =

— [pr' = pr(r= 1)V [pr’ = pro(r=1)] V [hlpr’) < ~1]. (2.44)

Note these TEP—components pr, pri(r—1) etc. are formally terms in @’
or ® and shall be referred as terms. Also recall the definition of the tractor

D-operator (1.32): D 4o has the terms Yo, Z9,V, and X (A+w'P) up to

A9
scalar multiples. (We will not need their explicit value or the value of the

scalar w’.) Now we can start the discussion on the lattice (2.41).

(a) Assume (hy(pr),hs(pr)) = (0,0), pr € TFPC(Eyy). That is,
h(pr) = 0 hence (2.39) together with Lemma 1.2.6 shows that pr is a pro-
jecting part of ®. Thus the operator pr*® is invariant and fo(pr*®) = 0
using (2.32). Using the same argument as in (a) in the proof of (i), we can
suppose all indices of (pr*®)f are downstairs and free. Let us look at the
valence of pr. Clearly hg(pr) = 0 implies vy(pr) = {s1 + 1, s, — 1} and this,
together with (2.37) yields the inequality

v(pr) = va(pr) + ve(pr) < s+ 1+ (s+1—5) =5+ 2.

If v(pr) < s or v(pr) = s+ 1 then the operator pr*® vanishes due to Lemma

1.3.8 (ii). Hence it remains to discuss two possibilities v(pr) € {s, s + 2}.

e Assume v(pr) = s. As in (i), we shall apply Lemma 1.3.8 to the
operator pr*®. Recall vy(pr) = {s1 + 1,51 — 1}. If vg(pr) = s1 +1

then s; < s) =n' + 1 in the notation of Lemma 1.3.8 (iii) hence pr*®
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vanishes. If vy(pr) = s; — 1 then vy(pr) = s — s; + 1 = [B|. Therefore

b3 by

pr on B-indices is of the form Z---Z. In particular, the term Z 35
272

appears in pr. Since b, = by, [63b,] requires n' +1 = 2 + 1 skewed
indices. In other words, sy < sy = n’ + 1 in the notation of Lemma

1.3.8 (iii) hence the operator pr*® vanishes.

Assume v(pr) = s+ 2. This case is more complicated — we will not use
Lemma 1.3.8 but the observation (2.27) instead. Since v(pr) = s+2 =
|AB|, clearly

pr="Zoa Lpp,Ls, L, (2.45)

where we have omitted tensor indices. Therefore we can use only the
Z—term in D o to obtain the term corresponding to pr in ®. That is,
we have just one derivative at disposal. Now consider how to obtain
the term pr in the formula ® from terms in the formula ®’. Since one
derivative can change the homogenity by at most one and hg(pr) =0,
the relation (2.44) says we must apply the derivative to one of the terms
pri(r—1) or pra(r—2) in such a way that the B-homogenity increases.
But considering the whole (A;28—)homogenity, we see we cannot obtain

pr from the latter. Hence it remains to consider prq(r—1).

Comparing (2.42) with (2.45) we immediately see one has to apply the

derivative to the X—term in pry(r—1). The result is

A%A, BYB, - “AYA,7BIB,
TV

X

Za? a, (Vatl)X b2)M(r—2) _ Za(l) ay Zbg bo ga?bg M(r—2) I

up to a scalar multiple, where “lvt” stands for “lower valence terms”.
(“Terms” here are formally TFP—components so we can consider their
(tensor) valence. “Lower valence” means the valence smaller than s+2.)

But x on the right hand side is just the mapping from (2.27) which
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vanishes because s; + s = 2n’ = n. Therefore the operator pr*®

vanishes also.

(b) Assume (ha(pr), has(pr)) = (—1,1), pr € TFPC(Eyp). That is,
h(pr) = 0 hence (2.39) together with Lemma 1.2.6 shows that pr is a pro-
jecting part of ®. Thus the operator pr*® is invariant and fo(pr*®) = 0
using (2.32). As in (a), we can suppose all indices of (pr*®) f are downstairs
and free. Let us look at the valence of pr. Clearly hy(pr) = —1 implies
vy(pr) = s1 and this, together with (2.37) yields the inequality in

v(pr) = va(pr) + vs(pr) < si+ (s —s1) =s.

If v(pr) < s then pr*® = 0 due to Lemma 1.3.8 (ii). Thus it remains to
discuss the case v(pr) = s. This clearly implies vg(pr) = s — s1.

Now consider how to obtain the term pr in the formula ® from terms in
the formula ®’. Since one derivative can change the homogenity by at most
one and hg(pr) = 1, the relation (2.44) says we need at least two derivatives
to obtain pr in ®. That is, to obtain the pr in & we must use the Laplacian
in the X o—term of D 0. Moreover, we must apply both derivatives either
to pri(r—1) or to pra(r—2) and only to B-indices in these two terms. But
the latter will vanishes after the skew-symmetrization [AYA]. Therefore it
remains to consider pri(r—1).

Looking at prq(r—1) in (2.42), there is one X—factor and several Z—factors
on B-indices. So we have three possibilities of how to apply the Laplacian on

PB—indices to increase the B-homogenity by two, see below. Recall v(pr) = s

and vg(pri(r—1)) = va(pr) = s — s1.

e If we apply both derivatives to Z-terms in pri(r —1) and the B—
homogenity increases by two, the B-valence necessarily decreases by 2

thus v(pr) = s — 2. Hence the operator pr*® vanishes using Lemma
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1.3.8 (ii). (Recall fo(pr*®) = 0 guarantees no curvature terms can

appear after application of the derivatives.)

o If we apply one derivative to the X—term and the second one to one of
the Z—terms in pri(r—1), the resulting pr has to involve either the term

o .
4 11;23;22 or the term WBSBZ' The first case requires skewing over 7 + 1
indices [b9bs] hence pr*® vanishes. (In other words, sy < s, =n/+1 in

the notation of Lemma 1.3.8 (iii).) In the second case, clearly v(pr) =

s — 2 hence the operator pr*® vanishes using Lemma 1.3.8 (ii).

e If we apply both derivatives to the X—terms in pri(r—1), we will get

only one term increasing the B-homogenity by two, in particular
AXF = —(n — 2k)Y* + Iht

where lht stands for “lower homogenity terms”, see (1.50). But k =
s1 = n' in our case hence the top slot on the right hand side vanishes.

Therefore the operator pr*® vanishes.

(c) Finally assume (ho(pr), has(pr)) = (=1,0), pr € TFPC(Eqys). That
is, this is the lower possibility in the lattice (2.41). We have shown in (a)
and (b) that both higher possibilities, as TFP—components of ®, yield trivial
operators. Now the same reasoning as in (c¢) of the part (i) reveals pr is a
projecting part of ®. But h(pr) = —1 and fo(pr*®) = 1 using (2.38). Hence
the operator pr*® satisfies assumptions of Proposition 1.3.8 and therefore

vanishes.

We have proved the Theorem for ¥ = () but as we have not needed to
consider anything about ¥, the same proof clearly applies for any ¥. Let
us note we have proved triviality of many operators using Lemma 1.3.8 and

Proposition 1.3.8 throughout the proof. All of them have been given by
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formulae of the formal order 0 or 1 and curvature terms have not appeared.

Hence the same reasoning can be used if ¥ # (). O]

Properties of the top operator

We defined two candidates for the top operator so we need to decide when
to use 7" and when 12, see (2.25). We shall define the top operator T as
T So <

T={" (2.46)
T SS9 =

o3

V|3

In particular, T = T for n odd. This choice is actually not always necessary.
But in certain cases where s; = sy = 7, T is not a splitting operator whereas
72 is. This is easy to see from Examples 2.1.7 and 2.1.8. (The latter discusses
the issue in details.)

Further we need to know properties of composition of the top operators.
(Recall they are strongly invariant so we can compose them.) Let us suppose
we apply the top operator ¢ times, 1 < ¢ < r. That is, in the odd dimensional
case we apply T only, and in the even dimensional case we apply f tor, —1
(longest) form indices of the valence n’ = § first and T next. So we use T
g—times where

min{¢, max{r,, —1,0}} n even

q:=
0 n odd.

Summarizing, the result, also called the top operator, is the composition

183

)y @ &t ._poay p Agklp Ag ar .
(T) aparagm, = Taphs Lo ai Tagat, - Taga (2.47)
Ex(s1,- -5 8r)o[w] — ES[A?Al]---[A?At](St—Ha cey Sy )o[w — st — t]

The following Theorem says when this is a splitting operator. Let us note

that the formula for every T in the composition T® is applied to the longest

109



available (tensor) form index. Here and below, every T and T in the compo-
sition T® is referred as "1".

Recall that the formulae for both operators 7" and 7:’ involve several middle
operators and one tractor D—operator. Recall also that oh(D) = 1 and

oh(M) = 0 hence oh(T) = 1. Therefore

oh(TW) = oh(T ---T) =t. (2.48)

t

Definition. The top operator T® will be called top splitting or top splitting
operator if this is a splitting operator for ¥ = ().

Recall if T® is a splitting for T = () then it is a splitting for any . See
also M™ and a (similar) note for Definition 2.1.4.

The explicit formulae of the top operators 7 on &(sy)[w] and T on
E(%, 5)o[w] are computed in Examples 2.1.6 and 2.1.8 below. We shall need

these explicit computations in the following theorem.

Theorem (Properties of the top operator).

Let us consider the top operator T given by the relation (2.47) and a section

f€&(s1,...,8)olw] = Ex{r1, ..., mwo[w],

where w € R. Lel Eg := Ejpo04 )..[a04, and consider the scalar

w—s—t+s+1 0<t<ry,neven, ort>nry, neN
s(t,0) :== (2.49)

w—s—t+7 t=r,,n even, ort < r,, n odd.

(i) The TFP-component prt := Y Y, o5t € TFPC(Ey) of the

al . ..
AYA, APA,

homogenity t = hh(Ey) is a projecting part of the operator T and satisfies

Vpr' e TFPC(Ey): (pr') T® # 0= [pr'=pr'] v [h(pr’) < h(pr')]. (2.50)
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Furthermore (pri)*T® = C -id and the scalar C satisfies the following. If
5(t,0) > 0 then C # 0 and T is the top splitting; if s(t,0) = 0 then C' = 0
and T is not the top splitting operator.

(ii) Let us suppose pr € TFPC(FEx) has the highest homogenity i.e.
h(pr) = hh(E<). Then the TFP-component pripr € TFPC(Egs) of the
homogenity t + hh(Ez) = hh(Eqas) is a projecting part of the section T® f

and satisfies
Vpr' € TFPC(Exg): (pr') TV f # 0= [pr'=pripr] v [h(pr') < h(pr'pr)].

Furthermore (prtpNT)*T(t)f = C - pr*f and where the scalar C satisfies the

same property as in (i).

Proof. The TFP-component prt is a projecting part of T® f because its
homogenity is equal to the highest homogenity in Fy i.e. hh(FEgy) =t. Such a
TFP-component is unique and so (2.50) follows. Since oh(T®) =t = h(pr?),
we get fo((pr)*T®) = 0 and (pr*)*T® = C -id. This is clear for t = 1

*

and in the general case, we can decompose (prf)* into the form factors (i.e.
projectors from form tractors to forms) and 7® into T'---T. To show C' # 0
for s(t,0) > 0 we need a detailed analysis of the scalars which appear in the
top slot of the formula for 7).

The composition of i < ¢ top operators T is of the form

M(r—1i)
TO = 7Br ... ZB T 0 Mg, -+ Mg, 7D or
, - , (2.51)
TO = 7P ... ZP2Tyo5 My, Mg, TV
M(r—i—l)

where the tensor indices are omitted, see (2.25). The operators Ty, and
Tioa in the previous display are given by explicit formulae from Examples

2.1.6 or 2.1.8, respectively. To prove (i) we need to show that the middle
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operator M=% or M=~V in (2.51) and also T or T therein are splitting
operators, and that this is satisfied for every ¢« < ¢t. Then the Z-projections
cannot kill the section they are applied to, because its top slot recovers f up
to a nonzero multiple. (The top slot is Y 405 Zg, ;- Zm,, j € {1,2}.)

Let us denote the conformal weight before the application of T and 72 by
w; and w;, respectively. That is w; is the weight of M=DTED £ and w; is
the weight of M~ D701 f Tooking at the formulae (2.54) and (2.57), T
and T in (2.51) are splitting operators if and only if

Wi (n + w; — 2s;) (n+ 2(w; — s;) —2) # 0 and 2.5

(w; —n') (w; —n' + 1) # 0 for n even,

respectively. First note this is clearly satisfied if @;, w; € AW |, see (1.61),
page 67. This is equivalent to w ¢ AW which also guarantees the middle
operator in (2.51) is actually a splitting operator, see Remark 2.1.4. Thus
we have proved that T® is a splitting operator for w ¢ AW.

Henceforth we will assume w € AW. We shall show below that s(¢,0) > 0

implies
w; > 1 s;=n', n even
" <
Wi>g 5= n', n odd or w; > n', n even (2.53)

w; >0 s; <n

where the left hand side concerns @; and the right hand side concerns w;.
Recall s5; < n' = [§] in (2.52). Using this, (2.52) follows immediately from
the last display. (Recall (2.52) means T and T in (2.51) are splitting oper-
ators.) Also, (2.53) implies that the middle operator in (2.51) is a splitting
operator as follows. In the case of T, it is the operator M~ applied to the

space Ex(S;, . . ., 87 )o[w; + 57| and the condition from Theorem 2.1.4 (i) is
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satisfied because
n+ (0 +§) =8 —sim+2—1=n+w; — s —sy1+1>0 for w; >0.

Similarly, in the case of T the middle operator M~ in (2.51) is applied
to Ex(s4, ..., 50)o[w; + 812 and the condition from Theorem 2.1.4 (i) is also

satisfied because

n+(@z+§’+2)—§1—31+2+3—1 = n+?1:)i—8i—8i+1—8i+2+2 > 0 for U:JZ >n.

It remains to prove that s(¢,0) > 0 implies (2.53). The ith top operator
is either T or T and we will consider both cases separately.
(a) Assume the ith top operator is of the form (2.51) with 7. That is, the

formula for T',, ® is applied to the ith longest column of the Young diagram.

A%,
The choice T in even dimensions means that ;1 < 5, see (2.46). Therefore,

we assume either ¢ > r,, for n even or n is odd.

o If5(t,0) =w—s—t+s,+1 then either i <t < r, for n even or t > r,
according to (2.49). But the former case requires the ith top operator
is T (cf. (2.46)) so we can suppose t > r,. Since w; is the weight of
MO=DTED f we get

wi=w—s—(i—1)+s>w—s—t+s+1=s(t,0) >0

using i < t and s; > s; in the first inequality and s(¢,0) > 0 in the
second. To discuss the two stronger inequalities in (2.53), assume i <
rp (i.e. s; = n'). This, together with i > r,, for n even above means
i = ry for n even. Using ¢ < ¢t and t > 7,/ (see above), we obtain
1 < t in both dimensions. Then both inequalities in the last display are

sharp. Thus (2.53) follows as we suppose w € AW.
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o If 5(t,0) =w —s—t+ 5 then i <t <1y ie s; =n". We get

s(t,0)0+1>1 neven

wy=w—s—(i—1)+s >w—s—t+n'+1=
s(t,0)+ 4 >3 nodd
using ¢ < ¢t and s; = n’ in the first inequality and s(¢,0) > 0 in the

second.

(b) Now assume the ith top operator is of the form (2.51) with 7. That
is, 1 < ry ie. 8, = 8,41 = n' and n is even. According to (2.53), we need to

show w; > n'.

o If 5(t,0) =w —s—1t+ s+ 1 then t # r,,. We get

n

= . —N— .
w=w—-—s—(G—-1)+Ssi+sp=n+w—s—i+1>

>n4+(w—s—t+s+1)—s,=n+s(t0)—s >n"+s(t0) >n

using ¢ < t in the first equality, s; < n in the second and s(¢,0) > 0 in
the third.

o If 5(¢,0) = w—s—t+ % then ¢t = r,,,. Using the same arguments as in
the previous display, we get

n

Wi=w—5—(i—1)+5 +sip=n+w—s—i+1>

>n'+(w—s—t+n)+1=n"+s(t0) +1>n'

We have proved that if s(t,0) > 0 then T® is a splitting operator. If
s(t,0) = 0, the choice i := t yields w; = 0 or w; = n because the inequalities
in the displays above are satisfied as equalities. (Note the case corresponding
to the previous display requires ¢ < t = r,,. Hence the choice ¢ := ¢ excludes

the last display.) Then T or T in (2.51) are not splitting operators, cf. the
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scalars in (2.52), thus C' = 0 in Theorem (i). Summarizing, if s(¢,0) = 0
then T® is not a splitting operator.

(ii) This is analogous to (i) above, in particular for ¥ = () this is exactly
(i). The only point here is the (necessary) assumption h(pr) = hh(E<). (Cf.
Theorem (2.16) (i) and (ii)). O

Remark. 1. Let us note that without use of the top operator 72 , the stronger
condition w — s+ § — 1 > 0 would be necessary for all 1 <t¢ <r, and both
parities of dimensions. This will be important later.

2. We are interested mainly in admissible weights w € AW because these
cases admit operators from the pattern. But we have shown in the proof that
if w ¢ AW then T® is the top splitting operator. Similarly, if w € C\ R

then T® is always the top splitting.

Examples of the top operator

Computation of explicit formulae for the top operator by hand is much
more difficult than for the middle operator and is not, in general, manage-
able. (But note both these operators, given by tractor formulae, are in a form
loadable into a computer.) We shall demonstrate these formulae on spaces
E(k)[w] and E(k,l)o[w], n’ > k > 1 > 1. All of them can be obtained using
the calculus developed in 1.2.5 and formulae for middle operators from Ex-
amples in 2.1.4. To simplify the notation, we will often omit the superscript
indicating the valence of (tractor) form indices i.e. we shall write a, b and A

instead of a*, b’ and A*.

Ezample 2.1.6. Let us start with k—forms i.e. with a section f, € Eur[w].

Using the formula (2.16), page 90 for the middle operator M3 f, on k—forms,
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one can compute that the top operator

TAOZl : gak [w] — g[AOAk][U) —k— 1]

Thoptfa= D[AOMZ}fa
is given by the formula

Tk fa =(n+2(w = k) = 2) [w(n +w - 2K)Y o3 fo
+ (At w— 28) 253V o f + KWW 8 Ve fa}
(2.54)
— X0 [(n 4w = 20)(A + (w = K)P) fa
— k(n + 2w — k) (Vo VP + (n+w — 2k)Paf)fpé].
Let us look at which invariant operators can we extract directly from this
formula. There are three possibilities for w which kill the top slot. Choices
w = 0 and w = 2k — n yield the exterior derivative and its formal adjoint in
the Z— and W-slot, respectively. If w = k + 1 — 7, the bottom slot will be

invariant. So we have the 2nd order (long) operator

Earlk +1—n/2] — Eu[k — 1 —n/2]

far— (g—k+1) A+(1—g)P]fa_2k<k+1) Valvp—i_(g_k—i_l)Paf fpé

where we skew over [a'a] on the right hand side.

Ezample 2.1.7. The top operator for fap = fare € E(k,1)o[w] requires more
computation. Recall we have two versions, see (2.25). In this Example,
we shall consider the operator T. Using the formula for the complete mid-
dle operator M& M fap, from Example 2.1.3 one can compute that the top

operator

Toi €k, Dolw] — Eppoarpifw — k — 1]

TAOZfab = ZSD[AOMZ]MCCJfaC
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is given by the formula
Ty fap = d(w = DercaY ao3 fa
+deiZ55y [c2vaofab —1gop foapb]
+ dk(w — )W 403 [02va1fab - lvpfblépb:|
+X,.4 [—clcQ [A+(w—k—=1P] fap (2.55)
+ k(d+ 2) [CQ (Val VP + Clpfl) Jpab — V1 foblapb
+2ley [V VP + PR foi
— kl(d 4 2)g 11 [VPVP + c PP] fpaqb]
where we have used the scalars

aq=n+w—-2k—1, co=n+w—k—2l+1 and d=n+2w—-k—1)—2

and we skew over [blb] on the right hand side. Let us note that this formula
simplifies a bit if k = [.

The formula (2.55) reveals directly 5 operators from the pattern for the
weights w which kill the top slot. In the tensor formulae below, Proj denotes
the projection to the corresponding target space. We obtain three first order

operators
. n
E(k, oll] — E(k+1,0)o0ll], fab — ProjVia fup, | # 5
E(k, Dolk+2l—n—1] — E(k,1—1)o[k+2l—n—3], fab — V* fab
E(k, Do[2k+1—n] — E(k—1,0)0[2k+1—n—2], fab > ProjV® fap, k > L.

The first one appears in the Z-slot (see (2.58) for the restriction [ # %),
the third one in the W-slot and the second in both these slots. All these

operators, together with

E(k, k)o[3k—n] — E(k—1,1)0[3k—n—4], fap — (V@ V) 4+ P00
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which appears in the bottom slot, are short ones. (Cf. Example 2.1.3.)
A more interesting choice is d = 0ie. w= -5 +k+1l+1, =5 —k+1

and ¢y = § — [ + 2 which reveals the long operator
S(k,l)o[k:+l+1—g] — E(k, D)o [k+l—1——] 17A L

fab — PI‘OJ{—(I{? — 1 — 5)([ — 2 — —) |:A —|— (1 — —)] fab — levalv fblapb

~2k(1 =2 ) [V V7 = (k= 1= D)B.!] fu

2k —1- )|V V" = (1 -2 - 2)R}] fapb}

where we skew over [a'a] and [b'b] on the right hand side before the projection

Proj to E(k,l)olw — 2]. (See (2.58) for the restriction I # %.) Let us note

we can get rid of the term V VP fy,. ¢ with (skew) form indices a and b.
Clearly

(k + 1)v[alvpfb1é}pb = Vb1 vpfapb B kv[al vpf\b1|é]pf)

(2.56)

ce&k+1,1-1)w-2].
Now skewing over [b'b] we obtain a term still living in (k + 1,1 — 1)[w — 2]
so we can subtract (an appropriate multiple of) this term from the formula

for the long operator above.

Ezxample 2.1.8. The case £(n/,n’)o[w] in the dimension n = 2n' is more
involved. We will demonstrate why the top operator T' from Example 2.1.7

is not sufficient in this case. Let us consider the version 7T i.e.

TAOZ . 5(7}’7 n/)o[w] — E[AOA"/]b”’ [U) _ n/ o 1]
TAOZfab = YCOgD[AOMZ]XCOE}faC = YCOC]ﬂAOA COg}fac

first. Recall all form indices a, b, ¢ and A are of the valence n’ = ¢ now.

After some computation and using the formula for 7', % from Example 2.1.6
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one gets the result
ook = (o= 4 D 2000 (0 =+ DY 3o
+ Z50AV oS + W0 R T o)
~Xp 2 [(8+ (@ =n)P)fu

(a4 P ]

(2.57)

Note removing the outer scalar w — n’ + 1 clearly does not affect the
invariance or the set of weights w for which is f the top splitting. Thus we
can define T by the part of the formula (2.57) embraced by {}. This can
simplify a bit any further computation.

Now let us compare T with 7" from Example 2.1.7 where k = [ = n’ and

n = 2n/. One can compute

o —n—1) =
w=n )(w/ L )TAozfab
w—n'+1 (2.58)

+n/(w—n)X 4 [(0 = DC " Fogan + nCoi" frage]

TAozfab =

where we skew over the indices [b'b] on the right hand side. This computation
is actually quite tedious. It is based on the following fact: Consider a tensor
Fooawa € Eoaypoa[w] and its trace F = g% Fromoa. Using (2.27), a moment
of thinking reveals that the trace—free part of F vanishes. That is, F is a
pure trace. Applying this fact to F' = V0V fo, and F' = Poopo foy,, One can

compute
Afab =1 (VPVoi frap + Vir VP forp = WG VPVf o)

Pfab =n (Pflfpéb + Pl?lfapl.) - n,galblpqupaqb)

(2.59)

where we skew over the indices [a'a] and [b'b]. Using these, it is a matter of
a direct computation to establish the relation (2.58) between T and T
Now we can easily see the flaw of the operator T — this is not a splitting

operator for w = n’ + 1 whereas T is. This is important because a splitting
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operator £(n’,n')o[n’ + 1] — Euw40a[0] with the projecting part in the
top slot is just the gBGG splitting operator which we need.

As before, the formula (2.57) provides some operators from the pattern.
The projection to the Z— or W—slot for w = n’ — 1 yields the operator fa, —
ve fap. For w = n’, the projection to the X—slot is invariant. However, this
correspond to a middle position in the (even dimensional) pattern (i.e. nj
or n'y) hence there is supposed to be no long operator. Indeed, skewing over

[b'b] in (2.56) and using the property (1.7), we obtain
Var VP fpab = Vi VP [ € E(' + 1,0 — 1)[w — 2]

in the X-slot, where we skew over [a'a] and [b'b] on the left hand side. Using
this and (2.59), an easy computation reveals the invariant operator in the
bottom slot of (2.57) for w = n/, projected to E(n',n’)g[n’ — 2|, yields only

curvature terms. Note the projection £(n'+1,n —1)[n' —2] = E(n' —1,n' —

1)o[n — 4] yields the short operator fap — (V* V?' + P*?") .

Remark. 1. Putting £ = [ = 0 in Examples 2.1.6 and 2.1.7, we recover
the formula for the tractor D—operator up to a scalar multiples n + w and
(n 4+ w)(n + w + 1), respectively. For n’ > k > [ > 1 and any dimension n,
the top operator on £ (k)[w] and E(k,1)o[w] can be viewed as a generalisation
of the tractor D—operator to these spaces.

2. Using (2.58), a moment of thinking reveals we can obtain a curved mod-
ification of the formula for 72 from T by a “weight continuation” argument.

The geometric construction of 7' avoids this reasoning.

Ezample 2.1.9. In the last example, we shall look at the top operator on the
space of (density—valued) trace-free symmetric r—tensors £, ..q,)[w]. We
compute the formula for 7= T which puts just one tensor index to the

top slot of Epgoa1[w — 2]. We can suppose r > 3 because the cases r = 1
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and r = 2 are covered by Examples 2.1.6 and 2.1.7. Following the general

construction of the top operator (2.25), our top operator is

al
TA0A1 . 5(a1a2...ar)0[w] — E[AOAl](a?..aT)O[U) - 2]

at __ By B at b1 - br
TAOAlfalag---aT == Za2 LR Za:D[AOMAl]MBg---BTfale”br

for folay.a, € E@tagan),|W]. Since the operator D[AoMjll] given by (2.54) is
of the second order we actually need only the slots of Mgg:::g: falby--p, Of the
homogenity 0, —1 and —2. These are computed in Example 2.1.5. Now a

tedious (but manageable) computation reveals

TAojllfa1a2_._ar = C’{(c — 1)(n +2w—r)— 2) [c(’w —r+ 1)YA0211 fataya,
+ ngfxll [Cvaofalaz---ar —(r— 1)ga0agvpfa1pa3---ar]

+ (U) —r 4+ 1)WA0A1fopa2...aT}

— X 0% { (c=1)(A+ (w—="7)P) faraya,

—2(c=1)(r—1)[V,,V’+cPr]f,

tpaz--ar

— (n+2(w—7))(c=1)[Va VP + P, f,

az:-Qr

+ (n+2(w —7))(r — 1)ggiq, [VPV? + cPP] quaS...ar]

+ (T - 1>(T - 2)ga2a3 [vaq + Cqu} falpqa4---arj| }
where the indices as - - - a, are symmetrized and we use the scalars ¢ = n +
w—2 and C' = [[/_g(c — i+ 1). A short computation shows the right hand

side is trace free on the tensor indices as - - - a,.

