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Abstract

On (M, [g]), a conformal n-manifold with ¥, an embedded hypersurface (i.e. embedded
submanifold of codimension 1) in M, we will construct a conformal Neumann-type oper-
ator which is third order in directions transverse to 3. This operator acts on the same
domain space, along 3, as the conformal fourth order Paneitz operator, in all dimensions
> 4.

In order to generate this operator, which we will denote by Pj3, we will use techniques
involving the conformally invariant tractor bundle and its associated connection.

We will conclude by producing a 3rd order analogue of Branson’s Q-curvature in dimen-

sion 4 and show that P3 governs its conformal transformation.
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Chapter 1
Introduction and Preliminaries

Conformally invariant differential operators have been important in physics since the turn
of the last century. In particular, a special role has been played by those operators which
have a leading term that is the power of the Laplacian. The conformally invariant wave
operator was the first of these operators to be generated. Among other things, the Dirac
wave equation for the neutrino depends only on conformal structure [10]. Interest in the
conformal powers of the Laplacian heightened in the early eighties and a conformally in-
variant fourth order operator on functions was independently constructed by both Paneitz
[19] and Riegert (restricted to Riemannian 4-space)[20]. This operator had leading term
A?. Not long after this, additional fourth order and sixth order conformal operators on
both functions and forms were produced by Branson [4]. The work of Graham, Jenne,
Mason & Sparling (GJMS) in the early nineties proved the existence of conformally in-
variant operators with a power of the Laplacian as leading term [17]. Using the ambient
metric construction of Fefferman and Graham, they systematically constructed operators
Pok; now known as the GJMS operators. The simplest of these operators, the conformal
Laplacian mentioned above, is produced when k£ = 1. Likewise, the Paneitz operator is
recovered when k£ = 2.

The conformal Laplacian differs from the Laplacian by the addition of an (n — 2)
multiple of the scalar curvature, on n-dimensional manifolds. In dimension 2, we see that
this scalar curvature term drops away and hence the conformal Laplacian annihilates

constant functions. Additionally, the conformal transformation of the scalar curvature is



2 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

controlled by the Laplacian, when n = 2 [23]. Branson extended this curvature concept
to the Paneitz operator, and beyond, to the other GJMS operators Py,. He observed
that the zero order part, which he called the Q-curvature, is composed solely of terms of
curvature tensors and their derivatives. He also showed that we are able to express Py as
Py, + @Q%, where P}, annihilates constant functions. Hence, the Q-curvature term
vanishes in dimension 2k. Branson noted that its behaviour under conformal rescaling is
governed by Py in the critical dimension 2k [8].

One of the drawbacks of trying to construct, and then prove the invariance of, the
Pk operators is that the conformal transformations required are complicated. The degree
of complication is heavily dependent on the number of terms of the operator, which in
turn is dependent upon the order of the operator. The conflagration of terms which are
generated as a result of these conformal transformations suggest the need for a simplified
algebraic structure. This is provided by a calculus now termed tractor calculus. This uses
a conformally invariant connection and other basic operators on an induced invariant
bundle, to produce operators which must be invariant by their very construction. There
are many advantages to using tractors over more conventional methods. On the one
hand the tractor algebra can easily be programmed into a computer to produce symbolic
results, and on the other, tractors can be worked with directly. They do not need to
use representation theory; despite their inherent link with this branch of mathematics.
This link has led to the generalisation of many GJMS operators [16]; and their respective
Q-curvatures.

Until recently, one relatively overlooked area of conformal geometry has been the
development and classification of conformal boundary value problems and the higher
order analogues of the Dirichlet-to-Neumann operator. Inroads have been made recently
by Branson & Gover [5]. Their tractor construction produces families of conformally
invariant boundary operators which are, in an appropriate sense, compatible with the
GJMS operators. However, their construction fails to generate some boundary operators
which, it is conjectured, do exist. These are the Neumann-type operators of order 2k — 1
on an embedded codimension 1 submanifold, in dimension 2k. One example of these; the
central focus of this thesis; is the P3, the third order boundary operator which acts on

the same domain as the Paneitz GJMS operator in dimension 4.
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In their paper on Zeta Functional Determinants [9], Chang and Qing showed the
existence of a P3 operator and a “T curvature” term which has a conformal transformation
similar to the Q curvature. Their construction involved the careful addition of local
conformal invariants. However, their construction only gives P3 for boundaries of 4-
manifolds.