The last display reveals several operators from the pattern. Beside short
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operators, the weight w satisfying n+2(w—r)—2 = 0 yields the long operator

n n
g(al“‘ar)() [7“ — 5 + 1] — 5(a1...ar)0[7“ - § - 1]
. n n
fa1a2~~-ar = PI‘OJ{(T‘ + E - 1) [A + (1 - §>P} fa1a2~~-ar

n
=20 [Vo, V7 4 (r + 5 = DP?) fyngar |

where Proj denotes projection the target space. Let us note we can use this

formula for any r > 1.

2.1.6. Generalisation to spinor representations. We shall work with
spinor bundles and their sections of the form f = fxya;..a, = fzaja, €
é’g(%; S1, .-, 8 )o[w] now. Recall that r, s ¢ N now and we implicitly consider
|7] in expressions like s,. We will use the “X;Y”—calculus for the spinor
tractor bundle developed in 1.2.4. We often suppress spinor and tractor

spinor indices. The bottom operator By is defined in 2.1.1.
Middle operator for spinor bundles

As in the tensor case (2.16), we define the middle operator for spinors
directly by the formula
a 1 1
My 53(5; S1y- -y Sr)olw] — S:{Ar(ﬁ; S1yeey Se— 1)olw — 4]
(2.60)
ar ar ar ak
MY frayea, = (0w =5 =5, 7123 — X3 V) [y

Lemma. The operator My is conformally invariant.

Proof. The middle operator (2.16) for tensors is strongly invariant hence the

composition My" B3 is invariant. This is given by the formula
(n+w—s—s+1—DZY — X&'V | X fra a- (2.61)

This agrees with the tensor middle operator (2.16) because the (spinor) bot-
tom operator B does not change the weight and —|s| + [r] = —s+r. Tt
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remains to show that V% commutes with X in (2.61). They commute up

the term
_STX,i:(vaTX)fTalmar = _erzzyﬂarffal---ar - 07

see (1.38). The last display vanishes because f is “Clifford free”, see Table
1.3. [

Properties of the middle operator for spinors

We will continue in a similar way as in 2.1.4. The composition of m € N,

m < r middle operators is the operator

MO gn R = MR MR
1

P81,y Sp)o|w] — ngm...Ar(ﬁ; S1y+ s Sm_1)olw —§

(2.62)

where m = |r] —m+ 1. This has analogous properties as in the tensor case.
They are summarised in the proposition below. Finally the quantity oh from

1.2.6 is given, similarly as (2.18), by

oh(M™) = oh(M --- M) = 0. (2.63)

Definition. The middle operator M) defined by (2.62), will be called
maddle splitting or middle splitting operator if this is a splitting operator for
T = (. (Then M is a splitting operator for any ¥.)

Top operator for spinors

Also construction of T} follows the tensor case in 2.1.5. If r = I, we

will put 73 := Dj. Henceforth suppose r > 2. As in 2.1.5, we define two
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possibilities
~ = 1
Ty, Th 51(5;81, ooy Seolw] — Exa(s, -y 8p)olw — 1]

T frnpm, = Projo ZBr - ZBID MB! - ME fo o (2.64)

- _ : B, Bo B(l)Bl b, bo b
TfTal"-ar - PI‘OJ © Zar e Zaz Y ai D XB?B1 MBz U MB:fTbl"'br

where Proj denotes the projection (on tensor indices) to the target space of
T and T.
To prove invariance of T, we need

X €Lk — EGk+ D], (Xfarsr = Barss far)

vanishes for 2k = n,

(2.65)

which is an analogue of (2.27). Assume the complex setting and n even. Let

us consider f,. € £(;n')o such that € e fow =cf . for c € C. Then

0.n' 0 n’ 0
Eam’flC ¢ BCOan/ = /BC Ea”'*lcoc ' T CBC fanlco =0.

because f is “Clifford free”. Since ¢ # 0 and ean/_lcocn/ induces an isomor-
phism £(,n'+1)[1] — &(5,n'—1)[—1], (2.65) follows. The real case follows

from the complexification.

Lemma. (i) The operator T is conformally invariant.

(ii) The operator T is conformally invariant if s; = n' = § and n is even.

Proof. We shall follow the proof of Lemma 2.1.5 but since the tractor D—
operator for spinors is only of the first order, everything will be easier. Again,
it is sufficient to assume T = ().

(i) Using the notation 8 := B;---B,, b := by---b, and a := a; ---a,
for systems of indices, a part of the formula (2.64) for T3 is the invariant

operator

1 1
dpm = Dy Mp! -+ My 5(5; 81,00, 80)olw] — Enmw — s — 5]. (2.66)
N————’
@/
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(Note —s — 3 = —|s] — 1.) We will consider ® g as a tractor formula (recall
M and D are given by formulae) and use the notation from 1.2.6 for ®,m.
We need to show the projection ZJ7 - - - ZP2'® g, ., is invariant. Following

the same arguments as in Lemma 2.1.5, it is sufficient to show
Vpras € TEPC(Epg) : ha(pras) > 0= (pras)*® = 0. (2.67)

Clearly oh(®) = oh(D}) + oh(M") = 1, see Example 1.2.6 and (2.63), and

ha(pr) € {£1}. Also note hy(pr) € Z for every pr € TFPC(E,g). From
this, it follows easily that

Vpr € TFPC(Eyg) : (ha(pr), has(pr)) = (—%, )= pr'é=0 (2.68)

implies (2.67) hence proves the Theorem (i). (Let us note the last display
plays the same role as (2.35) but now, the "lattice” is trivial and equal to
(=51}

To prove (2.68), suppose pr € TFPC(E\g) satisfies (hA(pr), h%(pr)) =
(—%, 1). The operator pr*® is of the zero formal order and invariant but we
cannot use a modification of Lemma 1.3.8 because irreducibility of the space
5(%; S1,-..,8r)o is not guaranteed. We will use an analogue of the reasoning
from the proof of Lemma 2.1.5 (ii) i.e. we will describe how a term with pr
can appear in the formula ®.

Let us consider the middle operator ®'% := (M{"™D)% ie. PA% = DYDY,
see (2.66). Since D is of the first order, it can increase the B-homogenity
of TFP-components in Eg in the formula &% by at most one. (Recall
these TFP-components are formally terms of ®'%.) According to Theorem
2.1.4 (i), a nonvanishing TFP-projecting part of & of the B-homogenity
at least 0 can be only pr(|r|)gs = Zgll - Z¥% € TFPC(Eg). Since its
$B-homogenity is 0, the only way how to obtain a projecting part pr €
TFPC(Eas) such that the formula pr*® is nontrivial and hg(pr) =1, is to
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apply the first order term X 37V, of D to pr(|r]). But the resulting operator
vanishes because

] ,
ﬂpvngll . 'Z%Zfblmbr - _ Z(Si +1)Z--- ZYEjZ- 2B e

=1

_|_ L(lht?? — étlht”

where “lht” denotes terms (i.e. TFP—components) of the homogenity at most
0, and, recall, f is “Clifford free”. The last display follows from the formula
(1.49) for Z and the Leibnitz rule. (In the ith summand, the form indices
with the exception of B; and bZ are omitted).

(ii) Assume r,y > 2 and n even. The proof is similar to (i) and we empha-
sise only what is different. The systems of indices are B := [B{B;|By - - - B,,
b:=Db;---b, and a := a;---a, and the analogue of (2.66) is the tractor

formula

1 1
(I)/)iibB = Dl)i XB?EllMBbi e MBb: : 5(5, St1ye .y Sr)O[w] — (‘,’A%[w — s+ 5]

N

-~

(b/
Using the notation (pri(|r —1]))g = XB?;Z%?Q -7y € TFPC(Eg), we
need to show (pri([r —1])) @ is invariant. Similarly as in (i), it is sufficient

to show
1
Vpr € TFPC(Ey%) : (ha(pr), he(pr)) = (—5, 0) = pr'® =0.

Since ® = XM~ a TFP-projecting part of the B-homogenity at
least —1 which is nonzero for the formula ® can be only pri(|r — 1]) €

TFPC(Eg). Recall pri(|r—1])& is also a term in the formula ®'%. Applying
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BV, to pri(|r —1])f, we obtain the operator

BV, X b1 Zgzz .. .Z%@;fblmbr —

BYB;4
b9 b1 by b ’ b1 by br ap
- ZB?BlzBQ Ly, By S, — 1 WB?BIZBQ Ly, P fpblb2-~~br

Lr] .
=Y (si+ DXL ZYRZ- - ZB"f. 15y + “Int” = “Int”.
1=2

where “lht” denotes terms of the homogenity at most —1 . The first term on
the right hand side vanishes due to (2.65). ((2.65) obviously holds also for
tractor valued k—forms.) The remaining terms (with the exception of “lht’s”)

vanish due to 8f , = 0. Thus (ii) follows. O

Properties of the top operator for spinors

Following (2.46), we define top operator T as

T S1 < 2
T = ? (2.69)

T S1 =

I3

In particular, T = T for n odd. Further, let us consider composition of the
top operator Ty and |t] € N tensor top operators where % <t=|t] +% <r.
This will be denoted by

t ag- arA a A
(T( ))A?At~~~A?A1A - A?A: . 'TA({:TA
1 (2.70)
5(5; §1,- -+ 50)0 — Eagia0a Jo(a0a, ] (Ser1s -5 S )o[w — 8" —1].

Recall we use the conventions from 1.1.3 i.e. we consider implicitly the integer
part [t] of ¢ in expressions with non-integer subscript like a; or s, but s =
% + s ¢ Z now. The following Theorem says when this is a splitting
operator. Let us note the formula for every T in the composition T is
1

applied to the longest available form index. Finally note that oh(Dy) = 3
together with (2.70) and (2.48) yields

oh(TW) = [t] + = =t. (2.71)



Definition. The top operator T®, ¢ & N will be called top splitting or top
splitting operator if this is a splitting operator for T = (). (Then T® is a
splitting operator for any ¥.)

Theorem (Properties of the middle and top operator for spinors).

Let us consider the middle operator and the top operator
M™ me{1,2,---,[r]} and T, te€{1/2,3/2,--- 1}

given by the relation (2.62) and (2.70), respectively, and a section f €

5:3(%;31, oo Se)o[w], w € R. Let

pr(m) :=Z3" --- 7y € TFPC(Ey) where 2 := Ay, --- A}, and

B0 ‘};m € TFPC(Eg) where B := AB; --- By
111 Be)

. Ay b
prt = YAYB?Bi Y

where m = |r| —m + 1, be TFP-projecting parts of homogenities 0 and t,

respectively. Let us consider the scalar

(
w—s—t+sy+1 1<t<ry, neven, ort>ry, neN

s(t,0) :== w—s—t+35+1 %:t<7‘n/,neven

kw—s—t—l—g t=ry,n even, ort <r,, n odd

s(0,m) :=n+w—|s| —sm+m— 1.

(i) Theorem 2.1.4 (i) will hold if we use M™  pr(m) and s(0,m) defined
above in this Theorem. Theorem 2.1.5 (i) will hold if we use T®, prt and
s(t,0) defined above in this Theorem and also replaced A by B defined above
in this Theorem.

(ii) Using the same modifications as in (i), the statements of Theorem

2.1.4 (ii) and Theorem 2.1.5 (ii) are satisfied.

Proof. Recall the construction of the middle operator for spinor bundles

M f = YTM™ X1 where M) is the middle operator for spinors on the
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left hand side and the middle operator for tensors on the right hand side.
From this it follows we can use directly Theorem 2.1.4. The bottom operator
Xr lowers parameters r and s by % and does not change the weight. There-
fore we have to replace s by s — 1 = |s] and r by r — 1 = |r]. This proves
all statements of the Theorem concerning the middle operator.
Analogously, the statements for the top operator mostly follow from The-
orem 2.1.5. We need only to show that for T = (), if s(¢,0) > 0 then T® is a
splitting operator and if s(,0) = 0 then T is not a splitting operator.
Henceforth we assume T = (). We shall discuss the case t = % ie. T® =

T3 first. There are two possibilities 7" and T according to (2.64).
o Assume T2 = T ie. r = + or sy < Z. This, together with ¢ = £,
guarantees s(1,0) =w—s— 142 =w—|s] —1+ 2. In other words,
n

1
3(5,0)>O<:>w—LsJ>1—§.

1. Then T/? = D and
5(3,0) = 2 (n+2w—2) because [s| = 0. Thus it follows from (1.39) that

2

There are two possibilities. Assume r = 1

T(/2) is a splitting for s(%, 0) > 0 and is not a splitting for s(3,0) = 0.

Now assume r > 3. Then T0? = (pr(|r]))*DM{") according to
(2.64). It follows from the last display that s(3,0) > 0 yields s(0, [r]) =
n+w—|s]—s; > 0. That is, s(3,0) > 0 implies that M (") is a splitting
operator. (We have used Theorem 2.1.4 here.) Let us consider the
operator D in DM ("D According to (1.39), D is a splitting operator
if and only if § +w"—1 # 0 where w’ = w — [ s] is the conformal weight
after application of M ("D Tt follows from the previous display that D
is a splitting for s(3,0) > 0 and is not a splitting for s(3,0) = 0.

o Assume T2 =T ie r > r, > % and n even. This, together with

t =1, guarantees s(3,0) =w—s—14+2+1=w—[s]+ 2. Inother

129



words,

0)>0<:>w—LsJ>—E.

1
s( 5

57
There are again two possibilities. Assume r = % Then T("/?) = X*DX,
see (2.64), and w' = w — 4 41 is the conformal weight after application

of X. Then D in DX is a splitting if and only if $[n+2(w—2+1)—2] # 0.

2
Using this and the last display (where |s| = %), the Theorem follows.

Assume 7 > 1 + 2. Then T2 = (pr(|r — 1])X)*DXM "1 accord-
ing to (2.64). It follows from the last display that s(%,()) > 0 yields
s(0,|r]) = n4+w—[s] —sa+1 > 0. Hence using Theorem 2.1.4,
s(%, 0) > 0 implies that M ("= is a splitting operator. Further, using
(1.39), the operator D in the formula DXM("=1D) is a splitting opera-
tor if and only if § +-w’'—1 # 0 where v’ = w — [s] 41 is the conformal
weight after application of XM ("=t see (2.64) for details. Hence D

is a splitting for s(3,0) > 0 and is not a splitting for s(3,0) = 0.

It remains to consider the case t > 2. That is, s(¢,0) = w—s—t+sp, +1
or 5(t,0) = w — s —t+ 5. Clearly if all the top operators in the composition
TW = TUDTY, |t] > 1 are splittings then T™® is a splitting operator. We
shall discuss the “tensor part” T() of T® first. To use Theorem 2.1.5
for T let us denote all quantities concerning the tensor structure after
application of T} by primes. That is, w' =w —1,s =s— 1, ¢ =t — 1 and
Sy = S| = S (The latter is just our convention form 1.1.3.) If we input the
primed quantities into (2.49), we will obtain the same scalar s(t,0) because
w' — s —t' = w — s — t. Therefore s(t,0) > 0 guarantees T!)) is a splitting
operator and s(t,0) = 0 means 7*)) is not a splitting.

It remains to prove that if s(¢,0) > 0 then s(3,0) > 0. The latter
inequality guarantees that 73 in T™® is a splitting operator. (Recall we

assume t > 3.) Observe s(3,0) > w — s — 3 + %. There are two possible

130



forms of s(t,0) for ¢ > 2, see above. If 5(t,0) = w — s —t + s, + 1 > 0 then

1 1 1
5(5:0) 2w—s—§—|—g:s(t,0)+(t—§)+(g—sm)—1 > s(t,0) > 0.
>1 >0

Finally in the second case s(t,0) = w —s —t + § > 0 we obtain directly

s(%,O)zw—s—%—i—g>s(t,0)>0becauset2%. O

Remark. If w € AW (see (1.61)) or w € C\R then T, ¢ € 1Ny is always the
top splitting operator. This follows the similar property in tensor cases. To
verify this for spinors, note the tractor spinor D—operator is not a splitting

for n 4 2w — 2 =0 (see (1.39)). The latter requires w € AW.

Examples of middle and top operators for spinor representations

We shall consider the bundles treated in Examples in 2.1.4 and 2.1.5
with an additional spin index (“Clifford free” in the sense of 1.1.3). These
are E(3;k)o[w] and E(3;k,1)o[w] for n > k > 1 > 1. In the notation for
sections, the valences k and [ of a = a* and b = b', respectively, will be
omitted as well as spinor and tractor spinor indices. That is, we shall use
the notation fa = fiar € £(3,k)o[w], fab = frarbt € E(5,k, Do[w], X = X3,
D = D; etc.

Ezxample 2.1.10. The middle operator M for spinor representation is defined
by the formula (2.60). This is formally the same as in the tensor case (2.16)
as we are omitting spinor indices. Therefore more complicated middle op-
erators are also given by the same formulae in the tensor and spinor cases.

In particular, we can use corresponding formulae from examples in 2.1.4 also

for the spaces £(3; k)olw] and E(3; k, )o[w].

Ezample 2.1.11. Following (2.64), we have two possibilities for the top op-

erator T on &£(%; k)o[w]: T and T. Let us consider the former one first, i.e.

131



k # 5. Using the definition (2.64), this is

7 5(%; Folw] — Exarlw — 1]

T fa=ZIDMEfe

where ¢ = c*. After a short computation, we obtain the formula

Tfa=(n+2(w—k)—2)(n+w—2k)Y fa (272)

+2X[(n+w = 2k)B°V fa — kB VP fral
with the skew—symmetrization [a'a] on the right hand side. The second
possibility T requires k = n’ = § (i.e. n is even) and is defined as
T &(5mofu] — Exgrlu — 1
Tfa=YSDX 00t fe
where ¢ = ¢"'. The explicit formula is

Tfa = 20Y fa+ 2XB°V, fa. (2.73)

Ezample 2.1.12. We shall consider only the case k < 7 i.e. the version T in

(2.64). Then the top operator 7' on &(3; k, l)o[w] is defined as
1
T: 5(5; k,)olw] — Epgrpt[w — 1]
T fan = 28 Ly DMEMS fea

where ¢ = c” and d = d!. Using the formula the middle operator M3 Mg fab,
formally the same as (2.21) where E(k, 1)o[w] is treated, one can compute the

formula

T fap =(n+2(w—k—1)—2)(n+w—1—2k)(n+w—k—21+1)Y fap
+2X| (w1 =2k) [(n-+10—k—20+1) "V, fa =18y T foy 5]
—k(n+w—k=214+1)B,V?” foan+ kB, VP friam
(2.74)
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with the skew symmetrizations [a'a] and [b'b] on the right hand side. Then
T fab satisfies the Young symmetries (k,[) which can be checked by a direct
computation. (One can also use Proposition 1.3.8 - projection to a subspace
different than (k,[) kills the top slot and the bottom slot would yield a 1st

order operator invariant for any weight w.)

Remark. Formulae from Examples 2.1.11 and 2.1.12 are valid even for £ =
I = 0 when they recover the tractor D—operator D7 for spinors up to scalar

multiples n +w and (n + w)(n + w + 1), respectively.

Ezrample 2.1.13. In the last example, we shall look at the top operator on
the space £(3;1,...,1)o[w] with [r] > 1 tensor indices. This is the subspace
of Exay-ar)o (W] With sections killed by 3%, 1 <i < [r|. The top operator T

which puts the spinor index to the top slot, is constructed in (2.64) by

T 5(%; 1+ 1ofw] — Ex(1--- Dofw — 1]

_ B By by -+ by
Tfayay, =2y} - Ly DME "% for.,

for fo.a, € E(3;1---1)o[w]. Hence we need to compute the (complete)

middle operator

My i = Mjll e Mj: : 8(%; Lo 1Do[w] — Exar.arfw — 7]
first. We shall follow Example 2.1.9 where the corresponding tensor case is
treated. Considering that the tractor D—operator D is of the first order, we
need actually only two slots of M3 "i" fo, .o, of the highest homogenities.
These are 0 and —1. Since the formula for the middle operator (2.60) is
formally the same for spaces £(3;1- -+ 1)o[w] and E(1- - 1)o[w] = Eay.ar)o[w],
we can use (2.23) from Example 2.1.5. Applying the last middle operator
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Mjll to (2.23), one can easily compute

M5 aa, = O{eZ8 25 fupea, — X0 25 2V e}
+ {lower homogenity terms}
(2.75)

where we use the scalars c=n +w — 2 and

_ 1 r=1,
C =
[[ly(c—i+1) r>2.
Let us note that (2.23) requires > 3 but (2.75) above is satisfied for r > 1.
(The cases r = 1 and r = 2 are easily checked using formulae (2.72) and

(2.74), respectively, for k =1 = 1.) Using this, it is not difficult to compute
the result

T faroa, = C_’{c(n +2(w—=71) = 2)Y fa,.a
+2X |08V far-car = TB(a, VP fasrarrp)| |
2.1.7. Summary: D-splitting operator. We shall start with the follow-
ing (obvious) generalisation of the bottom operator B and the top operator

T to spaces without tensor or spinor indices. We define them as (the strongly

invariant) operators

BA = XA . 83:[11}] e (C/‘qu[w + 1]
(2.76)

Ty:= Dy : Ew] — Eazlw — 1].
We will also use the familiar notation 7 :=T---T and B® = B--. B for
composition of t,b € N of operators T" and B, respectively, defined by (2.76).
In the case of the general space E{ry, -, ru}o[w], (2.76) gives rise to the

operators

T®+) .= 7...7TT" and B .=B...BB", peN,.
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Henceforth we shall consider the space E{ry,--- 7y }to[w]. Let us con-
sider all the top, middle and bottom operators defined until now, and their
compositions. (They are strongly invariant.) We can consider any such com-
position (if it is well-defined) but we prefer the following order. We define

the strongly invariant operator DSplit;(m) as follows.
1
DSplitt(m) == BOM™TO on Ex(k;sy,--- s, )olw], k€ {0, 5} (2.77)

The advantage of this order is that if T = () and DSpliti(m) is a splitting
operator then Theorem 2.1.4 (ii) shows DSplitj(m) as a unique nontrivial
TFP-projecting part. (For example, the order T® M ™) does not guarantee
this.) It follows from the definitions of T, M and B that the parameters t,

m, b must satisfy

1
.t,b€§N0, T'zmeNO
ot>0=|r—t|eNy and t>r=m=0 (2.78)
oercNy=1beNy; and r €Ny, t +b>0= |t — b| € Ny.

Definition. The operator DSplity(m) for ¢, m, b satisfying (2.78) is called
D-splitting or D-splitting operator if this is a splitting operator for ¥ = ().
(Then DSplitt(m) is a splitting operator for any ¥.)

Actually we shall need only the following special cases of DSplit}(m) in

the subsequent computations. We define
DSplit'(m) : = DSplith(m) where t >r = m =0
DSplity(m) : = DSplit)(m) where b>1r = m = 0.

(Considering the conditions (2.78), the definition of DSplit’(m) says only
that b = 0.) It follows from (2.47), (2.17) and (2.5) that for k = 0 and ¥ = (),

135



these are operators

DSplit'(m) : E(k;s1, -+, s )o[w] — Exl(Spy+1, 5 Smo1)o[w — 8" = 8™ — ]
D»S’plltb(m) . E(k‘, S1, - ,ST)O[U)] —_ gg[(SLbJJrl’ . ’Sﬁl—l)O[w _ Sb _ §ﬁz + b]
(2.79)

where m = |r] —m + 1. We put s; := 0 for r < i € N. Then, in the tensor

case
Ql — [A?Al] st [A?QJAI_QJ]Am ct A\_TJ’ AZ — Afz fOl“ q c {t, b} (280)

In the spinor case i.e. for k = 3, the operators DSplit'(m) and DSplit,(m)
satisfy (2.79) with 2 replaced by A.

Theorem (Properties of the operator DSplit). Let us consider the op-
erator DSplity(m) on the space Ex(k;si, -+ s )olw], k € {0,3}, w € R
where the parameters t, m and b satisfy (2.78). We put moreover s; := 0 for

r <i € N. Let s(t,m) be the scalar

(

t>ry n €N
w—8—1t+ s +1 V

1<t<ry, Am+t<r n even

w—s—t+35+1 %:t<rn1/\m—|—t<r n even
(
%ﬁtﬁrn/ n odd

s(t,m) =

w—s—t+2 V 1<t=ry n even
%§t<rn//\m+t:r n even
\

n+w—|s|—smp+m—1 t=0Am>1

1 t=m=0

\

(2.81)
where m = [r] —m + 1 and “\/{” denotes disjunction of the condition
on the right. Let us denote by A the system of free tractor indices in the
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formula for the operator DSplity(m). Then Egy is a TFP-bundle and there
is a unique TFP-projecting part pri(m) € TFPC(Ey) of the homogenity

h(pri(m)) =t — b satisfying

Vpr' € TFPC(Ey) : (pr')*DSpliti(m) # 0 =
- [pr’ :pri(m)} vV [h(pr’) < h(prf,(m))}. (2.82)

Furthermore the operator DSplit satisfies (prg(m))*DSplitZ(m) =C-id and
the scalar C' is as follows. If s(t,m) > 0 then C # 0 and DSpliti(m) is the
D-splitting operator; if s(t,m) = 0 then C = 0 and DSplity(m) is not the
D—splitting operator.

The explicit form of pri(m) in the cases (2.79) is as follows. The system
of indices A is of the form (2.80) in the tensor case and with the additional
index A in the spinor one. The TFP-projecting part prt(m) := pri(m) of
DSplit'(m) is of the form

t Yosonl - Y oa Z30 - Zi € TFPC(Ey) fort,r € Ny
pri(m) =
VAY il Y, AOA’HZ " ZY € TFPC(Ena) fort,r &Ny

where we consider [t] in A?, A,, a, and |r| in A,, a,. The TFP-projecting
part pry(m) = pri(m) of DSplity(m) is given by pr®(m) with Y and Y

replaced by X and X, respectively.

Remark. The form of s(¢,m) may seem complicated but it can be roughly
reformulated for ¢ > 1 as follows: s(t,m) = w — s —t+ s; + 1 or lower by

one in some cases if s; = n’.

Proof. The existence of the TFP-projecting part pri(m), its uniqueness in
the sense of (2.82) and the forms of pr'(m) and pr,(m) follow from Theorems
2.1.5 (i), 2.1.4 (ii) and 2.1.1 (ii) in tensor cases and the corresponding state-

ments in Theorem 2.1.6 in spinor ones. The homogenity of pri(m) is obvious.
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It remains to show that s(¢,m) > 0 implies C' # 0 and that s(¢,m) = 0 im-
plies C' = 0. This obviously does not depend on b. We shall consider the
cases t = 0, t = %, 1 <t <randt > r separately. Similarly as in these
theorems, we assume T = ().

I. t = 0. In this case, the scalars s(0,m) from Theorem 2.1.4 (i) and
Theorem 2.1.6 (i) clearly coincide with the form of s(0,m) in (2.81).

IL. t = 1. This means DSplit(m) = BYM™TQ where Ty is the spinor
top operator. It follows from (2.81) that s(3,0) = s(3,m) or s(3,0) =
s(3,m) + 1.