In this thesis, the setting for all calculations will be on smooth n-manifolds, M, for
n > 4. The submanifolds we consider will be of co-dimension 1, and we will term these
hypersurfaces. For conformal n-manifolds with boundary, we will assume that the con-
formal structure smoothly extends beyond the boundary of the manifold to some small
collar. Hence when we discuss boundary differential operators, we view the boundary as
a hypersurface embedded in the extended ambient manifold.

After developing the necessary tools, we will construct a conformally invariant third
order Neumann-type operator which acts along the boundaries of conformal manifolds.
This operator, which we denote Pj3, is, in a suitable sense, compatible with the Paneitz
operator and exists in all dimensions > 4.

Finally we see that an application involving conformally invariant boundary problems
is in the area of Electrical Impedance Tomography (EIT). One form of EIT involves
the attachment of electrodes to a person’s body which measure and map the electrical
potential and the current on the skin as a response to a small current. In this arena, the
impedance (or conversely, the conductivity) of the body is a conformal factor, which is
to be reconstructed using methods in inverse problems; and the physical responses to the
electrical stimulus are the Dirichlet and Neumann operators respectively [1]. Presently
this only deals with the Dirichlet-to-Neumann problem and its inverse, however it is

possible that higher order problems could have applications also.

1.1 Conventions

For the body of this paper the Einstein tensor convention will apply. This is described
in the following way. If an identical index appears in both an upper position and a lower
position in the same product then the tensor will be summed across the index noted, and

in this way summation signs will be avoided.
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Normally the Einstein convention is only used if a specific frame has been chosen,
however this will be extended to include the indices where only the bundle is known and
an abstract index will take its place, according to the Penrose abstract index notation
[14]. For example, for a tangent vector field, v®, and a field of 1-forms, us, the contraction
of these is a scalar function represented by v%u,.

For the purposes of this paper there will be no notational distinction made between a
bundle and the space of all its sections. This difference will be implied from the context.
All bundles are based on smooth manifolds and will have the prefix, £: The tangent
bundle, in keeping with the index notation for tangent vectors, will adopt the symbol
£e. Likewise, &£, will denote the cotangent bundle of 1-forms. The tensor product of two
bundles will be represented by concatenation of their indices: e.g. £ = &, ® &p.

The indices on the individual sections will only be used to denote which bundle the
section originates from, and not a specific frame. (Note that letters from the start of the
alphabet will be used for bundle indices, and letters from the middle will represent frame
indices, when introduced).

Round brackets (..) enclosing tensor indices will be used to denote the symmetric part
of the tensor or bundle section over the enclosed indices. Similarly, we will use square
brackets [..] around indices to denote the skew component of the tensor, over these indices.
For the purposes of this paper the scalar field for tensors will always be R.

I have used the computer program Mathematica to carry out many of my calculations,
in particular via the Ricci package developed by J. Lee. Any Mathematica output in this
paper will be in courier font for easy recognition. The Ricci package has a concise notation
with regard to indices. Namely, that derivative indices all follow the semi-colon on the

tensor.



Chapter 2

Elements of Riemannian (Geometry

Let (M, g) be a Riemannian n-manifold, where n > 3. (Appendix A.0.2)

Definition 2.0.1 (Connection). [18/ A connection on sections of a tensor bundle is a
mapping Vo1& —E, Q&
where £* represents the space of sections of an arbitrary tensor bundle

such that:

Vfi,foe&*oeand&® € &

(i)Ve(fi + f2) = Vefi + Ve fo

(ii)Ve(ofi) = &(o) fL +0Vefi

where &(o) =do(§)

(1it) Ve fr = oVefi
Ve fi is called the Covariant Derivative of the section fi along £

2.1 Levi-Civita Connection

Definition 2.1.1 (Christoffel symbol). Given a connection on the tangent bundle we
denote this by Ffj. It may be derived from the partial derivatives of the Riemannian met-
ric, to form the necessary coordinate functions in the formula for the default connection.