Assume s(,m) = s(3,0). This excludes the possibility 3 =t < 7y,
m+t =r, n even, see (2.81). Comparing the scalar (2.81) with the scalar
from Theorem 2.1.6 for the top operator (denoted also by s(3,0) therein),
we see they agree. This proves the case of the equality and also that if
s(%, m) > 0 then T} is a splitting operator. Further we need to know that
M) is a splitting operator for s(3,m) = s(3,0) > 0 and m > 1. Assume
s(%, 0) > 0. Let us denote the scalar from Theorem 2.1.4 for M (™) applied
after T} by s¢..(0,m). Here w’ = w — 1 and s’ = s — 1 indicate quantities
corresponding to the tensor structure after application of T3. There are two

possibilities for s(3,0). If s(3,m) = s(3,0) = w — s — £ + 2 then

1
Ss 0 (0,m) =ntw' —s' —sp+m—1=n+ (w—1)— (3—5) —Smt+m—1=

n 1 n _
=—-tw—s—-+-—sx+m—1>0.
2 2 2 ~——
~~ ~—— >0
5(3,0)>0 >0

Hence M) and consequently also DSplit;(m) are splitting operators. The
second possibility is s(%, m) = s(%, 0)=w-—s+ % + % can happen only for
m-+t=m+3 <r,see (2.81), or equivalently m > 2. It is easily check from
the last display that again sy .s(0,m) > 0 hence M and DSpliti(m) are

splittings.
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It remains to discuss the case s(3,0) = s(3,m) + 1. This can happen

only for % < 7w, n even and m +t = r. This means s; = § and m = 1.
Clearly, if 5(3,m) > 0 then s(3,0) = w—s+3+2% > 0. The latter is just the
scalar corresponding to T form Theorem 2.1.6 (denoted by s(3,0) therein)
because % < ry and n even. Thus T} is a splitting operator for s(%, m) > 0.
The rest follows immediately from the last display (including the case of the
equality).

III. 1 < t < r. Let us consider the operator T in the composition
DSplity(m) = BOMT® first. This is (is not) the top splitting if s(¢,0) >
0 (s(t,0) = 0) where s(t,0) is given by Theorems 2.1.5 (i) and 2.1.6 (i). This
scalar actually coincides with the form (2.81) above.

Now observe from (2.81) that s(¢,0) = s(¢,m) with the exception of of

the case t < r,/, t +m = r and n even. In this case and for s(t,m) > 0 we

have

s(t,0) :w—s—t+sw+1:w—s—t+g+1:s(t,m)—l—1 >0
T

because 1 <t < 1/, n even means s;;] = n’ = 5. Summarising, this shows
that if s(¢,m) > 0 then T® is the top splitting. Moreover, with the exception
of the case t < r,s, t +m = r and n even, if s(¢,m) = 0 then T® is not the
top splitting. The latter means DSpliti(m) is not the D—splitting.

It remains to discuss the operator M in DSplit(m) = B MT®.
The top operator T changes the quantities w, s etc. We denote the new

ones, i.e. the quantities corresponding to the tensor indices after application

of T®, by primes. We have

w=w-—s"—t r=r—teN

ss=s—s"€N —|t] e N.

Il
3
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(See (2.47) and (2.70) for w’, the remaining ones are obvious.) In particular,
w —s =w—s—+tand m' > 1. The scalar for the middle operator from

Theorem 2.1.4 is
Swer(0m)=n+w —s —s, +m —1l=n+w—-s—t—sz+m —1

where primed subscripts indicates the relevant changed quantities. (In this
notation, the primed Young diagram has columns (s441,-- - , s|r|) hence s/,
and s, denote the same column.) We need to show that s(t, m) > 0 implies
Sw s (0,m) > 0 and also the case of equality for ¢t < 7/, t +m = r and n

even. According to (2.81), there are two possibilities for s(¢,m).

o s(t,m)=w—s—1t+ s, + 1. Weneed to discuss only the inequality
in this case so assume s(t,m) > 0. Then
w’s’r’07 = - —t 1 - — Om _/_1_1>0
Sw s (0,m) =w —$ 8 1N — sy — sy +m

s(t,m)>0 >0 =0

The reason for the inequality “>0" is as follows. There are two possibili-
ties according to the definition of s(¢,m): if t > r,, then n—s;j—s5 > 0

and if m 4+ ¢ < r then m’ > 2. Hence, the last display follows.

o s(t,m) =w —s—t+ 5. We have to consider also the equality in the

case t < 1, t +m =r and n even so assume s(t,m) > 0. Then

n n
Swom(0m)=w—s—t+—+—=—sz+m —1>0.
2 2 N——
—_— = >0
s(t,m)>0 >0

Obviously the last inequality is sharp for s(¢,m) > 0. The case of

equality is also clear: firstly, m + ¢ = r means m = |t] + 1 hence

m' = 1, and secondly, t < 7,y means sy = S;;j41 = S = 0 =

|3

because n is even. Hence if s(t,m) = 0 then s,/ ¢ ,/(0,m) = 0.
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IV. t > r. This requires m = 0 according to (2.78) and s(¢,0) = w —
s —t+ 1. The latter clearly implies s(r,0) > s(¢,0) hence if s(¢,0) > 0 then
the T in DSplit(0) = BOTEIT) is the top splitting. It remains to
show s(¢,0) > 0 also implies T®=7) is the top splitting and the case of the
equality. Let us note t > r implies t —r € N (see (2.78)) and T~ acts
on Eyw'] for w' = w — s — r according to (2.47) and (2.70). The system of
tractor indices 2 is of the form (2.80) where ¢ = r. The form of w’ means
s(t,0) = w' — (t —r) + 1. But this is just the scalar s(t —r,0) from Example
2.1.1 for the weight w’ and the Theorem follows. ]

Remark. We are interested mainly in admissible weights w € AW (see 1.61)
because they admit operators from the pattern. But let us note if w & AW
or w € C\ R then DSpliti(m) is always a splitting operator. This follows

from similar properties for the middle and top operators.

2.1.8. Formal adjoints. Consider and a natural bundle V' and its dual V*.
The conformal volume form €, € E,n[n] has the conformal weight n so the

pairing
() iV X Vi —n] — &

(2.83)
(. 9) = / o

where  and ¢ are compactly supported, is well-defined on conformal mani-

folds. Let us consider an invariant differential operator L : YV — W between
bundles V' and W. We define its formal adjoint L* : W*[—n| — V*|—n]| by

the relation
(Lp, ) = (@, L™) for every p € V and ¢ € W*[—n]. (2.84)

Note that if L is conformally invariant then also L* is conformally invari-

ant. If V' is the bundle Ey{r1, ..., }{w] then the dual V* is isomorphic to
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Eo{ry,...,rw}[—w + 2s]. (Recall s is the overall number of tensor indices,
increased by % in the presence of a spinor index.) This is due to the confor-
mal metric g% € £(%)[—2], the spinor metric e’ € £*“[—1] and the tractor
versions hA8 € £MAB) and e2? € €2, respectively. Denoting the system of

all tensor and spinor indices by a, the pairing becomes

() Eaulst, ...y so)[w] x Exulst,y ..., ) [—w+2s —n] — &
<(P9laa %m) = /Wﬂad’ma-

The formal adjoint of a splitting operator is an invariant replacement of
projection to a slot of a tractor section mentioned in 1.3.6. For example, the
projection to the X—slot of F' € Ear+1[w’] is not, in general, invariant. We
can use the top operator T on Eu[w] and the formal adjoint 7% as follows.

These are operators

T () . () and T : () . (0‘:0>

in the matrix notation, cf. Remark 2.1.3. T is defined for any conformal
weight hence also T™ is defined for any conformal weight. Therefore we
can suppose that 7" acts on Eprai[w]. If T is a splitting operator then

<,f ) z, <*f *> The Proposition below says that then 7™ is the identity

) ) 0 * 0
on the bottom slot in the sense <0p0) -, <0p0>. In general, T depends

also on the Z, W and Y-slots.

Henceforth we shall follow the conventions from Remark 2.1.3 i.e. we
shall consider, for example, the top operator as a mapping on Eux[w] (and
not on the quotient space (Ey)ar+1[w']). For a given point on the manifold
M, a splitting operator at a point is a linear mapping between vector spaces
¢ : Uy — Uy @ U, satistying Projy;, o ® = idy, where Projy, denotes the
projection to U; @ Uy — U;. This has the following simple but important

property.
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Proposition. Let us consider a vector space U = Uy & Uy and a linear

mapping ® : Uy — U such that Projy, o ® = idy,. Then the dual mapping

¢* : U* — Uy satisfies the analogous property ®*|y» = idys.

Proof. Let a € Uf and w € U;. Let us consider the projection ¢ = Projy;, :
U — U; and the dual mapping ¢* : Uy — U*. The definition of the dual
mapping for ® means (®*[|y:(a);w) = (®* o v*(a);w) = (" (a); P(w)) =
(a; Projy, o ®w) = (o;w) because Proj;, o ® = idy,. From this, the propo-

sition follows. O

It is straightforward to transform a formula for a differential operator
L :Vy — Vs into a formula of L* : V5[—n] — V{[—n|. Clearly (L4 Ly)* =
Ly + L} and it follows immediately from (2.84) that also (LiLs)* = L3Lj.
Therefore to derive the formula for L* from a formula for L we need to know
only formal adjoints of the derivative V, and of tensorial actions of sections
with various upper and lower indices.

Let us start with the covariant derivative V, : V — &, ® V. It follows
from (2.83) by integration by parts that the formal adjoint is (V,)* = —V° :
E @ V*[—n + 2] — V*[—n].

Let us consider a section S 4"® of weight w and any systems a, b and 2,
B of tensor and tractor indices, respectively. (Note we have excluded spinor
and tractor spinor indices here.) Then S can be considered as an operator

S 2% Eos — Egu[w]. Using g and h, the formal adjoint is

S = S Eal—n — w + 2]a]] — Exa[—n + 2]b]]

where |a| and |b| are numbers of indices in a and b, respectively.

We shall discuss spinor in the complex setting where we know the tractor
spinor metric (1.43) explicitly. We will need only formal adjoints of Y} €
Hom (&,[1],Ex) and X} € Hom (&y, Ey). Tt follows from (2.84) that (Y*)} €
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Hom (&x,&)) and (X*)) € Hom (€, E,\[1]). More accurately, we should
write e.g. (Y*)% € Hom (Ex[—n], Ex[—n]) but Y} : Exfw + 1] — Epfw] for
any conformal weight w. Let as emphasize that the star here denotes formal
adjoints and not projections corresponding to TFP—components in the sense
of 1.2.6. Using the (tractor) spinor metric (1.43) with the convention (1.40),
we obtain (X*)} = X{ and (Y*)) = Y. They satisfy

Y¥(X)=1id, X*(Y)=(-1)"*d and (X8, (Y)=-8, (2.85)

a

and Y*(Y) = X*(X) = (XB,)"(X) = 0. The first two statements in the
display have been mentioned in 1.2.4, the last one follows from the second

because 3% = (—1)"3,.
Examples of formal adjoints

We review Examples from 2.1.4, 2.1.5 and 2.1.6 and derive formulae for
formal adjoints of the middle and top operators therein. The conformal
weight in the formulae for formal adjoints shall denoted by w’. That is, if
for example X 0% 1 Eur[w] — Eoar[w — k + 1] is the bottom splitting
then its formal adjoint is the (invariant) projection X4™4 : Erpoan[w'] —
Ear[w' + k + 1] where w' = —n — w + k — 1. Let us note that the formal
adjoints in the examples below are strongly invariant because the middle and

top operators are strongly invariant.

I. Middle operators on tensors

Ezample 2.1.14. The middle operator M} and the formal adjoint M *aATT are

operators
My E(s1,. o sp)olw] — E(s1,- - Sr—1)oazr [w — 5,
M*g: : 8(81’ e 757“71)0A7€T [w/] - g<317 S ST’)O[U}/ + Sr]

144



where a, = aj* and A, = Ajr. My is given by the formula (2.16) in

r

Section 2.1.4. Since w’ = —n — w + 25 — s, where s = Y| | s;, the scalar
n+w-—s—s,+r—1from (2.16) is equal to —w’ + s — 25, +1r — 1. We

obtain the formula
M4 Py, = P10j [(—t/ 525, 47— 1)Z87 + 5,V y X8| Fayoa, i,

where Fy,..a, 1A, € E(51,...,8-1),as [w']. Here Proj denotes the projection
on £(sy,..., 5 )o[w +5,] and V,1 acts on X::Fal,_ar_lAr. If we want to work

directly with the relevant slots of F' i.e. if we consider F' in the form
Faya, A, = Yi’;aal._.ar_lar + 7} Jtay--a,_1a, + {remaining slots},
the formula for M* becomes

MAE = Proj [(—w/+ 5= 25, 47— 1)jta; 1o + Va;aal--.ar,lar] .

The operator M}" acts on £(s1,. .., s, )o[w] which means s,_; > s,. Hence if
we want to apply M* to the space E(s1,...,S,—1),as (W] we have to ensure

Sp—1 > Sy. (If this is not satisfied one has to use formal adjoint of another
(middle) operator, cf. Example 2.1.4.) Finally, the formula for M* simplifies

for k—forms i.e. when » = 1 and s; = k. We obtain
M"3Fy = = [(w' + k)pta — V104

for a section Fa = Y&o, + Z3u, + {W,X-slots} € Exx[w'] where a = a”
and A = A* and we skew over [a'a] on the right hand side.
Ezample 2.1.15. The complete middle operator M358 = M3 ME on the space
E(k,Do[w], n’ > k > 1> 1 from Example 2.1.3, and the formal adjoint of
this operator, are

M3R < E(k, Do[w] — Earpi[w — k — 1]

M*‘:E’ AW — E(k, Do[w" + k + 1]
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where a = a*, A = A* and b = b!, B = B'. Sections Fap € Eqrpi[w'] are

of the form
Fag = YéAYgaéb + YaZR&an + Z;Ygéab + ZAZ ptap, + {remaining slots}.

Since w' = —n — w + k + [, the scalars from Example 2.1.3 are ¢; = v’ — k
and ¢; = w’ —1+41. Clearly the projections ZaZy, ZaXP, X2 Zy and XgXP,
applied to Fag, yield pap, %éab, %ééb and ﬁgab’ respectively. Therefore one

can transform the formula (2.21) for M2 into the formula
M*ABF, o :Proj{(w’—k)(w’—l+1)uab + |:(w/—l+].)va1§éb - lvblféalb}
+ (W' = k) Vi + [vblvalaab + (w,_lJfl)Palbanb} }
where we skew over [a'a] and [b'b] and Proj denotes the projection into
E(k,l)o[w" + k +1]. Let us note the term V&, 1y, is the formal adjoint of

V2 fyiapn, for fab € E(k,1)o[w] from the formula (2.21). Indeed, relabelling

indices and integration by parts yields
/ E (VP fysapn) = / EOP (VP L) = / —(V"E ) fap. (286

II. Top operators on tensors

Formulae for the top operator T on E(k)[w] = Eu|w] and E(k,1)o[w],
n' >k > 1> 1 arederived in 2.1.5. As therein, we shall use the abbreviations

a=a" A=AFand b=>b!, B=B

Example 2.1.16. The top operator T ,,3 on (density valued) forms computed

in Example 2.1.6 and the formal adjoint T *Aoﬁ are operators

TAOZ : Eak [w] — (C:[AOAk][U) —k— 1]

T*Aoﬁ . E[AoAk][wl] — Cgak [w' + k’ — 1]
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where w' = —n — w + k + 1. Using the formula (2.54) for T'j%, we obtain
the formula

n—+2w’

* A0
T aoa ==y

[(n+w’—k—1)(w'+k—1)pa
—i—(k—l—l)(w’—l—k—l)vpupa—(n—i—w’—k—l)vawé}
+L[( k1) (A= (n+w/—1)P)
g (G n+w Oa
— k(n+2w'=2)(V, VP = (w'+k—1)P! )o,,]

for the formal adjoint where we skew over indices [a'a] on the right hand

side and the section Fhoa € Eq0ar[w'] is of the form
FAOA — YAOZO'a + Zigzﬂaoa + WAOXVa + XA()Zpa .

Ezample 2.1.17. Formulae for the top operators on £(k,)o[w] computed in
Examples 2.1.7 and 2.1.8 are more complicated hence we can expect the same

for their formal adjoints. According to (2.25), these are the operators

TA02> TAOZ : E(k, l)O[w] — S[AOAk]bl [w —k— 1]
T8 PAA g lw!] — E(k Dolw’ + k — 1]

where w' = —n —w + k + 2l + 1. Let us consider the operator TAOK first.

The scalars in the formula (2.55) in Example 2.1.7 now are

cp=—w —k+1+1, co=—-w+2 d=-n—2w+2 and

di=w—1l=-n—w+k+1+1.
We shall consider Fly,y, € Eaoarpi[w’ + k — 1] in the form

a ala a a
Fpoap = YAOAUab + ZAOAMaoab + WAOAVab + XAOApab . (2-87>
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Then the formula (2.55) for TAO 2 yields

1
kE+1

T*°AFjoap = Proj {dciclcz pab + dd [CQval Vap = Vi Véalb}

— (k+1)dey [C2vpﬂpab - lvblﬂpapb}

(2.88)

+ |:—C102 (A + (ci— k:)P))aab + 2ley (Vblvp + CQPfl)aapb

+ k(d+2)[c2 (V1 VP + clel)apab -1V, Vio

péalb]

—K(d+2)[V, V., + P, ]o" } }

apb
where we skew over [a'a] and [b'b] and Proj denotes the projection to
E(k,D)o[w" + k — 1]. Note we have used the relation (2.86) with &4, replaced
by vap.
The formula for T from Example 2.1.8 is less complicated. Recall & =
[ = n/ and we are in the dimension n = 2n’ now. The weight w’ is now

w' = —w+n+1thus w—n' = —w’' + 1. The formula (2.57) for ]:’AOX yields

Sk AOA w'—2 : / ’ / P

T* 2 F joap :n/—HPrOJ 2(w'—1) [—(w —2)pab — (1" +1)V? lipap —|—Va1uéb}
+ [(A—(w'+n’—1)P)aab—n(Va1V”—(w’—2)P51)opéb} }

where we skew over [a'a] and Proj denotes the projection to £(n/,n’)o[w’ +

n’ — 1]. Recall we use Fpoay, from (2.87).

II1. Top operators for spinors

Formulae for the spinor top operator Ty on £(3; k)o[w] and E(3; k, 1)o[w],
n' >k > 1> 1 are computed in 2.1.6. As usually, we shall use the abbre-
viations a = a*, A = A¥ and b = b!, B = B'. In the complex setting, we
use (2.85) to compute formulae for 7*. We cannot do this in the real case,
however both formulae below are actually invariant for both scalars. (This is
easy to check using (1.37)). Hence in the real case, the formulae below can

play the role of formal adjoints in all subsequent computations.
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Ezample 2.1.18. We will consider only the version 7 from (2.64) which is

nontrivial only for k& < 2. (The version T is similar.) For k < 5, the

o]

top operator 1" on 5(%; k)o[w], computed in Example 2.1.11, and the formal

adjoint 7™ are the operators

e 5(%; Blolw] —> Enarltw — 1]
/ 1 /
T3 Eparw’] — 5(5;]?)0[?1’]

where w' = —n —w + 2k + 1. Therefore n+2(w — k) —2 = —(n+2(w’' — k))
and n +w — 2k = —(w’ — 1). From (2.72), we obtain the formula

TF, — Proj{(n +2(w — ) (W = 1)psa

— 287 [(w' = 1)V,0a + kV 010,4) }

where Proj denotes the projection to the target space of T and we consider

the section Fj, in the form
Fa=Yo0o,+ Xpa € Erafu'].

Ezample 2.1.19. Assume k < %. The top operator T on &(%;k, )o[w], com-
puted in Example 2.1.12, and the formal adjoint 7™ are the operators

. 5(%; ke Dofw] — En(k, Dolw — 1]

TN < Ex(k, Dolu] — 5(%; ke, o[

where w' = —n — w + 2k + 2l + 1. Therefore the scalars used in (2.74) are

now

n+2w—k—1)—2=—(n+2w-k-1)), n+w—1-2k=—(w'—1-1),

and n+w—k—-2+1=—(w"—k—2).

149



Now from (2.74), we can compute the formula
T*F, = —Proj{ (n+ 2w —k—=10)(w —1—1)(w =k —2)pab
—9pr [<w’ — k= 2)[(W = — 1)V, 0ap + kVa10pa0)]
U~ DV 0] }

where Proj denotes the projection to the target space of T* and we consider

the section Fl,; in the form
Fopo =You, + Xpab € EA(/{,‘, l)o[w/].

2.1.9. Variations of the middle and top operators. The operator
DSplit defined in 2.1.7 turns out to be a good choice for the purpose of this
thesis but there are many (splitting) operators with the projecting part dif-
ferent from DSplit. Here we review some useful modifications of the middle
and top operators defined in 2.1.4 and 2.1.5, respectively. We shall consider
only the tensor bundle V' = E(sy,- -, s, )o[w] but a generalisation to spinors

is straightforward.

1. Versions of M and T applicable to any form index. Whereas the bottom
operator B can be applied to an arbitrary form index ay,---,a, of V, the
formula for the middle operator M, defined by (2.16), can be applied only
to the “shortest” form index a, = aJ* of V. Similarly, the formula for 7',
defined by (2.25), can be applied only to the longest one a; = aj'. Following
Example 2.1.4, we can construct the operator MZ (where A; and a; have
the valence s;) for an arbitrary i € {1,...,r}. That is,
MEZ 1 E(s1y oy Se)olw] — EB,(S1, -+, 80y oy Sr)olw — 84
o B B b b (2.89)
Mg fay....a, = Proj Za, -+ - Ly Mg’ - - My fa; .. a;_1b;..b,

where Proj is the corresponding tensor projection, " indicates the missing

form index and MBbj_ on the right hand side is given by (2.1.4). Using Pro-

position 2.1.4, one can easily derive the conditions for M]‘; to be a splitting
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operator. Clearly an analogous procedure yields a top (splitting) operator
TA?:ii on V for any i € {1,...,7}.

The tractor D—operator D4 plays the role of the top operator on Exfw].
A special case of the previous construction for top operators is the operator
on forms f, > XA AD,T 2 f,, for fa € Eur[w] where the form indices a, b
and A are of the valence k£ > 1. See [21] for the special case with & = 1. For
higher valences, this operator can be simplified by an appropriate (invariant)

curvature modification of the Xp slot. After some computation, we obtain

the (strongly invariant) operator

TB : 5ak [w] — 5Bak [w — 1]
given by the formula

T fa :(n+2(w—k)—2){w(w—k—1)(n+w—2k)YBfa

kw(w—k—1
+ Z]l; [w(n—l—w—Qk)V{bfa}o + T(lT—f-l)gbal fopé
+ (w—k—l)(n—l—w—%)v[bfa]}} (2.90)

— XB{(w—l)(n+w—2k) (A+ (w—k)P) fa
k(n — 2k) (V1 VP + (n+w—2k)P,7) fpé}
where we skew over [a'a] and {ba}, denotes the projection to E(k, 1)o[w] of
Ea ® Elw]. (See Section 3.2 for details.)
2. Alternative middle operator M. In (2.1), we omitted a candidate for
the splitting on &,x[w], namely M : f— (02)”). This operator can be easily
obtained from M using the volume forms €,» and €an+2 as the composition

M2 io far : Eqie[w] — Enrszw — K]

~ ok n—k n—k k
a B b c
MAk+2 fak = eAk+2 Mank Gbn,k fck .

Let us note the volume forms are actually not necessary for M, see the

explicit formulae in the Example below. (See [11] for another construction of
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M.) It can be generalised to the bundle V: the middle operator (2.16) gives

rise to MAQA?Z (where a; = a! i.e. the “longest” form index in V) and MZ_
defined by (2.89) yields M ,, ,,2 for any i € {1,...,r}.

ALAOA,
Ezample. We shall demonstrate formulae for M on the spaces Eu [w] and
E(k,1)olw], k > 1. Using the notation a = a*, A = A¥ b =b! and B = B!,
it is easy to compute directly or even easier to extract from the slots Y and

Z of (2.54) and (2.55), that
My poi fo = wW g 08 fo + Xy f0h Vo fo
€ (C/'[A/AOA}[’LU - k] = EAk+2[w - k]
for f, € Eu[w]. Analogously, we obtain

My 40 fap = (W = 1)eW 4 404 fan + XA/XSZ [V 4o fab — lQaOblvpfapb]
€ Earaoapw — k] = Eprapw — K

for f,,, € E(k,1)o[w]. Here ¢, = n4+w — k — 21 + 1 and we skew over [b'D]
on the right hand side. Note it is really sufficient to look at slots of (2.54)
and (2.55) because M is of the first order and determined by a formula for
M hence no curvature modification in the slot X A,;;S & can appear.

3. Middle operator for a part of form indices. Let us “divide” the form
index a* into a*7!, 1 <1 < k and a*7 ! = [a*1HL ... 4" ie. a* = [a*laF !
(see Section 3.2 for details about this notation). We define the middle op-

erator M on Eu[w] which “puts” only a*~%! to the Z-slot in the following

way:
k-l
Mg Ex|w] — Egmipi[w — ]
gkl .
M%z far = (n +w — 2]€)ZbBllfakflbl - lXBl]gllvblfakfzbl .

Conformal invariance follows from properties of projecting parts of M, see
Theorem 2.1.4. Clearly M can be generalised to various versions on V. We

will use M on [k + 1] later in Section 3.2.

152



2.2 DSplit and the gBGG splitting operator

Every irreducible bundle V' is of the form V' C Eyy{r,...,rn}o[w] where
“C” is equality in the tensor case. That is, we constructed the operator
DSplit;(m) in Section 2.1 for all irreducibles. The main aim of this section
is to determine parameters ¢, m and b (depending on ry, ..., r,, w) such that
DSplit}(m) is a splitting operator on Ey){r1,...,r }o[w], suitable for our
implementation of the curved translation principle outlined in 1.3.6. Accord-
ing to Theorem 2.1.7, we have to ensure the parameters satisfy s(¢,m) > 0.

Let us remind the gBGG splitting operator defined in 1.3.7. This is
a splitting operator for V' in the standard pattern with the same projecting
part as the splitting from [20]. The latter is characterised by the condition
“00* + 0*0 = 0” (in the notation of [20]) but we call any splitting operator
with the same projecting part the gBGG splitting operator. This operator
is unique in the flat case, see Appendix A.

If V is in a standard pattern, we will find ¢, m and b such that DSpliti(m)
is the gBGG splitting operator. On the way to this we will show on which
position in the pattern (see 1.3.3) V appears. We will do the latter also
for singular and non—standard patterns. We do not have any distinguished
splitting operator for these two cases. However, DSplit;(m) is well-defined in
all cases and during the discussion on the standard positions, we also suggest
appropriate parameters t, m and b for singular and non—standard ones.

Since we will need the symbolism of Dynkin diagrams during this section,
henceforth we assume the complex setting. But most of the results hold also
in the real case. We shall comment upon differences between the real and
complex case briefly in 2.2.3.

Throughout this chapter we shall use the notation from 1.1.3 and 1.3.3.

We will assume w € AW, see (1.61). Some of these weights correspond to
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bundles with no nontrivial operator in the flat case and we do not need any

splitting for these bundles.
Quantities for the Weyl’s construction

Below we will need various quantities determined by the representation

of the form

E(i)(l, S1y.n- ,Sr)o[w] = E(i){’l"l, e ,’I“n/}o[UJ].

Beside s, s/, r,1; € %NO, si, 87 € Ny, see (1.1) and Table 1.3, and the conformal
weight w, we will use also
ti=w—s—+1
op=w—s—7 i1
of =w—s+7F+(n—i—1) (2.91)
o=2w-—3s)+n
w'=—-w+2s—n

for0 <i<n.

2.2.1. Pattern and identification of V' C E{r,... 7y }o[w] therein.
Our aim is to determine the position of the bundle V in the pattern. As
this position will depend only on r,--- ,r,, w and possibly the sign, we can
consider this as the position of Epy{ri,...,rp}o[w]. We will describe how
this position depends on w with remaining parameters fixed.

The pattern corresponds to the Hasse graph structure on the subset W* C
W of the Weyl group, see Table 1.1. We obtain the pattern for the weight
A by passing the Hasse graph structure for w € WP® to the set of weights
{w.A | w e WP}, see 1.3.3 for more details. Looking at w € W* expressed
as composition of simple reflections in Table 1.1, we can easily compute w.A
because simple reflections act in a simple way (see [2]) on weights given by

Dynkin diagrams with coefficients. The result is displayed in Table 2.1.
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The pattern with Dynkin diagrams
where 1 < i < [251] — 1 corresponds either to the ith or (n — 4)th degree

O/_\l _Ai71 Ai—l+ O/_\
Ao Aq An/,g/ —i—1 Ao Ai—2 A1 Ay Anug/ 1
Fo,...io\ _— e e e —— HO*"'*O O of---io\ —_ e .
_ O As
O A =
P Ahs 0N, o+At2
—n’—l A() An/73/
X—0O- - 70\
O An’—z
OA_o+A1+1 —A-A OA,_oFAa+l
—A—n’ Ay An/_3/ —n'=2 Ao Ay S
—_— ¥—©O- -+ .70\ M¥——O- -« .70\ —
OA,_gt+As+l OA,/_o+A1+1
—A—Ay
oA, _
-n'—1 Ao An’73/ w2
pamm— EP 70\
OA,_o+A+2
—A—AT—A A1+ . Ao—2A O As
—n+i—1 Ap Ni—o Aj+1 A An/72/o Az —A—n A; An’72/
'—)HO*"'*O O Q— ¢ ¢ « O\ — e e — Ho,...io
OAy \

OA;
Remark: This is the pattern from 1.3.3 for Ay > Ay. If Ay < A,, we have

to interchange the positions in the middle.

—AT1 N1+ B
Ao A A 4 A —i—1 Ap Ni—o A+1 A A1 A
>O%ol,...f‘cl)=;1}=o—>"'—> X0+ —O o O— v+ —O=m=0 — """
—An'-1 At2+ —A" 1A A+2+
=1 Ao Mg 2M_ —n'=2 A Ao 20,
L X——O-+ + + —O=—=—=0 — X———0-+ + + —O=>=—0 —
—A-AI-A A1+ Aog—2A
—n+i—1 Ag Ai—o A+l A Ay A —A—n A Ay A
T %—0-+++—0 o O— ¢+ +—O===0"_7""""T"7 X—0-+++-—0=-0

Table 2.1: The pattern with Dynkin diagrams.
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For n even, we distinguish the positions ny and n} in the middle accord-
ing to the coefficient over the cross. (Beside this, they differ only in the sign.
The coefficient over the cross indicates which of them is of the higher/lower
homogenity. The latter is given by the action of the grading element (1.3).)
The greater coefficient corresponds to nj and the smaller one to n'y. Hence
Table 2.1 corresponds to the pattern 1.3.3 for A; > A,. In this case, n}
corresponds to the sign + in the notation of Young diagrams, see Table 1.3.

We shall use Table 2.1 to find V' in the pattern. Using the relation between
notations for representation via Dynkin an Young diagrams, see Table 1.3,
the coefficients r, determine most of the coefficients A, and it remains to
compare w — s — r with the coefficient over the cross. We will show this
computation in details only for the first half of the pattern (including n}
and n'y for n even), the computation in the remaining cases is analogous.
Results for the whole pattern are in Table 2.3 for n even and Table 2.4 for n

odd. We will use the notation from 1.1.3 and also (1.1).

Even dimensional case. In the case of the zero degree, Aqg > 0 corresponds
to a regular and Ag = —1 to a singular position. Since w—s—r = Ag = 0g—1,
we get w — s > r for the regular position 0 and w — s = r — 1 for the singular
position 0, 1.

In the case of degree i, 1 <1i <n'—2, let us compare E,{ry, ..., 7y }o[w]
with the representation

OA
_Aifl_i_l AO Ai_g A1_1+A2+1 Ai+1 An/_g/ !
X o—-- 55

O-+++—0O o
\ B

0 Ay

see the ith degree in the pattern. Recall we use the notation (1.1) here. This

means that w — s —r = —A"! —i — 1 and using the relation A; > A, (given

156



by the sign), the last display means

1 :AO,---,Tzel :Ai—% Ti:Aifl“'Ai_"ly Tit+1 :Ai+17--->rn’72:An’72

Tpi—1 + 2Tn’ - Ala Tp—1 = AQ-

This implies w — s —r = —r' + (A; + 1) — i — 1 or equivalently A; = w —
s — 7t 44§ =0, —1. We have 0 < A; < 7, — 1 in the regular case and

A; € {—1,r;} in the singular ones. This yields the interval

P —i<w—-s<i—i-—1
for regular cases on the ith position and two possibilities w — s = 7 — i
and w — s = 7! — 4 — 1 for singular cases on positions i — 1,7 and 4,7 + 1,
respectively.

The (n’ — 1)th degree is similar. We get 7,1 = Ao +min{Ay, Ay} + 1
and min{A;, Ay} = 0,y 1 — 1 and max{A;, Ay} = 0%, , — 1. This yields the
interval for the regular position n’ — 1 and the choice of w for the singular
position n’ — 2, n’ — 1 as in the Table 2.3. The singular position n’ — 1,n’ is
discussed below.

Finally, let us try to identify the representation E(yy{r1, ...,y }o[w] with
one of the representation corresponding to the degree n’. This is necessarily

—A-A; OA,/_o+A+2

-n'—1 Ao Apr_s
.. O/

X——0--
\O Ay

2

due to the sign. Here A = A; + Ay. The display means that w — s —r =
—A—Ay—n'—1and

1= Noy. o o1 = Ny, 21 = Ay + Ay + 2

which implies w — s —r = —r" 1 — (2r,, — A} —2) —n’ — 1 or equivalently

AN=w—s+rp+n—1= or,_; — 1. Therefore Ay = —0,/_1 — 1 because
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0% | — 01 = 2r,. Regular cases satisfy 0 < A; < 2r,, — 2 and singular

ones A; € {—1,2r, — 1}. Thus we have the interval

=N F1<w—-—5s<ry—n—1

for regular positions and two possibilities w — s € {r, —n', —r, — n'} for

singular positions n’ —1,n} and n’, ny +1. Let us note these two possibilities
coincide for 7, = 0. The latter is the singular case with A; = Ay = —1 called
“middle”. It remains to distinguish two regular positions according to the
homogenity. If our representations is of the higher homogenity i.e. on the
position n},, then A; > A, which yields the interval w—s € (—n; 7,y —n/—1).

The position n'y corresponds analogously to the interval (—r,, —n’'+1; —n’).

Odd dimensional case. We will be less detailed as the situation is similar
to the even dimensional case. Note w € Z for regular and singular positions
and w € %Z \ Z for nonstandard ones.

The zero degree is completely analogous to the even dimensional case for
regular and singular cases. The nonstandard ones correspond to —% < Ap.

Let us consider degrees 1 < i < n’ — 1. Similar as above, we obtain

AN =w—-—s5s—7T" 44 =0,—1and r;, = A,y + A; + 1 from Table 2.1.

Hence we have the interval —% < A < 71— % (where the upper bound

corresponds to A;_1 = —%) for the regular and nonstandard position . This

yields w — s € (F*' — i — ;7 — i — 1). The singular positions i — 1,7 and
i,i + 1 correspond to A;_; = —1 and A; = —1, i.e. w — s = 7 — 4 and
it

w—s=7"" —1—1, respectively.

In the case of degree n/, we obtain the data A = 2(w — s +n/) = 0 — 1
and 2,y = 2A,y_; + A + 2 in a similar way as above. Concerning regular
and nonstandard positions, we have the range 0 < A < 2r, — 1 where
the upper bound corresponds to A,/,_; = —%. Thus we obtain the interval

w—s € (—n/;ry —n/ — 1) for the regular and nonstandard position n’. The
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singular cases n’ — 1,n’ and n/,n’ 4+ 1 correspond to A,y_; = —1 and A = —1,

respectively. This means w —s =r, —n' and w —s = —n' — %, respectively.

2.2.2. gBGG splitting operator. Having the detailed description of the
pattern in Table 2.1, our aim now is to suggest an appropriate splitting
operator of the form DSplit;(m) for the bundle V- C Ey{ri,...,rw}o[w]
(“C”is the Cartan component) in the pattern in such a way that we obtain
the gBGG splitting operator in standard cases.

Standard positions are of the form V%A for a g-dominant weight A and
w € WP, see 1.1.1 and 1.3.1 for the notation. The gBGG splitting operator
ywh o giped . EIRPA yvields the target bundle BRIV for DSplitt(m).
Recall V¥4 — E X VA is unique because wA is on the orbit of the highest
weight A. (The latter means V¥* < V* is unique.)

We described projecting parts of DSpliti(m) via TFP—components in
2.1.7. Here we develop a suitable description for the (irreducible) projecting
parts V@A — EIRVA. To be able to deal with the bundle V* (which is not a
TFP-bundle), we will, roughly speaking, interpret strings of X, Y etc., which
describe T'F' P—components, as Cartan products (instead of tensor product,
see 1.2.6). To make a precise definition, let us start with the observation that

VA as a g-module, is the Cartan part of the tractor bundle W as follows:

VA:%O—%- . -An,g/ QW::® To. .. ® T 2 ®1 T 1 ® ']I‘”,, n even
o,
Ao Ay A
A=t b Ao A cWwi=) T Q) T R T n odd

see (1.44) for the definition of T*, where A/, | = min{A;, Ay} and A/, =
%\J_Xl — Ay|. Clearly A, and %/_\ are integers for tensor representations. In

spinor cases, we set

i [Z]
®']r”’ = ®"Jr"’ QR E,
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The pattern with ITFP—components
where 1 < i < [21] — 1 corresponds either to the ith or (n — 4)th degree

(YO)AO . (Yn’—Q)An,,Q (Yn,_l)A/"/*l(Yi)A;' _
RN IdEz' X (Zl)AO L. (Zi)Ai—l(Yi)Ai . (Y”/ 1) / 1(yn ) VRN

Ty B (21 o (2 )M () M (Y )
/ \
g B (2N (2 2<w ()t
ot B (B0 (1) 21 (e
N /
id g B (1)1 - (2071 (2 s (K)o

il B (B (A (X (XN (R —
—— idge K (XO)AO e (Xn’f2)A - (Xn 1) (X" )

Remark: This corresponds to the pattern in Table 2.1 if Ay > A,. If we
switch all the signs above, we will obtain the pattern for A; < As.
Recall, A/, _; = min{A;, Ay} and Al, = 3|A; — As].

(YO)ho .. (Y™~ 1)Aw—1(Y™) 2D — ...
- —idp: X (ZI)AO ce. (Zi)Ai—l(Yi)Ai .. (Yn’—l)An/_l(Yn’)%]\ .
—idgw X (Z1>AO' ) '(Zn/)A"/_l (Yn/)%/_\ —id gnr 41 &(ZI)AO- . -(Zn/)An’_l (XHI)%/_\ —

s id g B (ZY)R0 - (ZF ) (XY (X ) A (XY

c— idge X (XO)No ... (Xn’—l)An,,1<Xn/>%fx

Table 2.2: The pattern with I'TFP-components.
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Pattern and E{r,..

T Jolw], noeven, w € Z

Weight Pattern Splitting
w— S € Position|Type| t m b w’
(r; 00) 0 R to 0 0 0
r—1} 0,1 | s | & 0 0 1
{r" —i} i—1,i | S t; r—t 0 —i
(FH — g — i — 1) i R | & |r—t—1 0 0
(P —n/ + 17—y | 0/ =1 | R |ty |r—t—1] 0 0
{rp —n'} for rpy >0
Tt Z 1 tn/—l r—t
n—1,n| S 0 —-n/+1
T = 3 0 |7]
(—n/srp —n' —1) nl R | tp |r—t—1] O 0
{—n'} forr;, =0 middle | S
(=1 —n' 4+ 1;—=n/) n'y R 0 |[r—b—1| —tu 0
{=rp —n'} for rpy >0
1
n — 5 0
" 2 n',n'+1| S 0 Lr] -n/—1
Tn121 r—=b —tn/—l
v ten/i—ry—n'—1) | n'4+1 | R 0 |r—b—1| —tyn1 -2
(—ientit = —ntd)| n—i | R | 0 |r—b—1| —t._y |-n+2i
~i . ’]’L—Z7 . N .
{-F"—n+1i} n—itl S 0 r—b tni | —(n—1)
{-r—n+1} n—1,n| S 0 0 —tp—1 |—(n—1)
(—o0; —r —n) n R 0 0 —ty, -n

Table 2.3: Parameters for gBGG splitting operators (see 2.2.3)
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for i € %No \ Ny, where E, =: ®1/ 2T is the tractor spinor representation
defined in 1.2.4. Let us note the TFP-bundle W := G xp W is uniquely
determined by V* in this way and V" is the Cartan part of W (up to the
sign), both considered as g-representations. Henceforth we shall use the

simpler notation

(TF)" = (X) T*.

Now we define the set ITFPC(V) of irreducible tractor form product
components of a g-irreducible tractor bundle V as ITFPC(V) := {pr €
TFPC(W) | pr*|lyv # 0} where W is a TFP-bundle and V' C W is the
inclusion of the Cartan part. Then we define the set of ITFP-components of
the bundle F*RXV([w], 0 <i<nas [TFPC(E'XV[w]) := {idg: Xpr | pr €
ITFPC(V)}.

TFP-components of W can be expressed as juxtapositions of X¥’s, Y’s,
Zs, W¥s and at most one X or Y. We shall use these juxtapositions, inter-
preted as the Cartan product, as a notation for ITFP—components of V. For
n even, we can use also X7, Y7 etc., see (1.54). (The non-triviality of pr*|V
will be obvious in cases we will need.) We shall also use the abbreviations

(pr) =prX®---Kpre [TFPC’(é Tk), pr € ITFPC(T"), i € Ny

(XT) = ;g;{ X -RXTXRXy, neven, i€ %N \N

4]

(2.92)

and similarly for YQLE/.

We will use the developed notation to describe the pattern in Table 2.1
in terms of ITFPC’s. Assume Ay > A, or odd dimension. Then the regular
position 0 in the pattern is the highest weight go—component of VA. Compar-
ing the weights, this obviously corresponds to the ITFP-component of VA of

162



the form Yy --- Yy or Yy - YY) where the sign applies in the even
dimensional case for Y and for Y’s of the tensor valence n’ = 4. Using the
abbreviations (2.92), this is exactly the position 0 in Table 2.2.

It is not difficult to translate the whole Table 2.1 (for regular patterns)
into the symbolism of ITFPC’s. This describes not only the bundles V%,
w € WP in Table 2.1 but also the inclusion V¥4 = E'RKVYA — El @ VA, On

the representation level, we have
YR 4 1] — T, Z0: Ei] — T, X' Efi — 1] — T
YE/\[H ‘—>]EA, XIEA‘%EA
using (1.44) and (1.45) for tensor cases and (1.33) for spinors. From this, we

easily see the form of (Y)*  (Z%)* and (X*)*. Using Dynkin diagrams, these

are the inclusions

o0 o0
; 0 0 0 0 0 00 0 0 0
(Yz)k: ko---o—é—o---fo\/\ <—>o—o---o—g—o---o<
00 50
j ko oko o 0 00 koo o
(Zl)k: X0 -+ 0-0=0- - =0 %o—o---ofo—o---—o< (2.93)
00 %0
00 00
ink . —2k 0 0k O (4 00 0k O OO/
(X")¥: %—=0--.0-0-0----q < 0-0:::0-0-0---
N\ \
00 50

for 1 <i < n’—2, neven and similarly for remaining cases, see Table 1.2.
Here k is the coefficient over the ith node in all diagrams with the exception of

the right hand side of (Z%)*. Using (2.93), we easily obtain more complicated
ITFPC’s, e.g.

idp: X (Zl)/\o e (Zi)Arl(Yi>A¢ o (Ynlil)Afn’—l (YZ_I)A;” :
At A1+ _ ok
72;1 /2)0, ce ﬁzo_2 Aigl At An/fg/o = N EZ 2 Ao Ay An/,2/ '

O— ¢ = ¢ \ ) O—O-=+ + -+ o\ ]

OA
2 0As

for 1 <i < n' —2 and n even. This shows the correspondence of the ith

positions, 1 < ¢ < n’ — 2 in Tables 2.1 and 2.2. One can similarly check
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this correspondence for all positions. Summarising, Table 2.2 describes the

regular pattern in terms of ITFP—projecting parts.

Now we are ready to choose an appropriate splitting operator DSplit}(m)
for Epy{r1,...,rw}olw] in the pattern. In regular cases, Table 2.2 shows
exactly t, m and b for the gBGG splitting operator. In all cases, we have to
verify that the chosen parameters satisfy s(t, m) > 0, see Theorem 2.77. We
will follow the discussion in 2.2.1. We will also use (2.91) and the notation

form Table (1.3).

Even dimensional case. We show the detailed computation only for the
first half of the pattern (with the exception of n'y), the rest is analogous.
Results for the whole pattern are in Table 2.3. Recall A/, | = min{A;, Ay}
and A}, = 2|A; — Ay|. Also remind w € Z due to (1.61), page 67.

The position 0 in Table 2.2 shows b = m = 0and t = A" 2+A/, | +A!, =
w — s. Here the first equality follows from the form of position 0 in Table
2.2 and the second one from Ag = w — s — r, see 2.2.1. Note ¢t > 0 because
w — s > r according to Table 2.3. The scalar s(t,m) is equal either to
w—s5—t+s;+1orw—s—t+7,see (2.81). Hence s(t,0) = s(w—s5,0) >0
in both cases.

In the regular case i, 1 <i <n/—2, we have 7 —i <w—s <7 —i—1

and the corresponding I'TFP—component is of the form
idg: X (Zl)Ao .. (Zi)Ai—1(Yz‘)Ai . (Yn’72)1_xn/_2 (Ynl*l)A,’L/*l(Y:{)A;’. (2'94>

This means that t = A’ + A/, | + A’, and m = r —t — 1. Obviously
AN, =ry_yand A/, = r,. Using the relation between A’s and 7’s from

2.2.1, and since A; = w — s — 7! 4 i = 0; — 1, we obtain
t=F" N =w—s+i=t,.
Now let us consider the scalar s(t,m). If ¢ > % the either s(t,m) = w —
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s—t+sy +1lors(t,m)=w—s—t+ 7 and sy =i from (2.94). Thus
s(w—s+i,m) >0. Ift =0Am > 1then s(0,m) =n+w—|s] —sm+m—1
where, in our case, m = 2 and w—s = —t. The last two equalities follow from,
respectively, (2.94) and the last display. Also note ¢ = 0 requires r,,, = 0 i.e.
s = |s]. Hence s(t,m) =s(0,r —1)=n—i—s5+1>0.

Let us briefly comment the regular position n’—1. Weput ¢ := A/, | +A/,
according to Table 2.2. That is,

- - 1 - _ 1 - - -
t= miH{Al,Ag} + §|A1 - AQ‘ = 5 (min{Al, AQ} + max{Al,Ag}) .

We have shown in 2.2.1 that min{A;, Ay} = 0,1 — 1 and max{A;, Ay} =
of,_y — 1. Now it follows from (2.91) and the last display that t = w — s +
n' —1 =t,_1. A similar discussion as in the previous paragraph shows that
s(t,m) > 0.

Now let us focus on the singular positions ¢ — 1,4 for 1 <i < n’—1. This
means w — s = 7 — ¢ according to Table 2.3. Although we cannot use Table

2.2, we can put directly

As above, this means s; > ¢, but now m = 1. Thus in the case t > %, we
obtain s(t,m) > 0 analogously as in the regular case i, 1 < i < n/ — 2. If
t = 0 then s(t,m) = s(0,7) = n —1i— sz > 0 because i < n’ — 1. The
resulting weight is w’ = (w — s) —t = —i.

The regular case on the position nj yields similar results. The range for
the weight is —n' < w —s < rp —n' — 1 and A; > A, due to the sign of
Ecy{r1,...,mw}olw]. This is the “upper” case in the middle in Table 2.2 i.e.
the irreducible projecting part

idEf X (Zl)Ao .. (Z”’*l)/\n/—z (Zi)[b (Y"_"ﬁz_’)%([\l*]\g)' (2'95>
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This means t = %(/_\1 —Ay) and m =r —t — 1. Since ry = %(/_\1 +Ag) +1

and Ay =w — s+ 7y +n' — 1, see 2.2.1, we obtain
t=MAN—rp+l=w—s+n =ty.

From this we get t < 7, because t = r,, would mean w — s = r, —n’
and the interval for w — s in Table 2.3 would be empty. (This is actually
obvious for any position corresponding to the degree n’.) Hence if ¢ > 1 then
s(t,m) = w—s—t+sy+1 and, in our case, s(w—s+n',m) = 1> 0 because
sy =n'. Ift =5 then t +m < r hence s(3,m) =w—s+3+n' >3 > 0.
Finally, if t = 0 Am > 1 then m = 2 and w = s — n’ (in particular, s € Z)
hence s(0,r — 1) =n' — s5 + 1> 0.

Concerning singular positions in the first half of the pattern, it remains
to discuss ' — 1,n’ i.e. w — s = r,y —n’ for r,y > 0. (There are no operators
in the pattern on the position “middle” so we do not need any splitting in
this case.) Now the usual choice for singular cases t := t,, and m = r —t
yields t = r,» whence s(r,,,m) = 0. We put

T —1l=w—s+n—-1=t,—1 rp,>1
m=1r—1t where t=

_ 1
O Tnt = 5-
(Note r —t € Ng). If ¢ > 1 we obtain s(t,y — 1,m) > 0 similarly as in the
regular case. If £ = 0 and m = 1 then s(t,m) = n+w—[s] — sz +m—1 where
1

m=1,|s] =s—1andw—s=3—n'. Hence s(0,7) = n+(w—s)+1—s =

n—s +1>0.

Remark. Let us remind the importance of the top operator 7:’, see Remark
2.1.5. Without this, the stronger condition w — s —t + 5 > 0 would be
required for all regular cases nf.. (This is not satisfied.) Now the stronger
condition affects only the singular case, where we have more freedom in the

choice of a splitting.
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0dd dimensional case. We shall show the detailed computation only for
the first half of the pattern, the rest is analogous. Remind w € Z for regular
and singular positions and w € %Z \ Z for nonstandard ones, see 1.3.3. The
discussion below is analogous to the even dimensional case where, roughly
speaking, the coefficient A over the last node now plays the role of |A; — Ay|.

In the case of the regular and nonstandard positions 0, we put t := ¢,
and t := tg + %, respectively, and m = 0. Here, recall, t = w — s. Then
s(w—15,0) > 0 and s(w — s+ 3,0) > 0 for ¢ > 5 which follows immediately
from (2.81).

Let us consider the regular and nonstandard positions ¢, 1 < i < n’ — 1.

We put
t=r" 4y N, =w—s+i=t; and m:=r—t+1

in the regular cases and

—_

- 1 1
t::fz+1+Ai+§:w_5+¢+§:ti+_ and m:=r—t

in the nonstandard ones. Therefore 0 < ¢t < 7 (recall r; = Ay + A; + 1

]

says A; < r; — %) which means s; < ¢. Now if t > % then s(t,m) > 0
because w — s —t € {—i — 1, —i} (which follows from last two displays)
and i« < n’ — 1. Now suppose t = 0 Am > 1. Then m € {1,2} hence
s(t,m)=s(0,m)=n+w—|s] —sm+m—1>n+w—s—s >0 where
the last inequality follows from w — s € {—i — %, —i}. The resulting weight
is 0 for the regular and —i — % for the nonstandard positions.

It remains to discuss regular and nonstandard positions n’. They cor-
respond to the interval w — s € (—n/;ry —n' — 1) according to Table 2.4.
Moreover we have shown in 2.2.1 that A = 2(w — s +n') = 0o — 1 and
27 = 2A,_1 + A + 2. We shall discuss both cases separately.

In the case of regular position n’, we put ¢ := %A =w—s+n =ty and

m :=r—t—1. Then obviously ¢ < r,s henceif ¢t > 1 then s(t, m) = w—s—t+%2
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according to (2.81). In our case, w — s —t = —n/ thus s(t,,m) = 3 > 0.
The parameters in the case t = 0 Am > 1 satisfy w — s = —n/ (in particular
se€N)and m =2. Thus s(0,7r —1)=n—n"—sy+1>0.

For the nonstandard position n’, we have to modify a bit the previous

choice. We put

w—s+n —F=ty—3 w—s+n >3
m=r—t where t=

0 w—s+n" =0.
It follows from the interval for w — s that ¢ < r,,. Hence if ¢ > % then
s(t,m) =w—s—t+2=1>0because w —s —t = —n' + 1 according
to the last display. Finally, let us consider the case t = 0 A m > 1. Then
s(t,m)=s0,r)=n+w—|s] —s1+1—-1>n+w—s—s > 1 because

w—s € {—n',1 —n'} according to the last display.

2.2.3. Pattern, Young symmetries and parameters for the split-
ting: summary. All results from this section are summarised in Tables 2.3
(for n even) and 2.4 (for n odd). The input for these tables is the bundle
Ey{ri,...,rw}o[w] which yields the parameters w, s, r, ¢;, 7 and 7 ac-
cording to 1.1.3 and and the parameters in (2.91). The tables are organised
as follows.

The first three columns identify the position in the pattern. Regular
positions (type R) are degrees of the cohomology i € {0,...,n} and two
components of the degree n’ in even dimensions are distinguished according
to the form of the projecting part (see Table 2.2) or, equivalently, according
to the conformal weight w. Singular positions (type S) and nonstandard
positions (type NS) are defined in 1.3.3.

The next three columns show numbers of applications of the top, middle
and bottom operators, i.e. the parameters of DSplit;(m), see 2.1.7. This
yields the gBGG splitting operator in regular cases. The last column shows
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Pattern and E{ri,.

T bolw], moodd, w €

/ type R

%Z \Z type NS

Weight Pattern Splitting
w—S € Position ﬁype t ‘ m ‘ b ‘ w'
Y R | to 0
(r —3;00) 0 NS | fo+1 0 0 _%
{r—1} 0,1 S
{7 — i} i—1i | S
o : o . R t; |r—t—1 0
(Firl—i—L. 7 —1) i ‘1 0 1
2 2 NS | ti+1| r—t —i—1
{rp —n'} n—1,n" | S
I n . /_l / R tn/ T_t_l O
Catlimw—n'=3) " NS [ty—g| r—t 0 n + 3
N _ g1 _n / R r—1 0
wh=1{3 -3} " Ns | Y 7] 0 n' + 3
{—5} n,n"+1 | S
n R r—1 —1
n R —b—1| —tu -1
Cro—n'tgi=g=b w1 gl 0T T
{—ry —n'} n+1,n+2| S
(—F —n—+i—3; _ R r—b—1| —t,; | —n+2i
R 1 N 1 T A s | A, Wi
7 —n+1i} n—i,n—i+l| S
{-r—n+1} n—1,n | S
PO 1 R —tn —n
(—o0;—r—n+3) n Ng | O 0 AP

Table 2.4: Parameters for gBGG splitting operators (see 2.2.3)

169




the conformal weight after application of DSplit;(m). (This has to be zero
for regular cases in the first half of the pattern.) The last four columns are
sometimes omitted. These cases do not admit any nontrivial operator thus
we do not need any splitting for them.

Let us note we used the sign + in 2.2.1 and 2.2.2 for even dimensional
cases. But this is not an essential point. The opposite sign corresponds to
the same position in the pattern in Table 2.1 with interchanged A; and As.

We assumed the complex setting up to now. But in the case of the
odd dimensional real pattern and an even dimensional real pattern with two
positions ny and n'y in the middle, we can use all the results from Tables 2.3
and 2.4. In particular, DSpliti(m) is a splitting operator for the parameters
b, m and t from the Tables. If the complex and real patterns are different
then the weight of the pattern A satisfies VA = E{ry, - , 71, 0}o[w] and
n even, see page 67. That is, A; = Ay. Then a bundle E{... ry}o[w'] on
the position ny or n} in this complex pattern satisfies w — s = —n’. (This
follows from the corresponding discussion in 2.2.1 after a short computation.)
Then the parameters from Table 2.3 corresponding to the positions n’y and
ny coincide and can be applied to the real pattern with one position n’ in

the middle.