Let {x;} be a coordinate frame in a neighbourhood of a point x on (M, g) then the com-

ponents Ffj are defined by: Ffjak = V,0;
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Definition 2.1.2 (Torsion). Let u® v* € £ then the torsion is defined by:
T(u,v) = Vyv — Vyu — [u, 0]

We see that the Lie bracket, [.,.], appears in the above definition. The definition of
this appears in Appendix B.0.1.

Proposition 2.1.3 (Levi-Civita Connection). Consider (M, g), a Riemannian man-
ifold, and g the metric on the manifold. The Levi-Civita Connection, V, is the unique
metric compatible, torsion free connection.

i.e. ug(v,w) = g(Vyv,w)+ g(v, V,w) YV ul, v wt € E°

and T(u,v) = Vv — Vyu — [u,v] =0 Vu v e &

Proof. Choose a frame {z;} in a neighbourhood of a point z € M
Without loss of generality, let u = 0;,v = 0,

1: Torsion Free

Vid; — V0 — [0:,9;] = 0
:>Ff]ak —Ffzak =0

k. _ Tk

2: Metric Compatibility
Note that in the following part of the proof, the notation, g;;; will be used to represent

akgij-

Let v = Ok, v = 0;,w = 0,
ug(v,w) = g(Vyv,w)+g(v, V,w)
= gije = gLk + 9l

(2.1)

Let us define ['j; := g;T%,

Then by permutation of the indices:
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= Gijx = Ljri + ik
= Gjki = Drij + T
= Okij = DLijk+ T
i = 1/2(Gijk + Grij — 9jk.i) (2.2)

Thus the Christoffel function is uniquely determined for all metrics, g. Hence this con-

nection exists for all Riemannian manifolds, and it is unique. O

Unless specifically stated otherwise (with the use of brackets and dots), the connection

operator, V, will act on everything to its right.

2.2 Connection on a Submanifold

Take a submanifold (Appendix A.0.3) (X, ¢*) of manifold (M,g). The metric which is
intrinsic to ¥ is determined by the ambient metric along ¥, acting on vector elements
from the tangent bundle of ¥ which is viewed as a subbundle of the restriction of the
tangent bundle to M. The submanifold has co-dimension 1 and so the restriction of the

ambient tangent bundle to ¥ may be decomposed into [22]:

£y, = EL D NO

Definition 2.2.1 (The Projection Operator). Let N* € N be a unit vector field
which is normal to ¥ along X, then we define: % =6 — N,N°®
We see that for v, a tangent vector in the tangent bundle restricted to X, the decompo-

sition follows:

v$ (v — NeNyob) + NNyt = T80 + NoN,wb

The intrinsic metric g* is g|y restricted to 7%, where we view TS as a subbundle of

TM. Thus g, — N,N, extends g% to a tensor which acts on ambient tangent vectors so

we identify these and write g5 = gup — NolNo.
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Proposition 2.2.2. Recall that we write £* for the tangent bundle of our n-dimensional
manifold M and E& for the tangent bundle of our (n—1)-dimensional submanifold > with
unit normal, N°.
Then for v® € £, V>v, defined by,

Vb =115 I V ot

18 the intrinsic Levi-Civita connection on X

Proof. Without loss of generality we will take a frame, {z;}, in a neighbourhood of a
point, x, on our submanifold X.

Take ¢ from the tangent space of the submanifold at that point.

We will begin by showing that the formula H; Vvl describes a connection.

Let u, v’ be tangent vectors of the manifold, restricted to points on ¥, and ¢ and p be
scalar functions.

Using the defn (2.0.1).
I V,e(ou' + ') = T pekar (o)u’ + T (o p*Viu®) + T peh Vo'
= p(&oy (o)ul, + JHgV,gui) + Pl Vv
From this we can see that this does behave as we would expect a connection to. Addi-

tionally it acts only on intrinsic elements to produce an intrinsic derivative.

We wish to check that the connection is the Levi-Civita connection for g*.
Step 1: Torsion Free

In our frame {z;}, let coordinate z; = 0. Then the connection on vectors from the
tangent space of ¥ at the point z is given by: IT¢ H;:’ V0 = Hﬁ'H?IF j’f #Ok. In this instance
the k index is an intrinsic index. i.e. 0y is a vector which is in the tangent space of the
submanifold.

Hence it can be said that: I'};;F = H;:,H;:'Fif“ - The commutativity of the projection
tensors implies that the intrinsic Christoffel symbols are symmetric. ie. ;% = I3k
This verifies that the connection is torsion free.

Step 2: Metric Compatibility
Metric compatibility is defined by:
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ug®(v,w) = ¢*(Viv,w) + ¢*(v, VZw) where u,v,w € TY and ¢g* is the intrinsic metric.
Let u = O, v = 0;,w = 0; then
8/&95 = g]lrzzkl + 9 F]Ekl
= GHITIET, , + g TIETY, |, (2.3)

Now by permutation of the indices of equation (2.3) and application of the symmetry of

the Christoffel symbols.

005 = GHIFTITY , + gl TIETY, (2.4)
00, = gulUIIT, , + gfIFTE T, (2.5)
We see here that adding equations (2.4) and (2.5), and subtracting (2.3) results in:
py 1
gle H] Fl = E(aigjzk + 8]‘91§i - 81992'2]')

Hence the intrinsic Christoffel symbol I'};!, defined by I HJ [, s, is uniquely determined

by the intrinsic metric. O

2.3 Curvature on Riemannian Manifolds

Definition 2.3.1 (Riemannian Curvature Tensor). [11] Let v* € £* and V be the

Levi-Civita connection on (M, g) then:
Rab d/U (V Vb vaa)/uc
The Riemannian Curvature tensor, R,’,;, may be expanded in the following manner:

Rabcd - Cabcd + Pacgbd - Pbcgad + Pbdgac - Padgbc (26)

Where
Clabea s the completely trace free Weyl tensor and Py, is the Weyl-Schouten tensor,

a symmetric 2-tensor described below.

The trace of the Riemannian Curvature Tensor, formed by contracting over the first
and third indices, is the Ricci Tensor which is a symmetric 2-tensor denoted R.

Let v € £ then Rgv* = 2V, Vy v

The Scalar Curvature is defined by R = RS
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Proposition 2.3.2. R,y = g + (n — 2) Py
where J = P¢

This is easily obtained by the contraction of indices a and ¢ of eqn (2.6).

Corollary 2.3.3. R=2(n—1)J where n > 1

One consequence of the Jacobi identity, in Appendix B.0.1, is the Bianchi identity
which specifically applies to the Riemannian curvature tensor. By applying the connection
to (2.6) it is not difficult to show that:

v[eRab] =0
From a contraction of this we obtain:

Vel =2(n—3)ViPya
The tensor on the right hand side is an (n — 3) multiple of the Cotton- York tensor. When
n < 3 the Weyl curvature necessarily vanishes due to symmetry conditions.

Further contraction of the a and the d index when n > 3 yields:

VP =V,J (2.7)

This result will be frequently used throughout this paper.

2.4 Curvature on Submanifolds

We will need to relate the curvature of the ambient manifold to that of the embedded

submanifold. Remember that our submanifold has dimension (n — 1).

Definition 2.4.1 (Second Fundamental Form). We will henceforth refer to this ten-

sor as SFF, and denote it by L.

Let N* € £* be a smooth unit vector field which is normal when restricted to X, then
Loy =TIV N,

and the mean curvature, H, will be defined by:
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H=(n—1)"'V°N,

The SFF can be decomposed into a sum of its trace free part and the trace only part
as follows:
Loy = L(ab)o + g(iH

Note that the small circle following the indices represents that the tensor is trace free.

The Codazzi equation (Appendix C.0.1) provides us with a relationship between the
Riemannian curvature of ¥ in M and the SFF. As pointed out in the appendix, Spivak uses
a different convention for his second fundamental form and hence our Codazzi equation

will be expressed with the opposite sign.
MCTY Y N Ry = ViLaa— VeLia (2.8)

Using this we will determine the relationship between the SFF and the Rho curvature

tensor.
Proposition 2.4.2. (n — 2)[IgN°P,, = V4 Ly — (n —2)VZH
Proof. Using the Codazzi-Mainardi equation we know that:
MY TIENR, Wy = ViLaa— VL
Contraction over the b and d indices results in:
G¥NYN.R,,4 = Vi&Ly — (n—1)VEH
The indices b and d are now intrinsic indices to X, hence:
=MNYN,Rf = ViLy—(n—1)VZH