2.2.4 Example. We shall demonstrate the structure of the pattern on the
space E(k,l)o[w]. This can have two irreducible components for & = % but
we do not need to distinguish them: they appear on the same position (al-
though in different patterns) and also the numbers of top, middle and bottom
operators are the same for both of them. (If the real and complex cases are
different, the two complex position ny and n} coincide.) The parameters
provided by the Young diagram (k,l) are rpy =r;=1and r; =0, #i # k

in the case | < k, or r, = 2 and r; = 0, ¢ # k in the case k = [. Further
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Identification of £ )(k,l)o[w], n' > k >1>1 in the pattern

Regular positions: w € Z, n odd or even

Weight Position Splitting
t m| b w’
w>k+1+4+2 0 —wy | 0 0 0
w=k+1 Ly 1 0 0 0
w=1 kv 0 1 0 0
w=2k+1l-—n (n—k)xy| 0 1 0 2k —n
w=k+2l—-n-1 (n=0xy| 0 0 1 2l —n
w<k+l—m-—2 n 0 0 |wi—n -n
where i(y) 1= ;o lx) = , Wy =k+Il—w
ny, 1= n'y,
Singular positions i — 1,7 : w,w’ € Z, n even
Nonstandard positions i : w,w’ € %Z \ Z, n odd
Weight Position Splitting
i t m| b w’
w € (k+1+3,00), nodd 0 [—wg ]| O 0 -1
we (k+3k+1+1) for woul 42| 2 ol o ior—i—1
(1, [w]) # (0,0 +2)
(1, [w]) = (0,0 +2) n' 1 1 0 |—n'+1or —n'+3
wE I+ 5,k +3) for lww] +1] 1 | 1| 0 —ior —i—3
((, Jw]) # (0,0 +1)
(Lw)= (0,7 + 1), nodd n’ 0 2 0 |-n'+1or—n'+3
ek+l-—n'+31-01 |wu 0 2] 2 —ior —i—1

where wy; = k + [ — w and the second half of the pattern is omitted

Table 2.5: Tables 2.3 and 2.4 for £)(k,l)o[w] (see Example 2.2.4)
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s =k-+ [ and r = 2. Therefore

~ ~ ~ ~ ~ ~nn!
= =f=2 fl=...=fk =1 Pl =...= =

Since the regular position i > 0 (or also n — i) requires 7! < 7 we see
immediately the only possible regular positions are i € {0,1,k,n—k,n—1,n}.
In the case of singular and non—standard positions, we need to consider only
the first half of the pattern as these positions in the second half admit no
nontrivial operator in the flat case. The results are summarised in Table 2.5.

The parameters therein have the same meaning as in Tables 2.3 and 2.4.

172



Chapter 3

Applications

We will present two applications of the technology developed until now. The
first one is a universal and algorithmic construction of curved analogues of
the operators from the pattern, see 1.3.5, page 70. This will require most of
the calculus developed in Section 2.1. The second application concerns the
conformal Killing equation on forms. This demonstrate a range of possible

further applications, pursued in more detail in one particular case.

3.1 Invariant operators on irreducible spaces

Following 1.3.6, we use the operators DSplit, d, [J and their formal adjoints
to construct tractor formulae of curved analogues of all strongly invariant
flat operators between irreducible bundles which are known to exist. The
main point will be to establish the non-triviality of the operators defined by
these formulae. Also, our aim is to avoid any additional projections (sym-
metrizations, taking trace-free parts etc.) on the tractor level. This makes
the process a bit more complicated but on the other hand it is useful if one

needs to transform tractor formulae to tensor ones. Similarly as in Section
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2.2, we shall henceforth assume the complex setting. We will comment upon
the real case briefly in 3.1.5.

We shall start with an example indicating our construction covers stan-
dard operators not treated in [14] and also that DSplit and the splitting from

[20] are different in the curved case.

3.1.1 Example. The operator S,/ for n odd. We shall describe the curved
translation explicitly on the space £(n’,n’)o[n'+ 1] for dimensions n = 2n/+1.
This bundle appears on the standard pattern on the position n’ and we obtain

the corresponding operator
S €M, n)o[n +1] — E(n',n' + 1)o[n' — 1] = E(n',n')o[n’ — 2]

from d as follows. (The target space of S, follows from Table 2.1.) Following
Table 2.4, we apply T = DSplit*(0) first. Using the formula (2.55), the result
is

Tyoa : €M, )o[n' +1] — a0 an'pn’ [0]

TAOZ-fab = 6YAO_Zfab _I_ 22222 |:3va0 fab _n,gaObl foapl.):| _I_ 2n,WAOA12fopab
+ X0 g{—e‘ [A+ (1= n)P] fan + 20 [3Var VP fran + 2V VP [ ]

+ 60 [3P,7 frap + 2V VP foi ] — 3(10)2 g [VPVY + 3PP fpéqr.}

for fap € E(n/,n')o[n' +1], a =a", b =b" where we skew over [b'b] on the

right hand side. Now we can apply the exterior derivative d. After a tedious
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computation we obtain the result

VoL pop fab= Z%ZQQ%O [371/(”’ - 1)Ca1a2pq pgib T 6(”/)2Ca1p b? paqb]
+ 250 Ga00Tar Pai W 4041590101 Pai
+ X0 { 600"+ 1) | Voo (V'Y g + P fagn) = Byt Vi faps]|
60 [ Vo P, frats + vt V¥ i + Vo B foy)
+ Sn'(n’ - 1)Vb0 Ca1a2qupqéb + 6(n/)2vb0 Oalp bcl]fpéqb

2002 Coppa Vi + Gt Vi |

where we skew over [6°b], and where ¢, p € E v [0/ —3] and ¢ € Equpyw [0/ —
3]. The target space of S, is the Cartan component of the bottom slot, see
Table 2.2. Contrary to the gBGG splitting operator from [20], the projection
to this component is not invariant. This follows from the form of the Z—
slot and (1.47). That is, the trace part of the Z-slot affects the conformal
invariance of projection to the target space of S,,;. However, the double trace
part of the Z-slot and also the W-slot do not, see (1.47). Therefore we do
not need to know the sections ¢ and ¢. (Note they are only curvature terms.)

We have shown DSplit! differs from the splitting from [20]. We use formal

adjoints from Example 2.1.17 to solve this problem. This is the operator
T*AOI: = T*AOI: : g[AOAk]bl [’LU/] — 5(]45, l)o[w/ + k — 1]

given by the formula (2.88), page (148) where k£ > [. To satisfy the lat-
ter condition, we apply the volume form to V 7,03 faq first. This yields
S v S = Eaoan e [—1] where d = d”. Therefore w' = —1
and k = [ = n/ in the formula (2.88) for 7. From this it follows that
1, co,d,d # 0 in Example 2.1.17. Therefore the result

S 1= TS, "V 0 Tenl foa € E(n', 0ol — 2]
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is nonvanishing in the flat case, cf. (2.88). Since this is always invariant, the

last display yields a tractor formula for S, .

Before we proceed to the formulae in the general case, let us comment
upon the (non)irreducibility of V' = Ey{ry, -+ ,rp}o[w]. Actually, all the
formulae we will consider below act between spaces ® : V — V' where
V' is of the similar form as V. (That is, expressed via Young symmetries.)
Denoting the Cartan components of both sides by V¥ C V and V¥ C V/,

the operator (formula) ® yields the operator
AR VL VN Vi

from the pattern, cf. (1.11) and (1.12). But we do not need the inclusion
and projection above for the construction of ®. So henceforth we consider
V = Euy{ri, - ,rw}olw] as the source space. The position (i.e. the position

of V¥) in the pattern is described in Tables 2.3 and 2.4

3.1.2. Identification of operators via Young symmetries. The op-
erators from the pattern are uniquely determined by the source and target

spaces in the flat case. That is, the notation
1 — 1+ 1 or i+tl—n—1—1,n—1

determines the operator uniquely (for a given pattern). In this sense, all
operators are identified in patterns in Tables 2.1 and 2.2. However, since
we prefer to consider the source space in the form V = £ y{r1, - ,rw }olw],
we would like to know the target space in a similar form. Also, we will
determine the order from parameters of V. ([24] shows how to do this from
Table 2.1. The order is given by the difference of the action of the grading
element (see (1.3)) on the source and target representations. It turns out this

difference is always equal to one of coefficients over the nodes, increased by
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Short operators on &) {r,...,ry}olw], w € Z

Operator Order Signs

SO i — i 1y Ai+1 i£2-1

0<i<n 1 0; = same
St min {A;, A} +1 i=2-1

So : Ey{ri,ra, - rw olw] — Eay{r + 00,72, - ., o Folw]
SZ-(Y) €, i, - T folw] —
— E{rt, -1 — 05, Tig1 + 04y o T Jo[w], i >0

Formula: f4) — [DSplitt_oiH(m—koi—l)* o d o DSplit'(m) f] (+)

Swoain' =1 oy = max {Ay, Ay} +1 different
57)571 : 5(i){7”17 oy T o[w] —
— :F{Tl’ s -1 = O, T On’—l}O[w — QTnI]

Formula: fi) — [(SY)*f]+

S n’nadn’ +1 o=A+1 same
Spr 2 E{r1, .o tolw] — E{r1, ..o 1w Folw — 0]

Formula: f +— DSplit'(m)* o € o d o DSplit'(m) f

where the isomorphism € : £¥*+! — £ is induced by the volume form e

S}lf’ : n,y' e TL/ -+ 1 0:/—1 = max {/_le /_\2} + 1 different
SZ; . g:t{'r'l, e 77'”/}0[’(1]] JEEEEEN
— S(ZF){T17 <oy /=1 — Op/—1, Tt + Onlfl}o[w — 27“n/]

Formula: fi — [DSplitt‘on'—l—l(m+0n/,1—i—1)* od*o DSplitt(m) f] (F)

Sn)fi_lzn—z'—l(x)—>n—z' . Ai+1 i#5-1
0<i<n 1 of = o | same
== min {A;, A} +1 i=3-1
Sn—1: Em{rire, . rwtolw] — Ey{ri — of, o, .., Folw — 20§
57(17271 cEw{r, i, T folw] —
— Ew{r, i F 05 i — 0f, L T folw — 207, > 0

Formula: f) — [(Sz'(Y))*f} )

Table 3.1: Formulae for short operators (see 3.1.5)
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Long operators on & {ry,..., 7y }o[w]

Z n even
w e
%Z\Z n odd
Operator Order Signs
Ly:0—n, nodd
Li:i—mn—i1<i<[2] o=2w—s)+n  different
Li:i—1,i —n—in—i+1,1<i<n’

Emy{ri, - rwtolw] — Epy{ri, ... rwtol—w + 25 — 1]

Formulae:
Li(fx)) = [DSplit'(m') O DSplit'(m') f] ), i <n' =1
Ly (f)) = [DSplit'(m/)*ODSplit' (m') f] (), w—s > 152

Ly (f)) = [DSplit'(m')* PDSplit' (m') f] (), w—s=12

e positions are nonstandard for n odd and regular or singular for n even

e m' = m + 1 on regular positions and m’ = m in remaining cases

Table 3.2: Formulae for long operators (see 3.1.5)
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one.) We will discuss only the first half of the pattern in detail, the second
one is analogous. All results are summarised in Tables 3.1 and 3.2. Recall the
quantities (2.91); we will use them often in the Tables and throughout this
section. In the discussion below, V = Ey{r1, -+ ,rw}o[w], will be always

the source space.

Short operators. These are operators S; and SY, |, SX | and SY,, S¥ in
the middle diamond for n even. Using the pattern in Table 2.1, the order of
operators in the first half of the pattern is A; + 1 for S;, min{A;, A;} + 1 for
SY, | and max{A;, Ay} + 1 for S¥ . The orders in the second half follow
via the duality.

(a) i = 0: We can use the similar arguments as in the case (b) below,
Ao = 0g — 1 plays the role of A; therein.

(b) 1 <4 < [251] —1: The target space of this operator is on the position
1+ 1. Comparing the projecting parts in patterns in Table 2.2 on positions
1 and 7 + 1, we see two differences: the tensor part is changed from idg: to
idgi+1 and (Y?)%i is replaced by (Z**1)%. This does not change the conformal

weight which follows from

YR A1) — T, Z7 B i 41 — T, X Efi— 1] — T 51)
3.1
WL ET i —1] — T, Y :E\[l] — Ez, X : E\ — E\.
Considering both these changes and since A; = 0, — 1 (see 2.2.1), we obtain

the result
Si g(i){rlv e 77"n'}0[w] - 5(1){7’1; ey Ty — 04, T T 04, - 7Tn’}0[w]

of the order o; where both signs in the even dimensional case are the same.
(The latter note follows from Table 2.2.)

(c) SY_| for n even: We can use the same construction as in (b) if we
replace A; by A/, | = min{A;, Ay}, see Table 2.2. Using min{A;, Ay} =
op—1 — 1 from 2.2.1, the result in Table 3.1 follows.
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(d) S¥_, for n even: Comparing the positions n’—1 and ny in the pattern
in Table 2.2, we observe that beside the tensor part, there are two differences:
(Y”Ll)A;ﬂ—l is replaced by (ZT_L/)A;L’—l and (Y?)*w by (X*)%. According
to (3.1), only the latter changes the conformal weight and the difference
is 207, = |A; — Ay| = max{A;, Ay} — min{A;, Ay}, see 2.2.2. We have
shown in 2.2.1 that min{A;, Ay} = 0,1 — 1 and max{A;, Ay} = o5, | — 1.
Therefore 2A!, = o}, | — 0o,—1 = 2r, according to (2.91). The order is
max{A;, Ay} + 1 = 0%, _,. The signs are different, see Table 2.2.

(e) SY, for n even: We can treat S), in a similar way as S7_,from (d).
(Actually, SY, is the formal adjoint of SX_|.) The order is max{A;, Ay} +
1 = o;,_; according to 2.2.1 where A, > A, Tt follows from Table 2.2 and
(3.1) that the tractor part lowers the conformal weight by 2A/, | +2A!, =
min{A;, Ao} + max{A;, Ay} = 05, — 01 — 2 = 2r,y — 2. Using B! ~
E"~1[—2], the resulting change of the weight is 2r,,. The change of the
parameters 7,,_; and r, is determined by A}, ; +1 = min{A;, Ay} +1 =
—0p—1. (“417 here is due to the tensor part.)

(f) S for n even: Looking at Table 2.1, we see the sign + appears on the
middle position of the lower homogenity n'y for A; < Ay. Hence we obtain
the order min{A, Ao} +1=A; +1=0%_,. Also r,y_; and 7, are changed,
according to Table 2.2, by A/, | +1 = min{A;, Ay} + 1. The conformal
weight is lowered by 2min{A;, Ay} = 20%, , — 2 due to the tractor part and
by 2 due to the isomorphism E™*1 = E7'—1[-2].

(g) S, for n odd: The order is A + 1 = o0 according to 2.2.1. Using Table
2.2 together with (3.1) and the isomorphism €%+ ~ £"'[—1], the conformal
weight is lowered by 2(%/_\) + 1 = o. (Parameters r,...,7, of V are not

changed.)

Long operators. We observe from Table 2.1 that the difference between
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the source and target spaces is in the coefficient over the cross and that the
coefficients over the “legs” are interchanged for n even. Thus the signs are
different. The difference between coefficients over the cross is 2A" —2i+A+n.
The analysis of the pattern from 2.2.1 for the degree > 1 shows w — s —r =
—A"! — i — 1 and since clearly 2r = 2A + A + 2, we get the difference
between the coefficients over the cross (i.e. the order of the operator) is
2A" — 2+ A +n =2(w— s) +n = o. The data for the zero degree in 2.2.1
are slightly different but the result is the same. (Note o is also the difference
between conformal weights of the source and target spaces.) Hence the result

in Table 3.2 follows.

Remark. Let us emphasise that we have talked about orders - not formal
orders — above. Table 2.1 follows representation theory hence yields actual

orders of the operators.

Now we shall discuss explicit formulae for the curved analogues. The
source space space will be always V = £ ){r1, - ,rw}o[w] and the first
step in the construction of the operator will be DSplit;(m) for t, m and b
from Tables 2.3 and 2.4. Then we apply d, Uor or P see 1.3.6 and try to
obtain the resulting operator in one of projecting parts of d o DSpliti(m),
[a 0 DSplity(m) or [P o DSpliti(m). This may not be possible in the curved
case, cf. Example 3.1.1. The unique nontrivial TFP—projecting part prf(m)
of DSplitt(m) is described in Theorem 2.1.7, page 136. It is always prf(m)
or pry(m) because b = 0 or t = 0 in Tables 2.3 and 2.4.

3.1.3. Formulae for short operators. Let us consider a short operator
SV — V' from the pattern where both V' and V"’ are given via Young sym-
metries as in Table 3.1. Following Tables 2.3 and 2.4, we have the splitting

operators
DSplity(m) :V — ' @ &y and DSplitt,(m') : V' — EF @ &y
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where 2l is given by (2.80) and Eg is a TFP-bundle. The splitting operators
DSplitt(m) and DSplit!,(m’) correspond to the positions of V and V' in the
pattern and their (unique nontrivial) TFP—projecting parts are pri(m) and

pri,(m’), respectively. It follows from the gBGG theory [20] that
S = pri,(m')*[d o DSplitt(m)]

on the Cartan component V¥ of V in the flat case. Hence S is non-vanishing
on V¥, Also let us emphasise that by this construction we obtain formulae
for short operators with the formal order equal the actual one. This follows
from Table 2.2 and the difference between homogenities of the source and
target positions. This difference shows that the formal order is equal to a
coefficient of the highest weight A increased by one. That is, the formal order
is equal to the actual order. (Cf. Remark 3.1.2.)

The projection (prf,(m'))* is provided by pri,(m/)t = pr¥(m’) in the
sense of (1.56). It may not be invariant in the curved case so will use the
formal adjoint DSplitf,/ (m/)* instead. This is always invariant but we have
to discuss carefully the non-triviality now. First, DSplit% (m/)* is a multiple
of identity on pri,(m')(V') C £ ® &y, see Proposition 2.1.8, page 143.
Thus we have to show this multiple is nonzero. Second, beside elements of
pri(m')(V') C E7 @ Ey, DSplitl (m')* depends only on pr(f) € £ @ &y
where pr € TFPC(Ey) such that h(pr) > h(prh(m’)). (Here f is a section

of the source space of pr.) Both these observations follow from properties of

formal adjoints. Summarising, we need to show that

1. DSplit’ (m')* o prl(m’) is a nonzero multiple of identity and
2. if pr € TFPC(Ey) such that h(pr) > h(pri,(m')) then (3.2)
pr*[d o DSpliti(m)] vanishes in the flat case.

We will verify these properties only for the operators in the first half of the
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pattern (with one exception, see below). This is sufficient as their formal

adjoints provide formulae for the remaining ones.

(a) We shall start with the short operator S; : i — i+ 1 where 0 < i <
n’ — 1 with the convention that if n is even then S,/_; denotes the operator
SY, | and n' denotes the position n) in this paragraph. This will simplify
the notation. Recall SY, , is the operator of the lower order from the couple
SY, ,and S ..

Obviously, the parameters of DSplit on positions ¢ and ¢ 4 1 satisfy b =
b = 0. Moreover, comparing positions i and 7 + 1 in Table 2.2 we see that
t'=t—N, and m" = m + A; where A,y_; := A],_, for n even. Hence we

obtain the formula
S; == DSplity(m')* o d o DSplit'(m)

where t' =t —0; + 1 and m’ = m + o; — 1 because A; = 0; — 1 according to
2.2.1. It remains to verify (3.2).

1. Proposition 2.1.8 shows a way how to establish the first property: it
is sufficient to check that DSplit,(m') is a splitting operator on (V')*[—n].
Recall

if DSplit* : £ @ Ey — V' then DSplit : (V')*[-n] — (€ @ Ey)*[—n]

with omitted parameters ¢ and m/, see details in 2.1.8. Using the form of V'

in Table 3.1 and (1.14), we get
(V’)*[_n] = S(i){'rl, ey Ty — 04, Tyl -+ Ojy - .. arn’}o[wl]

where w' = —w + 2s’ — n and s’ = s + o; denotes the number of tensor
indices of V', increase by 1 if r,» ¢ N. (We do not need to discuss the sign.)
According to Theorem 2.1.7, we need to check s(0,m') > 0 for DSplity(m’)
applied to (V')*[—n]. Looking at the form of s(0,m’) in (2.81), we need to
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know, beside s’ and w', also m' and s/, i.e. parameters corresponding to
m and sz from (2.81) but related to the last display. Obviously the Young
diagrams for V and V' have the same number of columns (namely |r|) thus

m' = |r] —m/+ 1. Using m’ = m + o; — 1, we obtain
m=rl—(m+o,—1)+1=m—0;+1=|t+2] —0;+ 1. (3.3)

Properties of s, follow from Table 2.2. The positions ¢ and ¢ + 1 in this

Table, considered as TFP—components, are
. (Zi)Ai,lidEi (YZ)AZ (Yi+1)Ai+1 N (Zi)Ai,lidEiH (Zi—i-l)Ai (Yi+1)/\i+1 .

where we displayed only how these positions differ. Now recall, by definition,
m’ indicates the longest column of the Young diagram — on the left in the
previous display — to which we apply the middle operator in DSplit, (m’),
and s, is the length of this column. Hence either s, =i+ 1 (for A; > 0)
or s, < i (for A; = 0) and we conclude s, < i+ 1. Using this and (3.3),

we obtain from (2.81) the result

s(0,m') = n+w —|s|—s., +m -1
= n+w —[s|—s., +(|t] —0;+3)—1

= —w+s—s, +t+2=i—s_,+2>1

where we have also used —| ¢’ |+|t| = —s'+t, s’ = s+0; and w’' = —w+25'—n
in the third equality and ¢ = w — s + ¢ in the last equality.

2. Assume pr € TFPC(Ey) such that h(pr) > h(pri(m)) and E :=
pr*[d o DSplit'(m)] # 0 in the flat case. Then the formula E defines an
operator from the pattern with the source space on the position ¢, or the
identity. Let us suppose E is not identity first and try to vary the dimension
n. This does not change t, m and the position of V' hence E is given by

the same formula for all dimensions. The order of the long operator (on any
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position) is 2(w—s)+n which depends on n. Therefore FE is a short operator.
But this is not possible as h(pr) > h(prt(m)) implies that order of E is lower
then the order of S;. (Recall if i = n’ — 1 then the second short operator has
higher (or equal) order than S;.) More precisely, we can use this argument
only for the formal order of F, see 1.2.6. But the actual order of F is the
same or even lower then the formal one. (We have mentioned above both
orders agree for our formula of S;.)

Finally, suppose F is a multiple of identity. This requires h(pr) =
h(prt(m)) + 1 because d is of the first order. Recall the form of the TFP-
projecting part of DSplit'(m)f, f € V. It is

t p— al DY at at+2 .« o e aT
prim)f =Y ony Yiaoa)Za,l,  Za, faranans-ar

for t € Ny with the free form index a;;. (The case t ¢ Ny is analogous.)
The only way how can d increase the homogenity is to apply the derivative

to ZaAjj, t+2 < j <r, and consider the Y-term on the right hand side of

VoZy =—(k+ 1)5;”YA};{7_ — (k+ 1)Pp“fXA;Z,

see (1.49). But a; 1 = a;%}' is the “longest” form index in the Young subdi-
agram (41, - ,5[y|) hence the result requires skewing over s, + 1 indices

in this subdiagram which vanishes.

(b) SY, : nfy — n’ +1, n even. We shall follow (b) where we replace
d by d*. Tt follows from Table 2.2 that in the flat case, SY, is given by the
projection pry (m/)*[d* DSplit'(m)] where m’ =m — A/, ;and ¢/ =t+ A/, ;.

Hence in the curved case we obtain the formula
SY .= DSplit" (m')* o d o DSplit'(m).

Since A, | = min{A;, Ay} = —0,y_; — 1 according to 2.2.1 (note this mini-
mum is just Ay in 2.2.1), wesee m’ =m + oy +1land t/ =t — o1 — 1.

Now we verify (3.2).
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1. Following (a) and using similar notation as therein, we are going to

show DSplit! (m’) is a splitting operator on
V') [=n] = Exn{r, - w1 — 01,70 + 01 Jo[W] (3.4)

where w' = —(w — 2ry) + 28’ — n and ¢ = s+ 0,1 corresponds to the
number of indices in the previous display similarly as in (a). (Cf. Table 3.1
for the term w —2r,,.) Clearly w’ = w using 0,,_1 = w—s—r, +n'. Further,

using ' +t' =s+t—1andt =t, =w — s+ n/, we obtain
w—§—t=w—-s—t+1=-n"4+1 and t' =t—o0y_1—1=1r, —1.

We need to show s(t',m') > 0 for the space (3.4). According to (2.81),
there are three possibilities. First, if ¢’ > 1 then s(t', m’) = w'—s'—t'+s|,, +1
where primes indicate parameters related to (3.4). It follows from Table 2.2,
in particular, because ¢ = Aj,_; + A}, therein, that s, € {n’ — 1,n'}.
Thus s(¢’,m’) > 0 using the last display. Second, if ¢’ = % then s(t',m’) =
w' — 5" —t' 4+ 4 +1 > 0 using also the previous display. Third, if ¢ = 0 and
m’ > 1 then s € Z hence s(0,m') =n+w' — s — s, +m' —1 > 0 because
w' — s = —n/ + 1 using the last display.

2. The same consideration as in (a) verifies this property. (It is even
easier now as there are no long operators on the position nl.)

(c) Sy for n odd. We put S, := DSplit'(m)* o € o d o DSplit*(m) where
€ is induced by the isomorphism € : £"*+! — £"[~1] determined by the
volume form € € £"[n|. To show non-triviality, we have to verify (3.2). To
establishes the part 1., note the target space of S, has the conformal weight
w—o0=—w+2s —n (see Table 3.1) hence we need to show DSplit(m) is a

splitting operator on

WV [=n] = E{r1, ..., mw o]
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where w' = —(—w+2s—n)+2s—n = w. But DSplit'(m) is the D-splitting
operator on V = (V')*[—n] according to Table 2.4. (In the other words, S, is
formally self-adjoint.) The part 2. of (3.2) follows using the same arguments

as in (a).

(d) All the remaining operators can be expressed as formal adjoint of some

of operators treated above. In particular, S% | = (SY)*, S¥ = (SY,_,)* and

Sp—i—1 = (8;)* for i < [§] — 1. Let us note the formal adjoints appear on

the same pattern for n odd; if n is even they appear on the same pattern or

on the pattern with interchanged coefficients over the legs.

3.1.4. Formulae for long operators. We shall start with the following
observation, summarised in the Lemma below. We defined TFP—projective
parts of the form prf(m) and pry(m) in Theorem 2.1.7. Following 2.2.2,
we can consider these also as irreducible projecting parts. Let us consider

a tractor bundle V# such that VA is an irreducible g-module. Suppose A is
OA,

Ao Ar Al .
of the same form as in Table 2.1 i.e. VA = % o... 02/ and similarly

\O AQ

for n odd. Then in even dimensions, we define prt(m), € ITFPC(V?) as

m=Ai—1 t=A"+A
7\ 7\

() () ()

~ ~
i—1

pri(m)s = (Z')% - (Z)"

—A L Ap Ao Ai1+A; Aipa Anuz/o Ay Ao Ay A /
X——0O-+++—0O o O— =+« - O S O—O-- - -

\052 \ =

if A; > Ay and we define similarly prf(m)_ if Ay > A;. Recall A/, | =

min{A;, Ao} and A}, = 2|A; — A, in the last display. Analogously, we define
pry(m)+ as prP(m). with all Y’s replaced by X’s. Similarly, we have prt(m)
and pry(m) for n odd. As usually, the notation prf(m)) and pry(m))
indicates that the appropriate sign applies for n even if |[A; — Ay > 0. It
follows from the pattern in Table 2.2 that prt(m) ) and pry(m)s) form the
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orbit of the highest weight A. Therefore every prf(m)) and pry(m)y) is
unique as an irreducible go-component of V*. More generally, we have the

following.