Expanding the SFF into its trace and trace free components gives us: Lqy = L(ap)o + 9o H
Converting the Ricci tensor into Py, results with Hg’NCRa,c =(n— 2)1’[3' NcPa/c—i-Hg'Na,J

so we obtain our result because H‘;' Ny = 0. O






Chapter 3

Conformal Geometry

3.1 Conformal Manifold

Definition 3.1.1 (Conformal Manifold [14]). A conformal n-Manifold, (M, [g]) is a
smooth manifold M and an equivalence class of metrics [g].
For each pair g,q € [g], there exists some Q € ET (Q is an Rt -valued function)

such that g ~ G = Q%g

Let (M, [g]) be a specific conformal manifold. The bundle of metrics, G, is a principal

bundle with fibre Rt. This induces line bundles of the form:
Ew]=G X_ppR=G xR/ ~
where ~ is defined by (Qgz,4) ~ (g2, (7)) ™%?y) (9, € G,Q € R",y € R)
The sections (called densities), &, of £[w] are equivalent to R-valued homogeneous func-
tions, o, acting on the bundle of metrics, where:
o(Qge,7) = Q"0(gs,7)

The bundle of metrics, G, is isomorphic to £E1[—2], where £7[—2] is the ray subbundle
of £]—2] with fibres R" C R [16]. By choosing a metric g from [g] we define a section of
ET[-2], : G — R, by ¢(gs, ) = Q2. Given such a section ¢, we see that ¢(g,,z)g =
&(9s, )7, so it defines a metric in the conformal class. The conformal metric is the section,
8ab € Eq[2], which represents the map, ga : E7[—2] — Eup)

If we choose &9, a section of &[1], such that g = (£9)~!g, then we see that the section

determines a metric on M. &9 is called a choice of conformal scale.

13
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The conformal metric g gives us a canonical isomorphism from £%w]| to &,[w + 2], by
v® — gapv® = v,. Similarly its inverse raises tensor indices.

For a particular metric, g, from the conformal class, a trivialised density, o, is a
function on M. Rescale of the metric g — § = Q?¢ will lead to a conformal rescale of
oc— 0=

The dependence of the Levi-Civita connection on the derivatives of the Riemannian
metric implies that a change in metric will result in a change in the connection. After
rescaling the metric, gq, to g., We are able to see the effects on the connection by way of

the following proposition.

3.2 Conformal Transformations of the Connection

Proposition 3.2.1. Consider (M, [g]), a conformal manifold with Levi-Civita connection,
Va, for a specific metric g
Then ¥V u, € &,, v* € £
(i)@aub = Vauy — Yoty — Totlg + gap T qu’
(i6)V 40" = V,0° + Y ov° — Yu, + 6%,
Where T, =01V, Q

Proof. Choose a coordinate frame {z;} in a neighbourhood of a point, x, of M.
(i)

—

ﬁiuj = Oy — ul'y;
But /.q\lkféj = 1/2(Gjri + Grij — Gijk)
= 1/2(200:Qg; + Qgjr + 290;Qg1: + Vgrij — 200,00 — Qgijz)

Let Y, = Q7'

=T, = T+ " (Tigjr + Tigri — Trgij)
Viu;j = 0Ouj — uy (FZ + ¢*(Tigji + Y9 — Y1gij))
Viu; = 0Ojwu; + ukaj — (5;-“Tiuk — 5ijuk + g,-kauk
ﬁiu‘j = Vu; — Tiu; — Tiu, + gikauk (3.1)
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(i)
Vaok = opF + Ujffj
= 0"+ (L5 + ¢" (Tigi + Y9 — Y1gij))
= Vaf + T — Yro, + 65707 (3.2)
]
Definition 3.2.2 (Connection on Densities). Let g € [g] be a particular metric from

the conformal class, x € M and & be in the tangent space of M at the point x, then the

connection on densities is equivalent to the homogeneous function, Vga, on G such that:
(V£0) (92, 2) == g"(V{o)(z) = £ (970)(z)
Proposition 3.2.3. Let ¢ € E[w]| and V, be the Levi-Civita connection for a particular

metric, g, then the conformal transformation of the connection is given by:

V.5 = V.5 +wY,5

Proof. Pick a particular Riemannian metric, g, and a rescaled metric g

We know & is equivalent to a homogeneous function (¢*c)(z) = o(gs, x) such that under
conformal rescaling: o(Q%g,,x) = QY0 (gs, )

In the following part, the ¢g’s have been included on the V’s to make it explicit which
metric the connection is dependent on.

For o € £[w], a density, and £* € £%, Vg& is equivalent to:

Vga(ﬁx, ) =

= QY€ (g%0))(z) + (€2")(¢0)(z) (By the Liebniz rule)
= Q“(V{0)(gz; 7) + wQ"Y ()0 (9, T)
However both o and Vga are homogeneous functions described earlier.
Vio(Qg,,2) = (Vio)(Qgs ) + WY (€)o(Qg,, )
= Vga(?}\w, z) + wY(§)o(ge, x)

Because Vgo is a homogeneous function on G this leads us to the conclusion that a

conformal density transforms according to the proposition. O
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We are able to use the transformations of the connection in conjunction with the
Leibniz rule to generate the transformations of higher order tensors. e.g.

For wy, € Eu [w]

—~

vc(f‘)ab = Vcwab + (w - 2)’I\cwab - waac - Tawcb + waadgbc + wadbgac

3.3 Conformal Transformation of Curvature Tensors

The conformal transformation of the Levi-Civita connection induces the following trans-

formation of the Riemannian curvature tensor [11]:
Rapea = Rabed — 29¢1aVe)Ta+29:1a V5 Ta — 2946V Te
29014 T Te — gea9p) aTe T — geagpaLeTE
We are able to see that the variation is entirely by traces, and therefore the Weyl

curvature is conformally invariant because it is totally trace free. We can now easily

derive the following equations for P,;, and its trace J, from the above.

~ 1
Pab = Pab — VaTb -+ TaTb — §gabTCTC (33)

2—n

J = J-VT. +

T,
Our discussion on curvatures cannot be complete without looking at the transforma-

tion of the second fundamental form of X.

Proposition 3.3.1. The trace free component of the second fundamental form (SFF), is

tvariant

Proof. Recall that the SFF of a hypersurface is a projection of the Levi-Civita connection
acting on a unit cotangent vector, N, € &,[1], which is normal to the hypersurface.
Equation (3.1) shows us how this derivative transforms. Here we are looking at the

restriction of the connection along .
Loy € E311]
Lay = IIEV.N, = II5(V.Ny — TpN, + g TaNY)
= L+ 953 .N¢

L(ab)o - L(ab)o
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O

From this we can see that the transformation of the mean curvature is H = H + T,N¢

3.4 Conformal Operators

The conformal operators which we are particularly interested in are those which are
called GIMS operators [17]. These are essentially the conformally invariant powers of
the Laplacian. The first known of these was the conformal wave equation, which we will

construct below.

Definition 3.4.1 (O Operator). O := A + wJ where w is the weight of the domain

space of densities it acts on.

Proposition 3.4.2. Let 6 € E[w] then

06 = (A +wJ)ad is conformally invariant

if and only if w = Q_T"

This is the conformal Laplacian.

Proof. By repeated application of equations (3.1),(3.2),(3.3) & Prop. (3.2.3) we are able

to demonstrate this invariance.

Let 6 € Elw]

= g¥%V,Ved + wPy5)

= g (VeVaf — ToVa8 — ToVi7 + g YVo5 + 0Ty V,5 +
+wa (P — Vo Ty + YTy — %gachTc))

= 8Y(Vy(VaG + wYed) — To(Va + wYe5) — YoV + wYp5) +
48 Y(Vo +w Y 5) + wYy(VeG +wYes) +

1
+w5(Pab =V T+ T, Ty — igachTc))
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Use of the Leibniz rule and careful expansion will generate:

= g°°(VyVa0 + wPuo + 8y TV.0 + w/28 YT 0 +
(2w — 2)Ty V45 + (w* — w) YTy Y,0)
w

= Ad+wJs+ (n+2w—2)(T -V)s+ 5

(n+2w—2)(T-T)o  (3.4)

In order for the O operator to be invariant, w, the weight of the density must be equal to

2—n
2 - O

We can see that the number of terms would increase exponentially with the order of
the operator and this makes for very complicated calculations. This, of itself, is a strong
motivation towards developing a calculus which works within the conformal structure of

the manifold. The following chapter will look into this.