Lemma. Let V' be an irreducible tractor bundle. Then prt(m) ., pro(m)+) €
ITFPC(V[w]) are unique as irreducible go—components of V]w] for any

scalar w. O]

The construction of formulae for long operators is similar as in 3.1.3 but

we will use the strongly invariant operators

Oog : E[k —n/2] — E[—k —n/2]
D &L —n/2] — E\[—n/2]

instead of the exterior derivative d, see 1.3.6. Recall k < n’ for n even. These
operators are elliptic for the Riemannian signature hence their null space is
finite dimensional in this case. Note they are formally self-adjoint.

Let us consider a long operator L; from the pattern. The source space V is
on the regular (for n even) or nonstandard (for n odd) position i or a singular
position ¢ — 1, (for n even) and we have the splitting DSplit'(m) with ¢, m
from Tables 2.3 and 2.4. To apply Uy or 2, we have to get rid of free tensor
indices in DSplit'(m)f, f € V first. We put m’ := m + 1 in regular cases
and m’ := m in remaining ones. The target space of DSplit'(m') in regular
cases has the conformal weight 0 hence M o DSplit'(m) = DSplit'(m’) is
D-splitting operator, cf. with (2.14). (Note w = 0 and k =i < n’ — 1
therein.)

Let us suppose i < n’ — 1 first. Note t +m’ = r according to our choice
of m/ in regular cases and according to Tables 2.3 and 2.4 in remaining ones.
(m :=r — t is the choice of m in the Tables.) Then DSplit!(m/)f € Eyfw']

where 21 is given by (2.80), in particular there are no free spinor indices. The
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conformal weight is w’ = —i for n even and w' = —i — % for n odd. Putting
k :=n' — 1, we can apply [g,. The restriction & < n’ for n even excludes
the operator Ly from this construction, cf. 1.3.5. Then in the Riemannian
case, there is pr € TFPC(Ey) such that E := pr*Uy,DSplit'(m’)f is non-
vanishing in the flat case. (O has finite dimensional kernel hence cannot
vanish identically.) Hence FE yields a formula for a nontrivial differential
operator in the flat case and we can assume this operator is invariant (by an
appropriate choice of pr). But then F is nontrivial for any signature because
the formula Og DSplit'(m’) does not depend on the signature and E cannot
vanish identically.

Let us consider the operator £. We will show it has to be the long one (in
the flat case). First, let us consider pr* DSplit'(m') f € E,[w], w € R where
pr € TFPC(Eg) is arbitrary. (Here a is an appropriate system of indices.)
If pr = prt(m’) then w = w. Therefore if h(pr) = hh(Fy) then also w = w,
see (3.1). (Recall there are only Y’s and Z’s in prf(m’).) Using (3.1) once
more, a moment of thinking reveals w < w for arbitrary pr. But since [y
lowers the weight by 2, we conclude the target space of E has the conformal
weight < w — 2k. Clearly symmetrizations do not change the weight and
taking the trace lowers the weight even more. Summarising, the conformal
weight of target space of pr* DSplit'(m') has the conformal weight < w — 2k.
Thus E is neither a short operator nor the identity. Therefore, E is the long
operator ;.

Now we show that pr = pry(m’) using the three following observations.
First, there has to be an irreducible go—component pr of EY C Ey providing
L;, where EY is the Cartan component of Ey. (That is, EX C Ey as g
modules.) The reason is pri(m')f € EX[w'] and Oy, commutes with the
projection &y — EX. Second, pr := pr(m’) € ITFPC(EY) is a possible
candidate because then pr*Oy, DSplit!(m') : V — V[—2(w — s) — n] is the
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“right” target space according to Table 3.1. To verify the conformal weight
—2(w — s) —n note Oy, lowers the weight by 2k = 2(n’ — i) and the difference
between conformal weights of target spaces of prt(m/)* and pry(m’)* is 2t, cf
(3.1). Here t = ¢; = w—s+i for n even and ¢ = ¢;+3 for n odd. Hence we get
the difference 2k +2t = 2(w — s) +n between conformal weights of the source
and target spaces. Finally, pry(m’) is the only possible candidate because,
using Lemma 3.1.4, pry(m’) is unique as an irreducible go—component (i.e.
an ITFP-component) of EX[w’ — 2k]. (Note that considering pri(m’) as
an ITFPC-—component, we actually obtain pr,(m’)) € ITFPC(Ey) for an
appropriate sign.)

The previous paragraph concerned the flat case. In general, we put

L; := DSplit"(m')*Oa DSplit' (m)
Ewf{r, . rutolw] — Ep{ri, ..., rwtol—w + 25 —n.

The signs on both sides for n even are different according to Table 2.1 hence
this is exactly the formula from Table 3.2.

Now we should establish an analogue of (3.2). We note only that 2. follows
immediately from the discussion above and 1. is analogous to the case of the
(formally self-adjoint) operator S, for n odd.

It remains to discuss L, between singular positions n’—1,n" — n’/,n’+1
for n even or nonstandard positions n’ — n’ 41 for n odd. The first step is
again the splitting DSplit'(m). (Note m = m’ in this case.) Then, if there
is no spinor index, we use [y = O, and if there is (one) spinor index, i.e.
w—s= 1_7” (see Tables 2.3 and 2.4), we apply the Dirac operator ). Then
the same reasons as above establish the result in Table 3.2.

Finally, let us note the long operators we have constructed are formally

self-adjoint due to duality between DSplit and DSplit* and self-duality of
(or and .
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Remark. In the flat case and for n even, we obtain also formulae for the op-
erator Ly because we can replace [J,, by Y4t ... YA’C—lﬂDA1 -+ Dy, |, which
is invariant and nontrivial [35]. The rest follows the consideration above, the

result is the formula
Ly = pry(m)*Y4 ... YA ODy, - Dy, Split'(m).

3.1.5. Conformally invariant operators: summary. All results from
this section are summarised in Tables 3.1 and 3.2. The source space of all
operators is of the form £y {r1, ..., 7y }o[w]. This yields the parameters s, r,
0;, 0}, 0 etc. according to 1.1.3 and (2.91), and ¢ and m according to Tables
2.3 and 2.4. The operators correspond (in the flat case) to the pattern from
2.1 which yields the coefficients A; and Ay (for n even), A (for n odd) and
A;.

Short (long) operators are denoted by S (L) with a subscript indicating

the position, see details in 1.3.3. Moreover, we use the notation

G _ SY, ., i=n'—1,neven GO0 _ SX j=n',n even
= ) —
S; otherwise, S;  otherwise.

(3.5)
to simplify the presentation of results in Table 3.1. The first line in each
part in both Tables describes positions of both spaces in the pattern, order
of the operator and whether the operator preserves or changes the sign. The
latter concerns only the even dimensional case, signs have no meaning in odd
dimensions. The second line shows Young symmetries of both spaces and
a tractor formula for the operator. Of course, the weight w therein must
satisfy the condition for the corresponding position from Tables 2.3 and 2.4.

We assumed the complex setting up to now, cf. 2.2.3. The real case is
different if n = 2n’, n’ — p is odd (here (p, q) is the signature of the metric)

and r,, > 0 on the position n’ — 1, see 1.3.3. But then the complex operators
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SX_ and SY,_, (and similarly S and S},) differ only in the sign. Hence,
the real operators S,,_1 and S, correspond to sums of (complex operators)

SX @Sy, | and S¥ @ SY,, respectively.

n'’

3.1.6 Example. Following 2.2.4, we shall demonstrate results from this section
on the space E4)(k,l)o[w]. That is, we provide explicit formulae for curved
analogues of all flat invariant operators on &4)(k, [)o[w] with the exception
of Ly for n even. We express them as compositions of operators B, M, T
and their formal adjoints developed in Section 2. Let us remind we computed
explicit formulae for all these operators in examples therein. We shall also
present usual (i.e. tensor) formulae for operators up to the order 2.

(a) Short operators. Recall a simple recurrent procedure for (tensor)
formulae of all standard operators with the exception of S, for n odd is
developed in [14]. This does not use the tractor calculus. Our result shows
how these operators fit to the general picture.

The formulae for all standard operators in terms of B, M, T and V are
displayed in Tables 3.3 and 3.4 (cf. Table 3.1). Note we use the notation
Sff_’l) for SY, | and S | if the latter two operators differ only in the sign.
We use SS(’Y) in a similar way. This happens if A/, = 0 in Table 2.1.

We met formulae in terms of V, g and the curvature of many of the
operators throughout Examples in this thesis. In the review below, Proj
always denotes projection to the target space. (In the Tables 3.3 and 3.4,
this projection is not stated as this is achieved by formal adjoints B*, M*
and T7).

From the formulae (2.55) and (2.57) for the top operator, we obtained
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Conformally invariant operators on &4

I. Short operators in the 1st half of the pattern: w € Z

y(B Dolw], " > k>1>1

Conditions Formula Or-
der
w2k+l+2 S() g(i)(k’,l)o[U}] —>5(i)(k‘,l,1, ,1)0[21)] o0
o=w—k—I
SOf Lyab = (B*DODB*EOEM*CO .. M*CQ
VchCQ T DC EOE ODf )
I <k SV Ey (b, Dolk + 1) — Ey (b, I+ Dolk+1] | 1
Y (0
Sl( )f(i) (B ¢ CV COCf(j: \b])( +)
S [#2 -1
where SZ(Y) {7 2
Sn’—l l - g -1
(Lk)y=(n'—1,n")| SX_, : Ex(n',n’ — 1)o[n’ + 1] — Ex(n',n')o[n’ — 1] | 3
neven S 1 frap = (T OCV[b0 COCficlb)
SX 1= (SY)* where
SY, €L (n 0 )o[n +1] — Ex(n/,n/ — 1)o[n—3]
[ # 5 Sk Ewy(k, Doll] — Ey(k+ 1,1)o[k + 1] 1
Sk f()ab = (M bV a0M|C|f(:t ) (£)
I=k<n' —1 |85 &k, k)o[k+1] — Ewyk+ 1,k + 1)olk+1]| 2
XY (0
S fan = (M GEV 1 Tieo& o)
S k# % —
where S,gX’Y) . ?
Sy _jor Sy, k=%-1
l=k=n' Spr 2 E(M/ 0 )0 + 1] — E(n/,n')o[n’ — 2] 3
n odd S fab = TS,V 0 Tpo§ foa

Sy is self-adjoint i.e. (S,)* = Sy

Table 3.3: Table 3.1 for 5(

+)(k, D)ow], Part I (see Example 3.1.6)
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Conformally invariant operators on £ (k,l)o[w], n’ > k>1>1

II. Short operators in the 2nd half of the pattern: w € Z

C(,mdl_ Formula
tions

Order

k=Il=n'

n even

SY, &L (n 0 )o[n/ +1] — Ex(n/,n' — 1)o[n'—3]
Sy fran = (T SV Too& fien)

l:

S €y (ky k)o[3k—n] — E(k — 1,k — 1)o[3k—n—4]
ST(l)j}gY)f(:l:)ab - T*Clgval Méf(:t)ac

Sn—k: k 7é %

where Sff’,z/) =

Y X _n
Syoor S5 k=14

Sp—k = (Sk—1)* where
Sk—l : g(l{? - 1, k— 1)0[]{3] I 5(:|:)(k37 k?)()[k]

I <k

Sn—i : Exy (K, Do[2k+1—n] — E(k — 1,1)o[3k+1—n—2]
Sn—kf()ab = MgvalM(cjf(i)ac
Sy = (Sk_1)* where
Sir = €0k — L0oll] — Eo (b, Dol

S &y (k, Dol2k+1—n—1] — Exy(k, 1—1)o[k+21—n—3]
S\ fran = (T SV Boo& franen) (s
Suy L#2

S 1=
S = (™))" where

where S T(Li(? =

VI3

SV &k, 1= Dolk + 1] — Ey(k, Dol + 1]

Table 3.4: Table 3.1 for £)(k,l)o[w], Part II (see Example 3.1.6)
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Conformally invariant operators on &£ (k,l)o[w], n’ > k>1>1

ITI. Long operators &£ (k,1)o[w] — E)(k, )o[w — o] where

e w € Z for n even and w € 1Z \ Z for n odd
o theorderiso:=2(w—k—1)+n

Conditions

Formula

ka:—l—%for

(U, Twl) # (', n'+2)

f(i)ab = (T*COST*DOED%W z)TDODT OCf(i)cd)(:':)

where i =2+ k41 — [w]
and either nisoddorw < k+1+1

(I, [w]) = (0,0 +2)

f)ap — (T*CDCM*DDMd Teo S, i)cd) (F)

w € (l+ 3;k+ 1) for
(L, [w]) # (n/,n'+1)

faan = (T*C SM*ED%W*Z’) 5 COCf(i)cd>(:|:)

where t =1+ k + [ — [w]

(Lw) = (n,n'+3), n odd

feyab — (M RM*SOMEMS f, :t)cd) )

we (k+1+1—nl)

f(:t)ab — (M*EM*SDQ(n/_Z)MéMgf(i)cd) ($)

where i = k + 1 — [w]

Table 3.5: Table

3.2 for Ey(k, 1)o[w], (see Example 3.1.6)
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the operators

S iy (b L= V)olk 4+ 21 —n — 1] — Eay(ky L — 1ok + 21 — n — 3]
SN (fan) = V"' fa
Snk: Eyk, o2k +1—n] — Ek— 1,002k +1-n—2], | <k
Sni(fan) = ProjV* fap
S € (ky k)o[3k —n) — E(k — 1,k — 1)[3k —n — 4]
S (fan) = (V0P 4 PV [,
S+ Eay (k, Doll] — Eqay(k+ 1, 0)ll), 1# 5

Sk(fab) = ProjV[al fa}b'

The following operators

S iy (ky Dolk + 1) — Ey (b, L+ Vol +1], 1 < k
S (fab) = Proj Vigo fiap
S gk k)olk + 1] — Ey(k+ 1k + Dolk + 1], k <’
S/E;X’Y)(fab) = Proj(V,o Vo + Paow) fab

where we skew over [a’a] and [b°b] in the latter before the projection Proj,
can be obtained most easily as formal adjoints of Sg)l and ST(L)E’,:/) displayed
above, respectively. It remains to discuss the operators Sy for w > k + 1+ 2.

We shall mention only the orders 1 and 2:

St €k Dol + 1+ 2] — Eey (bl Lol + 1+ 2
So(fab) = ProjV . fouamyp
So : E(k, Dolk +14 3] — Ewy(k, 1,1, 1)olk + 1+ 3]
So(fab) = Proj [v(dvcfaHa\bl)B + P(dcfa1|a\bl)b] :

These formulae as well as higher order cases can be obtained e.g. from [14].
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Beside Sj, we have three other operators of order three: S | and SY,
(mutually self adjoint) for n even and S/, (a self adjoint operator) for n odd.
[14] provides formulae for the first two but not for S,,. This case has been
treated in more details in Example 3.1.1. Using this, the tractor formula
from Table 3.3 can be easily developed into a (long!) formula in terms of V,
g and R only.

(b) Long operators. The order of these operators is 2(w —k — 1) +n hence

the lowest nonzero order, 2, corresponds to the operator
Elk, Dol +1+1— g] — E(k, Dolk +1—1 - g], [ 4 g

The restriction [ # 4 follows from the observation that in even dimensions,
the displayed operator is a long operator between regular positions. But
E+(5,%)ol5 + 1] appears on a position in the middle of the pattern where
the long operators do not exist. (If I = k = %, the lowest positive order of a
long operator will be 4.) We obtained a formula for the displayed operator
in Example 2.1.7. This can differ from the formula in Table 3.5 in curvature
terms (consider e.g. C ",/ péqb)‘ For higher orders, formula expressed only
in V, g and R are getting too complicated. Table 3.5 shows their manageable

version.

3.2 Conformal Killing equation on k—forms

We use the calculus developed until now to construct prolongations of the
conformal Killing equation on forms. The latter is an overdetermined system
of partial differential equations. Then we apply these results to the solution

space. We obtain various relations between solutions.

To simplify subsequent computation we use the convention that indices

labelled with sequential superscripts which are at the same level (i.e. all
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contravariant or all covariant) will indicate a completely skew set of indices.
Formally we set a*---a* = [a!---a

Beside the conformal metric g,,, we will also use g s+ (and similarly
garpk) fOr goipr - - - Gorpe where all a-indices and all b-indices are skewed over.

By definition, we require k£ > [ in the notation £(k,1). Here we will use
also the opposite order for spaces (1, k) := E(k, 1) and £(2,k) := E(k,2) and
similarly for the trace—free parts. The order of form indices in the notation

for sections will be for € E(1,k) and fozar € £(2,k). We will later need the

following identities

1 ~ 1
falpak = %fpak and falqpak = Equak (36)

for for € E(1,K)[w] and feue € £(2,k)[w]. Similarly as (1.7), this follows
from the skewing [pa®] which vanishes in both cases. Using the second of

these we recover, for example, the well known identities

1 1
R[ b d = —R bd and C[abc}d = §Cacbd .

a ¢ 9 rac
Using (3.6) and (1.18), a short computation reveals the transformations

@aofcak = Vaofcak + (w - 1)Ta0fcak + gcaOTpfpak
Vet = V fear + (n w0 =k = )Y frar (3.7)
@Cl fc2ak = Vcl fc2ak —+ (n +w—k— 3)Tclfc2ak

for foar € E(1,k)o[w] and fozpr € £(2, k)o[w].

3.2.1. The conformal Killing equation on forms. The space €. x =
Ee @ Eqr..qr is completely reducible for 1 < k < n and we have the O(g)-
decomposition E .k [w] = Epar) [W] @ Efearyy (W] B Eqr—1[w — 2] where the bundle
E{cary, [w] consists of rank k+1 trace-free tensors Tur (of conformal weight w)

1

that are skew on the indices a' - - - a* and have the property that Tieqr.ar) = 0.
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(Note that the three spaces on the right-hand side are SO(g)-irreducible if
k¢ {n/2,n/2+1}). On the space E,r[w] there is a projection Py, to the

component Ery,[w] and we will use the notation

{Ca:k}o S

cak or Tcak:{cak}o Scak

T,

cak

to mean that Prary, (1) = Preary, (S). We will also use the projection Pyear
to E(1, k) [w] =: Egeary[w].

Each metric from the conformal class determines a corresponding Levi-
Civita connection V and for 1 < k < n — 1 and o € EF[k + 1], we may
form V. .o,x. This is not conformally invariant. However it is straightforward
to verify that its projection Py, (Vo) is conformally invariant. That is,
this is independent of the choice of metric (and corresponding Levi-Civita

connection) from the conformal class. Thus the equation
V{CO'ak}O =0, 1<k<n-1 (3.8)

called the (form) conformal Killing equation, is conformally invariant.

Suppose V is a connection on another vector bundle (or space of sections
thereof) &,. For this connection coupled with the Levi-Civita connection let
us also write V. Since it is a first order equation (3.8) is strongly invariant
(cf. [30, 21]). That is, if now our € Earelk + 1] = Ear[k + 1] ® & then
@{caak}o = ( is also conformally invariant. We will also call any such equation
a conformal Killing equation (or sometimes for emphasis a coupled conformal
Killing equation).

The volume form € determines the Hodge operator € on density valued
forms, see 1.1.3. We will denote this operator by % here because this is
the usual notation (see e.g. [11]) and because we do not need to use € with

attached indices. That is, we have a mapping
x: EFw] — € F[n — 2k +w] ke {0,1,---,n}.
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In particular we have
*x: EFk+1] — & *n -k + 1],

and from elementary classical SO(n)-representation theory it follows easily
that o € E*[k + 1] solves (3.8) for k-forms if and only if xo solves the version
of (3.8) for (n — k)-forms. Thus on oriented manifolds it is only strictly
necessary to study this equation for (weighted) k-forms with &£ < n/2. Also
it follows that on even dimensional oriented manifolds a form in £"/2[n/2+1]
is a solution of (3.8) if and only if its self-dual and anti-self dual parts are
separately solutions. Nevertheless, since the redundancy does us no harm, we
shall ignore these observations and in the following simply treat the equation

on k-forms for 1 <k <n —1.

3.2.2. Invariant prolongation for conformal Killing forms. In this
section, and in much of the subsequent work, we will write f, (rather than
far) to denote a section in Eux[k + 1]. That is, the superscript of the form
index a will be omitted but can be taken to be k (or otherwise if clear from
the context).

Before we start with the construction of the prolongation, we will intro-
duce some notation for certain algebraic actions of the curvature on tensors.
Let us write f§ (which we will term hash) for the natural action of sections A

of End(T'M) on tensors. For example, on a covariant 2-tensor Tp;, we have
AﬂTab = _ACach - ACbTac-

If A is skew for a metric g, then at each point, A is so(g)-valued. The hash
action thus commutes with the raising and lowering of indices and preserves
the SO(g)-decomposition of tensors. For example the Riemann tensor may

be viewed as an End(7T'M)-valued 2-form R, and in this notation we have
[Vm Vb}T = RabﬁT )
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for an arbitrary tensor 7. Similarly we have Cy T for the Weyl curvature.
As a section of the tensor square of the g-skew bundle endomorphisms of
T M, the Weyl curvature also has a double hash action that we denote CHfT.

We need some more involved actions of the Weyl tensor on &, [w] for

k > 2. These are given by

k—2
(Cf)ea ::T (Cca2 qupqé + Oa3a2qupqc'é') € Eear[w — 2

k
<C<>f)ca ::Cclc2a1pfpé + CalaQClp pcla + mgclal (C‘f>c2é (39>
€ Egzqh [w]

where ¢ = ¢? and f, € Ex[w]. Note that COf vanishes for k = n — 1 since
E(2,n —1)g is trivial. (We have used the Lemma 3.2.3 (ii) here, see below).
For the sake of complete clarity we have given these explicit formulae but
note that, up to a multiple, the first of these is simply Cif € E.2,+ followed
by projection to £(1, k — 1)[w — 2] (the projection involves a trace), while the
second is Cff followed by projection to £(2, k)olw]. This is clear except for

the final projection in each case which we now verify.

3.2.3 Lemma. Let us suppose k > 2. Then
(1) (C‘f)cé - C{ca2qu|pq\éi} € g(]., k — 1)0[11} — 2]
(H) (C<>f)ca € 5(27 k)O[w]

Proof. (i) It follows from (3.9) and the Bianchi identity that (C#f). is

trace-free. Moreover

C{ca2qu|PQ‘é} = Cfcanquqé'1 - C'[ca2 qu‘P(ﬂé} = (C‘f)cé- <31O>

where the first equality is just the definition of the projection {..} and the
second follows from re-expressing of the skew symmetrisation [ca] in the last

display.
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(ii) According to the definition of £(2, k), we are required to show that
(COf)erja) = (COf)cajar+r = 0 (note (COf)ca) = 0 is obvious from (3.9))
and also that CQ f is trace-free. Both skew symmetrisation’s [c*a] and [ca]
kill the last term of COf in (3.9), because (C4f)ia) = 0 according to the
Lemma (i). Applying the symmetrisation [c?a] to the first two terms in (3.9)
and using the Bianchi identity yields

1
Ocl[c%lprp\a] + §O[a1a2|czl)fp|c2é]7

where the indices c'c? are not skewed over. This is zero because C. [cZalzf =

—2C 5 1.7. The second skew symmetrisation [ca] is similar.
It remains to prove g°* (COf)ea = 0. Tracing the last term in (3.9)

yields

clal o 1
59 oot (COf) s = 2(C’Qf)02é

after a short computation. Further computations reveal

gCIGICclcQalpfpé = _%Cc%?qupqé
and
0" oo hysn = o st i + g Cos
Summing the last three displays, the Lemma part (ii) follows from (3.9) for
Cof. O

Introducing new variables, the equation (3.8) may be re-expressed in the
form

Vcaa == ,uca +gcalyé )

where (1400 € Eqoar[k + 1] and vy € Eze[k — 1]. These capture some of the
1-jet information: we have p,0, = V00, and vy = %Mvpo'pé. We need a

further set of variables to complete (3.8) to a first order closed system. There
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is some choice here, but, for the purposes of studying conformal invariance, it
turns out that p, := —Vava + = VPV 0y, — P’ 0,4 18 a judicious choice.

We then have the following result.

3.2.4 Proposition. Solutions of the conformal Killing equation (3.8), for
1 <k <n-—1, are in 1-1 correspondence with solutions of the following
system on 0a € Eqrlk + 1], pooa € Epoarlk + 1], va € Esk — 1] and pa €
Earlk — 1]

Vco-a = bea T 9calVa ;
1

Vc,uaoa = (k + 1) 9ca0Pa — PcaOO'a - §Ca0alc papé 3
k(k—1
Vg = —k [pcé + Pcpapé} + H(CQU)Cé ;
1 (n — k) (3.11)
Vepa = Peaiva — PP, + 514]”(11(12027&;;I — AP 0,4

1 k
+ §Ca1agc pypé — mval (C‘U)ca for k Z 27
Vepar = Peav — PP p,0 + Agipeo® for k = 1.

The mapping from solutions o of (3.8) to solutions (0a, fleoa; Va, Pa) Of the

system above s

Oq (aa V004 VP04
) ) —k+1 pas
) | (3.12)
EVPV{pO'a}O — n——k—i—lvalvpapé — PaiDO'pé>

Proof. As mentioned above the first equation V.0, = ftca + g4 Va is simply a
restatement of the conformal Killing equation (3.8) afforded by introducing
the new variables pig0n € Ejoa)lk + 1] and v3 € Eilk — 1]. (At this point
and until further notice below we take the rank of ¢ to be in the range
1<k<n-1)

This equation also gives p,0, and v4 in terms of derivatives of o,. Thus
the Proposition is clear except that we should verify that if o, solves (3.8)

then we have the second, third and fourth equations of (3.11).
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To establish the second equation, let us observe (k 4 2)V Voo, =
VeVaoa = (K + 1)V V00, and that the left-hand-side vanishes due to
the Bianchi identity. The first term on the right hand side is just V .pq0a
thus

chaoa = (k + 1>Va1,uaoca = (k + 1)va1 (Vaoacé - gao[cyé])
1 1
= (k + 1) (iRalaoc po_pé - Egcaovall/é)

where the second equality follows from the first equation in (3.11) and the
third equality from the Bianchi identity. Now the equation for V. pq0, in
(3.11) follows from the last display using (1.16) and from the relation p, =
—%Vawa — PaPo

»a» Which we have for solutions.

The second equation in (3.11) concerns V. vy = —7=V,.VP0,,. Com-

n— k+l
muting the covariant derivatives we get V.V? = R4 + VPV, where, recall,

f captures the action of the Riemann curvature tensor R. Therefore

(n—k+1)Veva =k [RP 0,4+ (k—1)R" J0,05 + V7P (Hepa + GeppVal) ]

) 1 1
=k [_ Rlccp Opa + é(k - 1>Rca2pqapqé - vp,upcz%\ + %VCVA]
where we have used VPy,3 = —¢ HV Vio,s = 0. Note that the last term

here is a multiple of the left-hand-side. We consider the other terms on the
right-hand-side. Recall that (1.16) gives Rice, = (n — 2)pap + 99, Using
(1.16) also for the second term on the right-hand-side, and the equation for
Vftaoa in (3.11) for the third, a computation yields

—Ric o, =—(n—2)P."0,, — Poc
SOk = VR0, = 5 (k= 1)C "0, + 2k — 16, Pl
— %(k — 1)00(12]”%(151 —(k—=1) (Pafapcé-1 — Pcpapa)
= VP iipes = —(n = k)pea + Poca — kP oy, — ;(’f = D" g
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Hence the last but one display says that "T”“Vcl/a is equal to the sum of the
right hand sides of the last display. Now using the relation —kP[ b Opla] =
—P. 70, +(k—1)P, 0, and (3.10) we obtain immediately the third equation
in (3.11).