As an aside, we will look at two features of the conformal Laplacian in dimension 2.
The first of these is that in this critical dimension we see that the Laplacian, A is con-
formally invariant. The scalar curvature term drops away and the operator annihilates
constant functions. Secondly, as briefly stated in the introduction, the transformation of
the curvature term, .J, can be obtained from the Yamabe operator itself [23]. By rewriting
Y, as V, T, where T = log,(£2), we observe that the trace only version of equation (3.3) is
expressed as J=J+ VeV, Y. This may be identified with J = J+0O7 in this dimension.
This is the characteristic of Branson’s Q-curvatures (of which the scalar curvature is the

simplest) which will be explained in greater depth in later chapters.

Generalising back to arbitrary dimension > 4, the Yamabe operator applied to den-
sities of weight 1 is not invariant. This can be seen by substituting w = 1 into the last
proposition. Note that despite this non-invariance, the following proposition reveals that
the trace free Yamabe operator is invariant on weight-1 densities. This prepares us for

the conformal calculus.

Proposition 3.4.3. V(, Vo + Py)o 8 conformally invariant when acting on densities

from E[1].
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Proof.

Let 6 € &[1]
VaVio + P = Va(Vis + 140) + (Pus = VaTo + Tu Ty = S2TYL)5
= V., Vo —T, Vo + gabTCV05
+VaTb5' - TbTaé' + gabTCTcﬁ
Py — GV, Ty + T Lyo — %TCT;
1
= V.Vy0 + Puo + 8up(YV.o + 5TCTC6)
V.V + Puo conformally transforms by trace only and hence the trace free operator
V(aVe), + Pab), is invariant.
O






Chapter 4

Tractor Calculus

At the end of the last chapter we saw that when carrying out the transformations on
a differential operator of order 2 the equations can become complicated. In order to
avoid these extensive calculations for higher order differential operators, the concept of
the Tractor Calculus and its associated bundle will be introduced. Note that from this
point onwards, the bars will be omitted from the sections of weighted bundles. This has
been done because we will have no further need of identifying the conformal factors with
R-valued homogeneous functions. We will work with them exclusively in the conformal

setting.

4.1 Construction of the Tractor Bundle

We know that the trace free part of (V,Vy + Py)o is conformally invariant for o € £[1].

If o is a solution of the equation, V(,Vy),0 + Pap),0 =0
then this is equivalent to the following pair of equations (this is explained in greater detail

on pg 6 of [2]):

Vo —pupy = 0
Vou® +dyp+ Plo = 0 (4.1)
where p* € £%[—1] and p € £[—1]

21
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It is not a difficult exercise to determine the transformation formulae for yz and p, in order

that this system is conformally invariant:

pt = pt+ Yo

>

= p—Toub — %T”T,,a
(4.2)
The three functions o, u®, p, and the system of differential equations (4.1) are sufficient
to generate the conformally invariant tractor bundle. We will adopt the definition in Prop
2.2 of [2].
Definition 4.1.1 (Standard Tractor Bundle). For a particular choice of conformal
scale, g, [E4], = €[] @ EY-1] @ E]-1]

A particular section, [V4], € [E4],, is defined by:
o
[VA]g = u®

P
Where o, u®, p satisfy the condition of conformal invariance of the set of differential equa-
tions (4.1). In a new scale the trivialised tractor transforms to:

o
VA4, = u* + Yo (4.3)
p— Ypub — %TbTbJ
The tractor VA € €4 is conformally invariant, so [VA], is identified with [V4]; in the
tractor section.

Definition 4.1.2 (Coupled Levi-Civita Tractor Connection). [2/

If we take a tractor [V4), € [E7], then the connection operates in the following way:
Vyo —
ViV, = | Vyus+68p+ Plo (4.4)

Vip — Py €
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The term in the bottom slot is generated as a consequence of differentiating the second

equation.

The connection acting on a tractor is defined by the system of differential equations
described on page 21. This is invariant because we know that the terms of the terms of

the tractor transform according to (4.3).

4.2 The Splitting Operators

The power of the tractor bundle lies in the fact that the structure does not require a cho-
sen metric from the conformal class. However, this can be difficult to explicitly work with,
so using the splitting for a particular metric is a clear way of seeing how the components

of the tractors transform.