The last equation requires more computation. Let us first make an obser-
vation about its skew-symmetric part V.pa. Using the definition of p and
the Bianchi identity, we have V{.pa = —V[cPalp Olplal- Using the Leibniz rule

and the first equation in (3.11) for the right hand side, we obtain

1
V(cpa] = _EAP[Cala|p|é} — P Wypjags (3.13)

since the term P,,"g, v, vanishes after the skew symmetrisation [ca]. Now

clp¥a]
to compute the full section V .p,, we shall start with the equation for V. v,
from (3.11). We apply Vi to both sides of this equation and skew over all
a—-indices. Commuting the covariant derivatives on the left-hand-side, we
obtain V1V, = V.V + Rai.f. The first term on the right hand side is
—kVapea = (k + 1)Viepa — Vepa. Through these observations, and using

(3.13), we obtain

VVava+ (k—1)R, = —(k+1) (%Ap[ml%:a\] + P Hpa)
k(k—1)
2(n — k)
Many terms can be simplified and we shall start with the the first term on

the left-hand-side. We have

V
alca?

—Vepa — kV P70 + Vot (C40) .

VeVaivy = —k(VcPa +V.P, %\a)

which follows from the equation for V. v, in (3.11). Combining the last two

displays we obtain

1
_(k - 1)VCIOa - 2kv Pl (k + 1) (_Ap[ca10-|p\é] + P[cp'“\pla})

[c al] 2
1 o k(k—1)
—2(k — 1)Ra a2 I/pé + 2(n _ k') Val (C’O)ca
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where we have also used R, _," = %Rala%p . Note that for the case of (the
rank of o being) k = 1 both sides of the equality above vanish and we get
no information. Now we simplify terms on the right hand side: the first
term using the Leibniz rule and the equation for V.o,, the next two terms

re-expressing the skew symmetrisation [ca] and the first curvature term using

the decomposition (1.16). This yields

2kV[CPa1]pO'pa = kApcalo-pé + 2k:P[ i Helpa + Qkp[ 1 gc][pyé]

= /{;Apcalapé + kPP Heps — KPP 1,8 + (k—1)g.. Py Vps

1

§(k+1)Ap[ca10_|p‘a] = _Apcal (k 1)A a2a1 pca

(k+1) :u|p|a} = _Pc p“pa + kP " al :upca

1 1

—5(k=DR Vs = —5(k=1) [Coioze PVos + 2G ot P Vs + 2P va ]

Substituting these in the previous display, the Proposition for £ > 2 fol-
lows. The case k = 1 can be checked directly by tracing %Rcoc1jjuaoa1 =
VoVl = Ve [Qchaopal —2P.i00, — Caoa 1,1 Po ] . ]

3.2.5 Lemma. Let us fitk > 2. If 0, € Egr[k+1] is a solution of (3.8) then
(Ooa)ca =

Proof. We shall prove the lemma using the prolongation (3.11). Applying

V. to both sides of the equation for V 20,, we obtain
VaVeo, =Vapiea + genVeals.

The left-hand side is equal to

k k
R, 0,5 ==C

5 clc? pa 2 cle2gl U QT kgc1a1p o, s T kPC1a1acg
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according to (1.16). On the other hand, from (3.11) the right-hand side is

equal to

1
<_kgcla1p62£‘i + chlalo-clé - 5(20620,101;)0-]75‘1 - (k - 1)Ca2alclp0-p62‘éi)>

k(k—1
+9 241 (—/fpcla — kP o, + ﬁ(c’@cla)
Now equating these two displays and using C, , ." = —%C’clczalp we obtain

an identity which holds for solutions. Comparing the expression with the

definition of (C'Qo) in (3.9), we see the identity is

(k —1)(COo) = 0. -

Note that a curvature condition, equivalent to that in Lemma 3.2.5, is
in [38]. There the identity for solutions is stated in terms of the Riemann
tensor R, rather than in terms of the Weyl tensor C'. In this form it has
also been derived in [45] (although I could not find the necessary restriction
k > 2 in that source). Expressing the identity via the Weyl curvature, as we
do, emphasises that this is a conformally invariant condition.

Next we observe that (3.12) defines a conformally invariant differential
splitting operator. We define a differential operator D on Eux [k + 1] by

a 1 a’a a a
Og V> O40A ‘= YAOAUa + k—HZAoAMaoa +WA0A1AV5 — XAOApa, (314)

where 0a, fi0a, Va and p, are given by (3.12). Then we have the following.
3.2.6 Lemma. D is a conformally invariant operator

D: &k +1] — Egopr  for 1<k<n-—1.
Proof. Let us compare D and T',,% from Example 2.1.6 for o € Eu[k + 1].

It follows from the formula (2.54) with w = k + 1 that Y, Z and W slots of
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T oa and D are equal up to the multiple n(k +1)(n—k+1). Let us compute
the X—slot of D. Clearly
1
nk

k
n—k+1

[(n k4 1)Ada + (n— 2k) V. Vi

1
VIV y0agy = VP | Vy0a = Vipou) -
- 1
Sk +D)(n—k+1)

gpal vqué]

+(n—k+1)R, ﬁapé}

where the second equality follows after a simple calculation. The X—slot of D
is given by p, from (3.12). Using the X-slot of (2.54), a short computation
(namely the decomposition of the term R” 100,45 in the last display according

to (1.16)) reveals that

a 1 a
Thop0a =D(0)a0a + —n(k n 1>XA0A paluapé
) . k—1 X, 20 , Pl
= PO)aen = gy R G
Since T'jo4 is conformally invariant, the Lemma follows. O

Remark. 1. For k =1, D is just the w = 1 and special case of the operator
DA from section 5.1 of [10].

2. Note that the operator ID is not unique as an splitting operator “putting”
Oa € Eqr[k+1] into the top slot of Fpop € E40ax. D can be obviously modified

by any multiple of X ,,3C , " qapqé.
Assume k > 2. We define a 1st order differential operator
(I)c : ngAk — gcAOAk

that will turn up in our later calculations. Given a section Faoa € & q0a#
which, for a choice g € [g] of the metric in the conformal class, is convenient

to take to be in the form

1 .
FAOA = YAOZUa + k—HZZgZMaOa + WAOAIZVA - XAozpav (315>
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we set

1 k(k—1 .
(PC(FAOA) = 521?1320@0@% papa + ﬁonAlz(C‘O’)ca
1 1
+ XAO_Z AP cal Upé - EAP alaQUPCéi — 50(11(120 pl/p‘g1 (316)
k
+ 5 Ve (C#9)a]

Our aim is to construct a connection ¥V on &40 such that solutions
oa of (3.8) correspond to sections of € 0ax that are parallel according to
#V. Let us start with the normal tractor connection V. Using the previous
proposition, it is a short and straightforward calculation to show that if o,
is a solution of (3.8), k > 2 then V.D(0)40a = P(D(0)a04). Also, it is
easy to verify (or see [32]) that for £ = 1, if o, is a solution of (3.8) then
VD(0) 4041 = Qpeaoaro?. This leads us to the following.

3.2.7 Lemma. (i) Given a metric g from the conformal class, the mapping
Oat— D(0)a0a, with inverse Faop — (k+ )X AF 0, |

gives a bijective mapping between sections of o4 € Epxlk + 1] satisfying (3.8)
and sections Fpaoa € Eq0ar Satisfying,
V. Fpoa = @C(FAOA) k> 2,
VCFAOAI :QpcAoAlo'p k=1.
(ii) Upon a change of the metric g — g = ¢*Tg, ®. transforms according

to
D (Fuon) = P(Faon) — X102 TP(CO0) pea

where T, =V, T and o, = (k + 1)XA0§FAOA.

Proof. We have already observed that V.D(0)40a = ®.(D(0)40a) for so-

lutions o of (3.8) for £k > 2, and the also the corresponding statement
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for kK = 1. On the other hand, looking at the coefficients of Y on both
sides of V.Foa = ®.(F0a) we see this relation implies that the “top slot”
0a = (k+1)XA"AF , , of F is a solution of (3.8). Thus the claimed bijective
correspondence follows.

It remains to prove (ii). Let us consider a section Fo4 of the form (3.15)
and a conformal rescaling g — g as above. Collecting together the conformal

transformation formulae for all the relevant objects we have:

/_/Iaa :Maa ‘I— (kf ‘l— 1)Ta00a
l//\a =V4 + k?TpO'pa
Aaoa aOa aO a
0 =Zjop + (k+1)T X 04
W W oond = TiX 0d (3.17)

a __
AOATA T 7V A0ALA

A\abllﬂ =Agpp2 + Tpcpab1b2
Vi (C40)ea =V (C40)a + (k — 2)Lar (C0).a

+ geal TT(C’U)Té

The first two transformations are immediate from (1.47) since Foa is (as-
sumed to be) conformally invariant. The next two formulae are directly the
properties of Z— and X-tractors from (1.47). The last but one is a simple
calculation using the conformal transformation formulae from for example
[29], and the last follows from Lemma 3.2.3 (i) and (3.7). Applying (3.17) to
the formula (3.15) for ®., we obtain

= a k + 1 a
De(Faoa) = Pe(Faoa) = X o [—TT "Conre "
k(k—1) 1
— mTal (O‘U)Ca + chqpcal Upél - éTqupalaQOPCél
k k(k—2 k
—=C,, "o, .+ QTGI(C’O)CQ + ——9. Y (C40),a

2 alate T U@ T o(p—k) 2(n—k)

It is straightforward to verify that sum of the three terms involving C'¢o is
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equal to

k r
_mT gal[,’,,(C‘0->c]é . (318)

Summing the remaining terms on the right hand side yields

(_Tqual papé + ETqCaQalc papqé)

¢ 2
1 k
+ Tchalqupa — §TqCa1a2q Papcé + §TqCa1a2c papqéi (3.19)
== _TT [Crcalpapé + CalaQ[rpo-\p|C]éi| .

Now summing the last two displays and comparing the result with the defi-

nition of C'Qo in (3.9), the Lemma (ii) follows. O

We have shown that, in contrast to 2,.404107, ®. for k > 2 is not confor-
mally invariant. Also note that it is not algebraic but is rather a first order
differential operator. We would like to replace ®. with an operator which, in
a suitable sense, has the same essential properties (including linearity) and
yet is conformally invariant and algebraic. We deal with invariance first. For

k > 2, we define the 1st order differential operator
\I’c : 5[A0Ak] — SC[AOAk],

for a given choice g € [g] of the metric and a section Faop € Eaoar (taken

to be of the form (3.15)), by

1
5 XAV (CO0) pen. (3.20)

lIfc<1714()A) = (DC(FAOA) —|—

Recall that (CO0)pga € £(2,k)o[k + 1] and is by construction conformally

invariant. Hence we have the conformal transformation
VP(CO0)pea = VP(COO) pea + (0 — 2) TP(CO0 ) pea

according to (3.7). From this and the previous Lemma (ii) it follows that ¥,

is conformally invariant.
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Now recall we have proved in Lemma 3.2.5 that C'Qo = 0 for o satisfying

(3.8). Therefore . = U, in this case and we have

3.2.8 Lemma. Lemma 3.2.7 part (i) holds if we replace the operator ®. by
WU, therein. O

Now we replace the operator W, with an algebraic alternative in the fol-
lowing way. From (3.20) and the formulae (3.16) for ®., it is clear that in
the operator V., applied to Foa in the form (3.15), only the coefficient of
X contains terms of the first order. Recall that we have the decomposition
Eeat (k1] = Epay [k + 1] DEaryo K+ 1D Epe-1 [k —1]. I 00 = (k+1)XAAF 0,
is a solution of (3.8), the parts of V.o, that lie in Ejgar [k +1] and Eqr-1 [k — 1]
may be replaced by, respectively, 00 € Eoark + 1] and vy € Eg[k — 1],
according to Proposition 3.2.4. Moreover, it is clear that in fact this replace-
ment is conformally invariant for any F,,,. Thus if we remove, from the
X-slot of the formulae for W, all the terms depending on V.0a),, then the
resulting operator U, will be algebraic, conformally invariant and will satisfy
Lemma 3.2.8 (or rather the alternative version of this with W, replacing ).

We describe {Ivfc explicitly in the following Proposition.
3.2.9 Proposition. The mapping
Oa — D(0)g0a, with inverse Fyop — (k+ 1)XAO‘:FAOA ,

gives a conformally invariant bijective mapping between sections of g, €

Earlk + 1] satisfying (3.8) and sections Faoa € Eqoar satisfying,

VCFAOA:\DC(FAOA) 1§]€§7’l—1

For choice g € [g] of a metric from the conformal class and a section

Faoa € Eqopr, expressed in the form (8.15), the conformally invariant alge-
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braic operator U, Eqopr — E.q0ar 18 given by the formula

~ 1 k(k—1 .
\I[C(FAOA) == _Zggzcaoalcpgpé + QV\VAOAH?(C(‘O-)Cél
2 2(n —k)
b1 (3.21)
R
where

1

T(U)ca 25 (vccala2pq)0-pqé + 2Apctll Upa - Apalazo-pcé - gcal Aagpqo-pqé
n—k—1
- (Ccalpqupqé + CaQalpq'quC'é') - L Cala%pypé
€ £(1, )k —1].

Proof. The case k = 1 is just reformulation of Lemma 3.2.7. Given Lemma
3.2.8, for the cases k > 2 this boils down to simply checking the formula for
U. This is a direct computation of the formula (3.20) for ¥, and then in
this formula, formally replacing each instance of V.o, by fica + g 1va. We
need to compute only the non-algebraic terms Vi1 (C'40)q4 from (3.16) and
V(CO0)gea from (3.20). The latter is the subject of Lemma 3.2.10 below,
while the the former is dealt with during the proof of that same Lemma, see
(3.23). Combining these results with (3.16) and collecting terms yields the
formula (3.21). O

It remains then to calculate VI(C'Q0),ca as required in the proof of the
Proposition above. For this we will need the following identities. They follow
from the (second) Bianchi identity ViaBbede = 0 after a short computation.

1
Va Cca2b1b2 = _VCC’alaleb2 — 9cpr A62a1a2 + 2ga1b1 A620a2
2 (3.22)

val Ca2a3b1b2 = 29a1b1 Ab2a2a3 .

3.2.10 Lemma. Assume 2 < k <n —1. If the 04 € Eu[k + 1] then, up to

the addition of (conformally invariant) terms involving the Weyl curvature
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contracted into Vi.oay,, VI(CO0)gea € E(1,k)o[k —1] is given by the formula

n— 2

1
2(n — k) |:§(VCCG‘ la? ) Tpgs — <CC‘11 pqa+C pqc'é')
—k+1
+ (n - k - 1) (ApalaQUpca + 2Apa lc pa) (n k )Ca1a2c pl/pé

(k- 2)
k

+ g.q Ca2a3pqypq'éf - (k - 1)gca1A pqa] + (TL 2)A

pa

Proof. Here we simply expand V?(C{0),a via the Leibniz rule and in the
process we will formally replace each V.04 by fica + g.,1va. We shall start
with V,1(C#0).a. Recall (C#0).s was given in (3.9) as a sum of two terms.
Applying V1 to these, we obtain

VaC, o o, (v C — A

c“ala? )pqa

ata29cqi + 247 ca2%al qa

+ Cca2 (Nalpqéi + gal[pyqé])
V Ca3a2 e =241

Pq
pgc a a3a20a qc'd + C’(13(12 ('ualpqc at+ gal[PVqC.é.})'

where we have also used (3.22). Now summing of the right-hand sides of the

last displays yields

k
Vo (C40)ea = T[ (VO )0 — APy 0

c“ala? a

a? pca + 2A cal O-pé
1

o (Ocal 'upqa"{'c 2 1pq“pqcé) + kCa a2c Vpa — kgcalc 243 Vpga

(3.23)

7. Note V1 (C#0)ea € E(1, k) [k — 1].
Now we shall compute the formula for V¢(C(0)gea. According to (3.9),

where we have used C’ca?a1

ala?c
(COo) is defined as sum of three terms. Applying V? to the first of these,
and using (1.17), we obtain

V‘J(j’qcala =(n—3)A, "0, + C? T (Hgpa + Gypp V) -

Similarly for the second term, we obtain

1
Ve Ca la2[q U|p\c}é :é(n - 3)Apa1a2 pca +3 Ca (:U’qpca + gq[p”ca])
n—k+1
- _<quc a1a2) pga 2 Cala% pypé ’
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where we have used V9o, = == ]]j“ya Summing the right hand sides of the

last two displays with the third term ﬁvqgal[q(C’Qa)da yields
1

Vq(C<>0>qca = (Vpcc al a2> ped Q(Ccal /’qua+C 2 1quPqCé)
-1
+(n = 3)| A s + A ala20 pca] + W(Jalagc ez (3.24)
k k
Vo (C#0)ea — 9.1 VI(C a
+ 2( o k)va ( ‘U) 2(n - k)gca V ( ‘O—)Q
where we have used C' [qcaf’ I — ;C’ml‘“’ . In the last display, we need the term

V?(C40)pa. Using the definition (3.9) and applying the Leibniz rule for V7,

we obtain
VH(CO0) =22 (0= 3)A M0+ O
(C®0)pa T E [(n = 3) A2 s + O gT[p q4]
n—k+1
+ (Vrcpq a3a2)0pqr'é.' - TCGZGBPquq'é'] (325>
E—2)(n—-1 1
_ )k( ) [Aazpqapqé - ECa2a3p ql/pq'é'}
using (3.22). We will also need the identity
1 1 1
i(vpcha1a2)apqéi - 4<V cr al a2> pga QQCalA Opga T Aalcpa

which uses (3.22). Now we are ready to simplify (3.24) using (3.23), (3.25)
and the last display. Collecting terms the result is
n—2

VH(C00)a = g (Voo™ = 2(Co™ it O )
+2(n—k— 1)Apa1a20pca + wq}% 1”1/10‘,-ci
o i 5 (n—k)A, 7+ (k—2)A" , + (n—3)(n— k:)Acalp] )i

Now the final step is to simplify the last line using the relation A " =

AP+ A, P which follows directly from the definition A1, := 2V, Py,. A

short computation reveals that the last line is equal to
—k-1

(n—2A, P+ (n—2)—" A

TZ—I{Z a‘c’
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The Lemma now follows from the last two displays. O
Summarising our results we have the following.

3.2.11 Theorem. For 1 < k < n — 1, the mapping Ex[k + 1] — Eqopr
given by o — D(o) defined by (3.14) is a conformally invariant differential
operator. Upon restriction it gives a bijective mapping from solutions of the
conformal Killing equation (3.8) onto sections of € joar that are parallel with
respect to the connection *V, := V. — \T/C where V. is the normal tractor
connection and U, is given by (3.21). The connection *V, is a conformally
invariant connection on the form-tractor bundle € joax. The inverting map
from sections of Ejoax, parallel for *V., to solutions of (3.8) is Faop —
(k+ D)XAAF 0,

Sections of € yoar which are parallel for the normal tractor connection V.

are mapped injectively to solutions of (3.8) by
Fpoa > (k+1)X"4F 0,
and U, annihilates the range of this map.

Proof. Everything has been established in the previous Lemmas except for
the last claim. That parallel sections are mapped injectively to conformal
Killing forms is an immediate consequence of the formula (1.48) for the nor-
mal tractor connection on form-tractors. (Note that the equation from the
first slot of V. Fyop = 0is Veoar — (K + 1)fear + gogrpar = 0. This is the
same equation as from the first slot for a (k + 1)-form-tractor parallel for
*V.,, as \ch does not affect this top slot — the coefficient of Y.) Next it is an
elementary exercise using the formula (1.48) to verify that if Fao, is paral-
lel for the normal tractor connection, then necessarily Faoa = D(0) where
0o = (k+1)XAAR "oa- On the other hand from the first part of the Theorem

it follows that D(c) is parallel for *V. So W.(c) vanishes everywhere. O
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Remark. Let us say (as suggested in [41]) that a conformal Killing form o
is normal if it has the property that D(o) is parallel for the normal trac-
tor connection. It follows immediately from the Theorem that the operator
T, detects exactly the failure of conformal Killing forms to be normal; a

conformal Killing form is normal if and only if \ifc(a) is zero.

3.2.12. Coupled conformal Killing equations In this section we show
that solutions o € EF[k + 1] of the original equation (3.8) are in bijec-
tive correspondence with solutions of the coupled conformal Killing equation
@(,ﬁb)oqu = 0 on &,gr-1[2] for a certain conformally invariant connection
V. Along the way we obtain some related preliminary results that should be

of independent interest.

We defined the operator M in 2.1.9 by the formula

k=Ll

Mg Zgak[k+1] — aklel[k—l—i—l]

ak—11

1 Ll pl
Mg 00 = (n —k+ 1)Z%laak—lbl — lXBl]'glVb O qk—1p!

for 1 <1 < k. This is similar to the formula for the middle operator M in

(2.14). Here we define also the operator M by the formula

Mg s Earlk + 1] — Eqpripi[k + 1+ 1]

b! b!
M kigiOar = (k + ].)ZBlgblak,lO'ak — lXBlBlngékaakHO'ak

for 1 <1 <n — k, where we use multi-indices

) [ak-H . ak—H]

a

éllc,l _ [ak+2 L ak—H] )

The conformal invariance of M and M may be verified directly via the for-
mulae (1.47). Applying these to a form o € EF[k +1], 1 <k < n—1, we

obtain the tractor-valued forms

—ak—0l

Oqk—1Bl = MBz O gk and O jk+igl = Mak,lBank- (326)
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Although 7 4r—i1gi and o k411, as defined in (3.26), are invariant for the stated
ranges of [, in the sequel we shall only need the tensor valence of @ and ¢ to
be in the interval [1,n — 1]. Therefore we shall henceforth assume that for
Tar—gt We have 1 <1 < k —1 and for g prig we have 1 <1 <n—Fk—1,
respectively.

Let us next describe V. Gar-1y,p1 and V{Cgak+l}oB1 when o is a solution
of (3.8). (Recall that V denotes the coupled Levi-Civita-normal tractor
connection.) This is explicitly formulated in the proposition below. First we

need the following lemma.

3.2.13 Lemma. Let us suppose that o is a solution of (3.8). Then

{cak—1} k—1
chpo—akflpbl = 0 (n —k + 1) _n Iy

P q L p .
a1 Tpplar—tiqibt) ~ P Tartpis

(a)
{ca"*1}o
VeV 10k = (k + 1) [kaHal pO'pak — PcakJrlO'ak] . (b)
In reading (b) here recall the convention that sequentially labelled indices

(at a given level) are assumed to be skewed over.

Proof. First let us note that the trace part in the first case, and skew—
symmetrisation [ca*™!] in the second case, is zero on both sides. In the
subsequent discussion we use Proposition 3.2.4 and the notation therein.

The left-hand side of (a) is equal to 2=tV 1, i, up to the sign (—1)"~.

q

Now the Lemma (a) follows using C’c[palq] = 1C " and the equation for

V Voo in (3.11) where (C40) ey, is given by Lemma 3.2.3 (i). Note
that the projection {..} over indices in the latter lemma exactly removes the

completely skew-symmetric part of C_ "o, s (see (3.10)). Since the projec-

pga (

tion {ca®~'}; annihilates the completely skew-symmetric part C[CGQ b qa|p 414]
we have (C90) 15 =feat1} Copt” O pgar—i- The part (b) follows similarly

ca

from the expression for V ji e+14% in (3.11). O
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3.2.14 Proposition. The form o € Sk[k +1], 1 <k <n-—11is a solution
of (3.8) if and only if either of the following conditions is satisfied:

cab=11, (K — 1 —k+1 :
VCEaklel{ k:l}o ( )(n + )X blopa

n—k BBV e [a O |plak—!|q|b!]

cak+l .
chakHBl { a: }O —l(k + 1)XB1]3llCc[ak+1a1 p0'|p|ékgék,l]t')l-

Proof. The expressions on the left-hand-side can be computed by directly dif-
ferentiating the expressions (3.26) defining ¢ and & and expanding in terms
of the X, Y, W, Z splitting operators introduced in 1.2.5. The resulting
“Y-slot” (i.e. the coefficient of Y) on the left-hand-side is zero order, as an
operator on o, and is killed by the symmetrisation {ca®~'} in the case of
V. ae-1gt and by taking the trace-free part in the case of V.o x1ig:i. Essen-
tially the same argument shows (in both cases) that also the operator in the
W slot vanishes. The Z slot is of the first order as an operator on o. To

show this vanishes requires some computation. We will need the relation
kgc[alqumambq = (k? — l)gcal Vpo-kn‘ékflbl + lgcblvpaak,lpbl. (3.27)

(Recall our convention that all sequentially labelled indices are implicitly
skewed over. So the b-indices are skewed and also the a-indices are skewed.)
To prove this first observe the projection to the completely skew part of
the right-hand-side obviously yields exactly the left-hand-side. On the other
hand the right-hand-side is manifestly skew over the b-indices and also over
the a—indices. A trivial calculation verifies that that it is also skew—symmetric

1

in the index pair a'*b! and so the result follows.

Using (3.11) for V.o, it is straightforward to compute the Z slot of

V O ak-1gt 18
(n —k+ 1)V[Cdak71bz] + /{ch[al Vpalp‘ékfzbz] - lgcb1 vpaak—lpbl'

The first term is killed by the projection Pyar-1y and the remaining part is

in the trace part over {ca®~'} (i.e. in particular is annihilated by Plear-1}, )
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due to (3.27). The Z slot of V.o k+ip s

k(k+1)

n_k+1gca1gbzak,zvp0p k

gblak,lV[cO'ak] — lgcblgblék,zvakﬂaak +

(also using (3.11)). The last term is killed by taking the trace—free part and
it is easy to show the sum of the first two terms is gyi6: Veoare (up to a scalar
multiple) which vanishes after the symmetrisation {ca**'}.

At this point it is worthwhile noting that if the projection Pyar-1y, kills
VOar-1pgt Or the projection Pyeartiy, Kills Vo aripg: then o is a solution of
(3.8); the vanishing of the Z-slots implies V.0a = fica + Gpq1va in (3.11) since
Plearyo © Plear-1}, is a non-zero multiple of Pyeaky, .

It remains to evaluate the X-—slots. This can be done easily using the

rules for V.W and V X from 1.2.5. We get

ZXBlll;l [(n —k+ 1)Pcpgak_lpbl + chpo-ak—lpbl}

lXBlgll |:(k 4+ 1)Pc[ak+10'akgak,l]bl -+ ch[akJrlO-akgakJ]Bl]

for V.o k—1gt and V.o kg, respectively. Now the proposition follows using

Lemma 3.2.13. L]

For our next construction we will especially need the first case of the
proposition above for | = k — 1, that is for o,15:.. We will construct a
connection V on &5, such that the equation V (Tatyost = 0 18 equivalent
to the equation (3.8). Reformulating the Proposition for 7,.15,, we get that

o is a solution of (3.8) if and only if

(= Dk =2kt Dy g,

n—k B2BEE (e Tat)opg'h

v (3.28)

V(Cﬁal)ogk ==

This shows that V 7,5+ = 0 is equivalent to (3.8) in the flat case. In

the curved case we modlfy the connection V in the following way. Let us
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consider the tensor-tractor field

1
ReEOE1FORL @ = XE0§1 chlFOFl

1 0 £1 1 1
- XEOElZ;;O]l;lCC@lfOfl - 2XEOE?1XFOJJ;1A]‘1061 )

where ..1pop1 is the curvature of the normal tractor connection. By con-
struction this is conformally invariant. We will show that the required con-

nection V can be written in the form
@c =V.+ m/{cﬁﬁv reR

where (via the tractor metric) we view k.gogipop1 as a 1-form taking values
in End(£4) ® End(€4) and # indicates the usual action of tractor-bundle
endomorphisms (i.e. it is the tractor bundle analogue of the End(T'M) action
defined in section 3.2.2 and we use the same notation as for that case). To

determine the parameter x € R, let us compute the double action:

Rett(@ ape) = X 25 Copr o puttt | (n — k + 1)Z§,§aalbkk]

= (k=1)(n—k+1)X4ZEC . °

O g1gbk

X )
_ _§(k —D(k—2)(n—k+ 1)X32]giocpb3qgalqp.gk.

The form of the right-hand-side shows that V is the required connection for
a suitable parameter x € R, and comparing with (3.28) yields the explicit

value for . The resulting connection is

Ve=Ve+

2
hett, (3.29)

where on the right-hand side V is the usual tractor connection. Note that
this connection is obviously conformally invariant (since both x and the the
tractor connection are conformally invariant). This might seem inevitable,

since from its derivation (or otherwise) it is clear that the equation (3.28) is
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conformally invariant. However (3.29) is an invariant connection which may
turn out to have applications in other circumstances.

Let us summarise the last result.

3.2.15 Proposition. A weighted k-form o € E¥[k+1] is a conformal Killing
k-form (i.e. solution of (3.8)) if and only if

V (Gp), =0 (3.30)

where V is the Levi-Civita connection coupled with (3.29) and @ is the con-

formally invariant tractor extension of o given by (3.26) with | = k — 1.

Although we shall not directly need it below it is interesting to observe
at this point that the last result generalises. First observe that as well as
the action k.4 used in (3.29), we can consider also the action w.ff where we

view the tensor-tractor field
WeEOELfOf1 1= XEozjll CCelfOfl

as a one form taking values in End(€4) ® End(£?) and 1 indicates the usual
action of tensor/tractor-bundle endomorphisms. Now for any real or complex

parameter x we obtain a connection on tensor tractor fields via the formula,
V& =V.+ x(wt + kbl). (3.31)
where V indicates the usual coupled tractor-Levi Civita connection.

3.2.16 Theorem. A weighted k-form o € ¥k + 1] is a conformal Killing
k-form (i.e. solution of (3.8)) if and only if either of the following conditions
holds:

T —

{Caak_l}()Bl =0 or V?Cgakﬁ-l}OBl =0

where x = ﬁ and y = %, and @, o are the conformally invariant tractor

extensions of o given by (3.26).
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Proof. First let us compute the actions w.ff and k.fff on @ and . The result

18

1
wcmjaak*lBl = _§l(k - l)(” —k+ )XBl]l_;,lCc al Ipak—lght
1

/ﬁcﬂﬂaak—lBl = —§l(l — 1)(n —k+ )XBllglC b2 O_ak Lgpb!
1
WO kgt = El(k + 1)XBl]l;ll [(l 1)Ccak+2b2ak+1gék71510'ak
+ kccak+1a1pgék’lblapak]

1
Rcﬂﬂgak+lBl = —§l(l - 1)(/{7 + 1)XBlBlCcak+2b2ak+1gék71510'ak.

Now the value y = % follows immediately from Proposition 3.2.14. In the
case of o, we can reformulate Proposition 3.2.14 in the following way: o is a

solution of (3.8) if and only if

bty U(n — k + 1
Vg o R Dy vl e,

n—k B8 pak~lgbt

+ (l — 1)Ccpb2qaak*lqpl')l y
cf. (3.27). Thus the value 2 = -2 follows. O

Remark. Note that the connections (3.31) preserve the SO(p, q) symmetry
type (over tensor indices) and SO(p + 1,¢ + 1) symmetry type of the any
tensor-tractor field they act on. The coupled tractor-Levi Civita connection
V has this property. Then the w.fff action preserves these symmetries since
w, is a 1-form taking values in the tensor product of orthogonal tractor en-
domorphisms tensor with orthogonal tensor endomorphisms. Similarly s, is
a 1-form taking values in the tensor square of orthogonal tractor endomor-
phisms.

Note also that the action Cgf of the Weyl tensor on tensors may in a
natural way be viewed as a conformal action of the tractor curvature Q4

« 77

on tensors. (For example contract each tensor index into a Z¢¢ and then
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apply the usual action of ,,f on these tractor indices. Finally remove each
the new tractor index by contracting with Z¢,.. The result is conformally
invariant since Qu,¢ pXP = 0.) If we extend the action 2,4 to tensors in
this way, then the connections V¥ and V¥ become simply VZ = V. + zr.ff
and VY = V. + yr ff with = and y as above.

3.2.17. Applications: Helicity raising and lowering and almost Ein-
stein manifolds. In the first part here we will assume the structure is almost
Einstein in the sense of [31]. This is a manifold with a conformal structure
and a section a € &[1] satisfying [V, Vi), + Plab),] @ = 0. Equivalently there
is a standard tractor /4 that is parallel with respect to the normal tractor
connection V. It follows that I4 := %DAoz =Yaa+ 24V, — %XA(A + P)a,
for some section o € £[1], and so X4 = « is non-vanishing on an open
dense subset of M and on this subset ¢ = a~2g is an Einstein metric (where,
recall g is the conformal metric). In particular any conformally Einstein
manifold is almost Einstein but in general the converse is not true.

In this setting we immediately have the Theorem which follows. Recall
that in a particular choice of metric and using v and p from Proposition
3.24, a k-form ¢ is a Killing form if it is a solution of (3.8) with V14
identically 0. We will term a k-form o a dual-Killing form if it is a solution
of (3.8) where instead Vopuqx is identically 0. (On oriented manifolds the

Hodge dual of a Killing form is a dual-Killing form and vice versa.)

3.2.18 Theorem. Let us consider a k—form o € EF[k + 1]. Then, for
ke{l,--- n},

Tar-1 1= AV 01, — (0 =k + 1)(VP0)0pim1, €E"[R]
is conformally invariant. For k € {0,--- ,n— 1},
T okt1 - = aVi10q0 — (K + 1) (Vgrna)oar € 8k+1[k + 2]
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is conformally invariant. If o is a solution of (3.8) then we have the following

equivalences:

— c k—1
V{Caak—l}o = O < Ccal pqO’ék—lpq { a: }0 O

i, (3.32)

— N p
V{Cg o 0 C’ca’“+1al Takp -

for2 <k <n—1and1 < k < n— 2, respectively. In the case that the
first curvature condition is satisfied then the corresponding conformal Killing
form Gar—1 is a Killing form away from the zero set of o, and in the Einstein
scale g = a~2g. In the case that the second curvature condition is satisfied

then the corresponding conformal Killing form T opy 150 dual-Killing form

k—1
away from the zero set of o, and in the Einstein scale g = a2g.

Proof. The first part of the theorem follows from relations Gar-1 = I8Gk-15
w1 = IPagri1p where the forms Ta-1p and gy are defined by

(3.26) in Section 3.2.12. The result (3.32) follows from Proposition 3.2.14

and o
—a

and continuity, since the tractor I? is parallel and I Xp is non-vanishing
on an open dense set in the manifold. For the final points note that, from

the formulae for 7,:—1 and T pir 8lven in the first part of the theorem, it is

k+1
clear that these are, respectively, coclosed and closed in the Einstein scale

g = a~'g given off the zero set of a. m

Remark. 1. Note that the first curvature condition on the right-hand side of
(3.32) is that (C4o) = 0. That is that the projection of Cto to £(1,k —
1)[k — 1] should vanish everywhere. Similarly the second is simply that the
(unique up to a multiple) projection of Cto to E(1,k + 1)o[k + 1] should
vanish everywhere. Note that in the case that the manifold is oriented then
the second curvature condition is exactly that the Hodge dual of o satisfies
the first condition (as applied to (n — k)-form solutions of (3.8)).

2. Note that on an almost Einstein manifold with a conformal Killing

k-form such that (C'#0) = 0 then, according to the Theorem, on the open
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dense set where « is non-vanishing there is a scale so that & is a Killing form.
But the section o does not necessarily give a global metric whereas the form

7 is a globally defined conformal Killing form. A similar comment applies to

I

3.2.19 Corollary. If o, is a conformal Killing 2-form then
Go = aVPo,, — (n — 1)(VPa)o,,

is a conformal Killing vector field (i.e. solution of (3.8) withk =1). If ol,_,

is a conformal Killing (n — 2)-form then

o 1= Oévan—lO;nﬁ — (n — 1)(van—1a)o';n,2 c gnfl[n]

—an"—

is a conformal Killing (n — 1)-form. Away from the zero set of «, 7, is a
Killing vector for the Einstein metric g = a~2g, while in this scale o’ | is
—a

a dual-Killing form.

Proof. This is just the Theorem above for k = 2. The condition C,;, "0y,
is trivially satisfied, and, hence, so too is the dual condition (cf. point 1. of

the Remark above). O

Note that a weaker form of the first part of the Corollary has been proved
(by a direct computation) in [45, 7.2].

Remark. Note that according to the Corollary, on Einstein 4-manifolds a
non-parallel conformal Killing 2-form implies the existence of either a non-
trivial Killing vector field or a non-trivial dual-Killing 3-form. Thus if the
4-manifold is also oriented then, in any case, a non-parallel conformal Killing

2-form determines a non-trivial Killing vector field.

The first part of the theorem is valid also for £ = 1 in the sense, that if

0, satisfies (3.8) then 7 := aV?0, — n(VPa)o, is (conformally invariant and)
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another almost Einstein scale. This is easily seen as follows. Let us write

ocp = D¢ po,, where D was defined for Lemma 3.2.6. Then

by Lemma 3.2.7. Note that IPc¢p is parallel with respect to the normal

tractor connection V since
Vo IPDE o, = (Veoep)IP = 0" QpuepIP = 0.

Then the result follows from Theorem 3.1 of [34] since & = X“IPocp.
Some related results follow. Following [34] we term a metric (or conformal

structure) weakly generic if the Weyl curvature is injective as bundle map

TM — 3T M.

3.2.20 Proposition. (i) If o, is a non-homothetic conformal Killing vector
field (i.e. a k =1 solution of (3.8) with non-constant V,o%) on an Einstein
manifold then there exists a mon-trivial conformal gradient field. That is a
non-trivial solution &, of (3.8) which is exact for the Einstein scale.

(i1) If a weakly generic conformally Einstein manifold M admits a conformal
Killing vector field o, then o is a homothety for any Einstein metric in the

conformal class.

Proof. Let us write I}, := Ip and I% := ocpI”, where ocp = D& po,. These
parallel tractors determine a parallel tractor 2-form tractor I ﬁCIQD]. Let us
write 6, := 5 XY I 17, (Note that from the last part of Theorem 3.2.11 it
follows immediately that &, is a conformal Killing field hence Q9 .5, = 0
by (3.33). Thus C,,, 76, = 0.)

cyp

Since I}, and [2 are parallel and the top slot of 12 is @ = X“IPocp it

follows (Theorem 3.1 of [34]) that I%2 = 1DcG. To compute G, let us write

T n
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explicitly

1
I}, =Ypa+ Z4Vaa — = Xp(A + P)a
n

_ _ 1 _
I3 =Yoo + 28V 0 — —Xco(A + P)o.
n

Here we have used the tractor D operator given by the formula (1.32). Now it
follows easily that , is (V,a)ad — a(V,7) up to a (nonzero) scalar multiple.
(From this formula, it is also easy to verify by a direct computation that
7, satisfies (3.8).) In the Einstein scale a we have Va = 0, whence 7, =
—Vau(ad) = =V, (a?VPo,).

(ii) This is an immediate consequence of part (i) since a conformal it is
well known (and an easy exercise to verify) that any conformal gradient field

0 necessarily satisfies Cg,“p07 = 0. O

Theorem 3.2.18 exploited the standard tractor I4 which (corresponds to
an almost Einstein scale a and) is parallel with respect to the normal tractor
connection V. Here we drop the assumption that the manifold is almost
Einstein and assume instead that the manifold is equipped with a conformal
Killing field ¢®. Then we use the tractor o4p := D¥ g0, (given by (3.14))
provided by the conformal Killing form o,. This is not, in general, parallel
with respect to the normal tractor connection V. Rather, we obtained (3.33)

in Lemma 3.2.7.

3.2.21 Theorem. For each pair o € EY[2] and 7 € EF[k + 1]

Tak-2 1 = 20"V 02,0 + (n — k + 1)(VP0) Tar-2,, k€ {2,-- ,n}

Pq

is a conformally invariant section of E¥72[k — 1], and

Takt2 o = 20gk+1V gh42Tak + (k} + 1)(Vak+10'ak+2)7'ak, ke {0, s ,n—2}
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is a conformally invariant section of E¥*2[k + 3. If o and T are solutions of
(3.8) then the following is satisfied: for 3 <k <n—1 Tar2, is a solution of
(3.8) if and only if

{cak~?}o

(n—k+1)C" Plrgr-2p,0, + (k —2)C P Tpare—240" " = "0

cal

and, for 1 <k <n—3, T2, i a solution of (3.8) if and only if

p D {cak+2}0
QCcakHal Tpékgak+2 —C cak+1ak+27—a’“gp = 0.

Proof. Similarly as in the proof of Theorem 3.2.18, the first part follows from
relations Tar—2 = Tar2pg0"™ and T2 = Taer2pg0™. The second part is a
result of a direct computation. Using Proposition 3.2.14 and (3.33) we obtain

the following:

rs (=200 (g

Vc?ak—2RSU C?ak—2Rs)O'RS + 7ak—2RSvCO'RS

ak—21, 2 —k 1
‘ - ’ (n—l:)XRg [(k - 2)Ccpalq7_pék_2qs - Ccpqupé-k_zqal} URS
n —
+ Tak—zRSQpcRSUP
{Ca):2}0 n_k_'_l
N n—k

k+2
RS {ca”}o RS
VCIa’H’QRSU = (VCTa’“‘WRS)O- + Tak+2RSvCU

[(n—k+1)C° P Ti2p,0, + (k—2)C " 10,50-2450° ] ,

ca

RS

{ca?}o RS RS
= _Q(k + 1)XR§'Ccak+lalprékgak+zsa + Iak+2RSQpc Op

{cakt2}q p p
= —(lf + 1) [QOcakHal TpakOgk+2 — C cak+1ak+27—a’“0p} .

]

Note for the cases of a conformal Killing 3-form 7 the first curvature condition
of the Theorem is satisfied by any conformal gradient vector field o.

Now it is obvious how to obtain more general results for couples of con-
formal Killing forms o € £l + 1] and 7 € E¥[k + 1] where 1 < k,l < n — 1.

=~ — I+1 -~
We set 041 = Do and define Tpr-i-1 1= Tap-io10110% " and 7 psin 1=
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zakHHAmaAlH for0<k—Il—1<mnand0<k+1+4+1 < n, respectively.
The case | = 1 is described in the previous Theorem and in general, the
obstructions for Tax—1-1 and 7,41 to be solutions of (3.8) are very similar
to the cases [ = 1. (In the proof of these new cases, we replace V.o by
V.oA™". The latter is, in general quite complicated but we actually need

only 'Z-slot” and "Y—slot’” which are similar to the case [ = 1.)

3.2.22 Corollary. Let o, € &,[2] be a solution of (3.8) and write pp. =
Vioq (in a choice of scale). Then the section

n—2

Oa0fhala? ** * Ha2r—1420 € £2p+1[2p + 2]7 p < L 2 J

is conformally invariant. If 0,C. 2, %o, = 0 then it is a solution of (3.8)

a?c
forany 1 <p< ["T*ZJ

Proof. For p = 1, this is Theorem 3.2.21 applied to 7 := ¢ € £'[2]. If the
curvature condition is satisfied then it is easily checked that applying the
same Theorem to o, and 7 := 0,401,142, We obtain the case p = 2. Repeating

this procedure, the general case follows. O

Let us note there are several results in [46] related to those in this section,
see Propositions 3.4 and 3.5 in [46]. These concern a special case satisfying
that V.04 is pure trace (which implies that o, is an eigensection for the
Rho-tensor P’ viewed as a section of End(7T'M)). This immediately yields
o.C .,

0Coa2. "0, = 0 using (3.11).

Our last application concerns conformal Killing m-tensors. These are va-
lence m symmetric trace-free tensors ty.... € Ep...c),[2m| which are solutions of
the conformally invariant equation V(,ty....), = 0. Obviously, any conformal

Killing form o, € &,[2] yields a conformal Killing tensor o, - - - os),. Note

o
that generalising the m = 2 version of this observation we have the follow-

ing. If 0, € E[k + 1] is conformal Killing form then J(aéab)oé € Ean 4], 1s a
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conformal Killing 2-tensor. (The special case of this where o is a conformal
Killing 2-form appeared in [52, 4.1(4)].) This follows from (3.11) by a direct
7. P7, . (which holds

computation or from the relation a(aéab)o o= ma(a Do

since X, and Z“ are orthogonal), and Propositions 3.2.14 and 3.2.15. The
point here is that one applies the normal tractor V. connection to E(aEEb)OE
to obtain QE(QEVb EC)OE after the projection to Epe), [4]. Then from Proposi-
tion 3.2.14 and again the orthogonality of X 4 and Z# we may replace V by \Y
to obtain 26(;;3@,) EC)OE' But then by Proposition 3.2.15 the last expression

vanishes. It is clear this example generalises and so we have the following

Theorem.
3.2.23 Theorem. Suppose o',---, 0™ is a collection of conformal Killing
forms of respective ranks r1,- -+ vy, where (3. r;) —m is an even number.
Then

0(1a op - USLO
is a conformal Killing m-tensor, where o} - o - --- - o™ indicates any con-

m

traction of the collection o',--- ,0™ over the suppressed indices.

Of course it will often be the case that a given contraction o, - o7 -
o vanishes upon projection to the trace-free part. However it is easy to

proliferate non-trivial examples.
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Appendix A

gBGG splitting operator in the

flat case

We shall prove uniqueness of the gBGG splitting operator in the conformally
flat case, see Defined 1.3.7. This concerns regular patterns. Recall that for
a given 50, (C)-dominant weight A, such a pattern consists of bundles V¥4,
w € WP see details in 1.3.3 and 1.1.1. Here we show that regular patterns
can be interpreted, on the level of p—representations, as certain cohomology
spaces. We start in a more general setting.

For a representation m : a — gl(V) of an arbitrary Lie algebra a we
have the differential & : Hom (A" a; V) — Hom (A" a; V) defined by the
formula

(@p)(Xo A+ A Xg) =) (=)™ p([Xs, XGI A Xg e Xy X A Xy)
i<j

+ Z(_l)iW(Xi)p(Xo Ao Xio AXR).

It is straightforward to show 9 = 0. Thus a differential @ induces a cohomol-
ogy space H*(a;V), called the cohomology of a with coefficients in V. (We
set Hom (A" a; V) = 0 for k < 0 and k > dim a). Here we follow the notation
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usual for parabolic geometries i.e. 0 denotes the coboundary operator.

We are interested only in the case, where a = p, and m = v|p, for some
representation v : g — gl(V) and where p, is the nilpotent part of a (real
or complex) parabolic subalgebra p C g. It follows from the structure of
parabolic subalgebras that we have the natural action of the elements from
p on Hom (A py;V) (it is the adjoint action on A p, and the action given
by 7 on V). This induces the representation of p on Hom (A p4;V) which
descends to the representation § : p — gl(H(p,,V)) on the cohomology.
This representation is completely reducible hence we need only the restriction
B: g0 — gl(H(py,V)). This is shown in [40] for the complex case (see the
Theorem below), the real case follows from the complexification.

In the complex case, g and V are over C. Then structure of ( is described
by the Theorem below. (See [48] for a real version of this Theorem.) This
uses the notation ®,, = w(A_) N A,, see 1.1.1 for the notation. The set ®,,
contains only roots of p, i.e. the positive roots of g which do not lie in the

semisimple part of go (see [40]).

A.1.1 Theorem. [40] Kostant’s result. Assume the complex case. For
a finite dimensional representation v : g — gl(V) with highest weight A
and restriction m = v|p, the irreducible components of [ are in bijective
correspondence with the set WP and the multiplicity of each component is
one. The highest weight of the irreducible component of the representation
B corresponding to w € WP is w.A = w(A + R) — R and it occurs at degree
|w|. The generator of this component (the vector of the highest weight) is

/\aeq,w go — Uup where v,n €V is a weight vector of the weight wA.

Henceforth we assume the conformal setting. That is, g = s0,(C) or
g = s0,,. Using the notation from 1.3.1, the irreducible p-representations

VA w € WP are components of H (pi; (VA)*)" = H(g_;VA). The short
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operators from the regular pattern with the weight A can be constructed as
operators between irreducible bundles corresponding to components of the
p-module H(g_; V*) [20, 13]. The space of cochains of degree k is denoted
by Hom (A" g_; V) and we have the isomorphisms

k k
Hom (/\g_;VA) %/\p+®VA%Eak ® VA

[

since py = g* = TrM for each z € M and we use the notation E,x =
/\k T*M. It follows from Theorem A.1.1 that there is exactly one copy of
Ve in @) Eu ® VA, both viewed as go—modules.

Now recall the definition of the gBGG splitting operator, see 1.3.7. This is
an (invariant) differential splitting operator for bundles from regular patterns.
In the complex case and for a g—dominant weight A and w € WP, |w| = k,
this is VU — & ® V2. In the real case, this is an operator ¥ : VY — )/
for V irreducible such that V** C V(C) and ¥(C)|wa is the gBGG splitting

operator.

A.1.2 Theorem. Let V' be an (irreducible) bundle from a regular pattern.
Then the gBGG splitting operator on V' exists uniquely in the conformally

flat case.

Proof. The existence is established in [20, 13] and in Section 2.2 for both
scalars. Let us consider the complex case and suppose we have two splitting
operators Wy, Uy : VU4 — £ @ VA in the flat case. Suppose the difference
Uy — Wy YA —— £ @ VA is non-trivial. Recall we defined go—components
and projecting parts of bundles, sections and differential operators in 1.2.2.
If U; — U, is nontrivial then there is an irreducible projecting part pr :
V' — Eu @ VA of the operator ¥; — W, such that the (invariant) operator
D = prr(V; — Uy) : VA — VYU is nontrivial. (Recall pr* : Ep @ VA —

V') Thus ® is an operator between irreducibles which means I' = w'.A,
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w' € WP according the classification in 1.3.3. Since ¥; and W, have the
same projecting part and ® is nontrivial, clearly V' # V%, On the other
hand, |w'| = k due to the uniqueness of V' C @} E, @ V* (and because
VI = Eqge @ VA).

Summarizing we have a nontrivial invariant operator ® : Y4 — pw'A
for |w| = |w'| = k. But ® cannot be a multiple of identity as the source and
target spaces are different. Hence w # w’ which implies that n is even and
k = 5. But there is no operator between two components of degree 4 in the
pattern in 1.3.3 for n even so there is no nontrivial operator V** — VT in
the flat case.

Now let us consider the real case and two different gBGG splittings
Uy, Wy 0V — V. Then (¥; — ¥y)(C) # 0 which again yields a non-
trivial operator ® : V4 — VI as above. Thus the result follows from the

complex case. O
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Appendix B

Transformation of connections

For a given pseudometric g on the manifold M, the Levi-Civita connection
V on T'M is the unique torsion free connection satisfying Vg = 0. Then
the Clifford section 3, € & ® End (£,) determines the spin connection V
on the dual spin bundle F) such that V3 = 0 where V denotes the coupled
connection. (We use the dual here but recall £y, & E*.) We need to know
how these connections change if we multiply g by e** for a smooth positive
function T € £ on M. We shall consider only the real case here but the same
results apply in the complex setting.

We shall use the notation from 1.2.1. In particular, a metric g from the
conformal class corresponds to a nonzero section o € E[1], using g = o %g.
Consider a section f € E[w]. The exterior derivative d is defined on o~ f €
£[0] and we put Vf := 0*d(c~"f). Consider another metric § = ¢*¥g. This
correspond to & = e Yo € E[1]. Then Vf = 6¥d(6~f) = Vf + w(dY)f
after a short computation. Using the 1-form Y, := V,T, we obtain the usual

formula

Vof = Vof 4 wYof for f e Ew). (B.1)

B.1.1. Transformation of the Levi—Civita connection. To compute an
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analogue of (B.1) for V;U? for U’ € £°, we need to know how the Christoffel
symbols I' of V change if we multiply the pseudometric g by e?Y. We shall
compute this for a coordinate frame e, = (e, - ,e,) of TM and the dual
coframe €2 = (!, .- &") of T*M. That is, ‘concrete’ indices are underlined.
The Christoffel symbols Fm = (Vlea) can be expressed as derivatives of

the pseudometric g and we obtain
Aoy Ly . b b
Ligw = 59 “(Gir.a + Grai — Giar) = Fm + T, 5 + Tidg — T7Gai

where the indices after comma denote the values of partial derivatives and
Gap = €2Y g and g2 = e 2T g2, The coordinate expression for the covariant

derivative is V,U? = %gf + I;,2U%. If we insert the transformed Christoffel

symbols [ and use the general abstract index notation, we get the result
VU’ = VU + T,80U7 + T,U° — Yo, UP  for Ub € £°. (B.2)

From this and (B.1), we easily obtain the corresponding formula for U® €
E’[w]. Note this yields the transformation of V,w, for a 1-form w, € &,

because &, = EY[-2].

B.1.2. Transformation of the spin connection. Let us start with the
spin structure (M, g, ) where the Clifford section [ satisfies the Clifford
relation

ﬁaﬂb + ﬁbﬁa = _gabid7 ﬁa € ga ® End (EA) (B3)

To compute Christoffel symbols of the spin connection, we need an orthonor-
mal frame e, of TM and the dual coframe % of T*M. By this we mean
g(ep, €q) = £dpg. That is, + or — may depend on p, g. (For example, p =1
yields 4+, p = 2 yields — etc.). Then the spin connection for f € &, is of the

form

of

Vif =55

+7rT;f where T; = T,,23%3, € & ® End (£,), r € R, (B.4)
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Here I';,2 are Christoffel symbols of the Levi-Civita connection i.e., ;2 =
e’(Vie,). We require 3, to be parallel i.e. V;3, = 0 with respect to the
coupled connection. This will determine the parameter r € R. V,;8, = 0

means V,;3,f = B,V f for every f € £, hence

OBuf
ox’

TS 4T = B+ BT

0Ba f

e

Bupl, it follows from the last display that —It8, = r (8L — Tif). If

using (B.4). Since f3, is constant along fibres of the bundle E} i.e.,

we insert the form of T'; from (B.4) and use (B.3) for simplification, we will
obtain
L6y = 7 (Tit°9 — Dia ) B

after a short computation. Now recall T';,2 = €2(V,e,) = —(V;e2)(e,) because

el(eq) = 02 From this, Tiee = [iggpe is skew symmetric on the indices ac
hence the right hand side of the last display is equal to —2rT’ Zgbﬁb. Therefore
r=3.

Now let us consider conformal transformation § := e?Tg. The orthonor-
mal frame with respect to § is é, = e"Te,. In the other words, we have to
consider the frame and the coframe e, of TM[—1] and &2 of T*M][1], respec-
tively. Using the abstract indices, thisise, = e} € £/[—1] and * = 8? € &[1].
Then ;% = 2(V,e,) = £2V,e¢ and using (B.2) and (B.1) for Ve, we obtain
the transformation

figé = Figb + Tgég — Tégig (B5>

where g;q = gice. Note inserting this to V,U% = %gf + T3,2U% (with abstract
indices), we obtain an analogue of (B.2) for U® € £°[—1]. Similarly, if we
apply the transformation (B.5) to a spinor section f, we have to consider
the latter one to be appropriately weighted, i.e. f € &x[3]. (Note Ej[3] is

a self dual (conformal) bundle.) Now if we insert (B.5) to (B.4) with r = 1
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and use abstract indices, we obtain the final result
o 1
Vaf:Vaf—§Taf—Tpﬁaﬁpf for f € E\[1/2]. (B.6)

From this and (B.1), we immediately obtain the formula (1.21) for f € &,[w].
Let us note that E[1/2] is the bundle ) from [8] where transformation of
the spinor connection is used but not explicitly mentioned. See also [7] and

references therein for more details.
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