Definition 4.2.1 (Splitting Operators). [16/ For a particular choice of conformal scale
we define the following set of three operators X4, Y4 & Z2 below.
We know that for a chosen g € |g] the tractor splits by:

[VA]g = pt

where o, u®, p are defined by Defn. (4.1.1).

We define [X4], to be the invariant injection:
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and [Y4], and [Z2], are the non-invariant mappings:

o 0
o 0 and p* — ue
0

Using the conformal metric gqp the splitting operators may be described by:
X4 e &A (E[-1))r =2 E41]
XA E[-1] — &4
pr— X4p

Y4 e E4]-1]
YA &[] — &4

oc— Yig

Z4 e EM1]
ZA:g-1] — &4

p — Zp

Let VA € £4, be an invariant tractor section, VA = YA+ ZA %+ X4p, where o, 2, p
are in the sense of Defn (4.1.1), then we can deduce the transformations of the splitting
operators.

X4 is invariant by definition and Y and Z2 transform in the following manner:

1
YA = yA-_ri74 - 51(,,1r”XA (4.5)
ZA = Z2 4+, XA (4.6)

This is not difficult to prove using the conformal transformations described by equa-

tions (4.3).

Definition 4.2.2 (Tractor Metric). The tractor bundle has an invariant metric com-

posed of a sum of the splitting operators, hap = XaYp + Z%2p, + YaXp.
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Note that the Z tractors are contracted over the tensor index a via the conformal
metric, ggp.

The tractor metric and its inverse respectively lower and raise tractor indices just as
the Riemannian metric does.
e.g. hagUBVA =U,VA
The following table is derived by taking the inner product of the metric with each of the

splitting operators in turn.

Proposition 4.2.3. [16] Let V, be the coupled Levi-Civita tractor connection then
VX4 =z
VY4 = Pzt
ViZ! = —PuX"—guY” (4.7)
Proof. Let VA =Y40 + Z1u® + X“p be an invariant tractor section in £4.
Using the Liebniz rule to expand the connection acting on V4 we obtain:
VJVA = YAV0 + 0V, YA+ ZAV b + bV, ZA + XAV p + pV XA
But the definition of the connection acting on V4 gives us:
VoVA = YA(Va0 — pa) + Z§ (Vo + 830 + PLo) + XA (Vap — Pacpt®)

Hence by expanding and equating the two equations, we are able to determine the deriva-

tive of each of the respective splitting operators. O

Corollary 4.2.4. The tractor metric, hag, is preserved by the connection and therefore

commutes with it.
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i.€.
(i)Vi hag =0
(ii)V.Va = hapV.VE

Proof. For (i), all terms in the expansion of the metric cancel by way of proposition
(4.2.3).

(ii) is a direct consequence of (i). O

The use of X, Y, Z and their associated contraction and differentiation rules now allow
us to write computer code which will symbolically solve tractor problems. This leads to
significant time saving in the calculation of conformal operators. Appendix D contains all
of the macros which I have used or written to verify my hand calculations in the remainder

of this paper.

4.3 Tractor Operators

From this point, a tractor, or tractor section, refers to a tractor from a bundle with
any number of tractor indices and with any weight. We will use the notation £*[w] to
represent any tractor bundle of weight w. All tractors are conformally invariant however
the Levi-Civita - tractor connection is only conformally invariant when acting on tractors
of weight zero. This leaves an opportunity to try and develop differential operators which
are invariant on arbitrary tractor bundles. One way of producing these invariant weighted
operators is to use the tractor-D operator, which will be derived shortly. To begin with,

we will work with an intermediary operator, D [14].

Definition 4.3.1. Let ¢ € E*[w] then
DA & w] — EA[-1] ® E*[w]
is defined by DA = YAwi + Z49V 0

It is an interesting aside to note that the contracted action of D on itself produces the

O operator defined on page 17. We will quickly carry out a calculation to verify this.
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Let ¢ € £ w]

DDy = YAw —1)Datp + 249V, D a1p
= YHw— 1)(Yaw) + Za V) + Z4V o (Yawep + Z4, V)
= YYaw(w — )¢ + YA Zup(w — 1)V + Z4(YawVetp + Z5wPapth
+Z 4V VP + (—Puip X4 — 8arYa) V)
= wJyY+ Ay
= Oy
Using D? provides us with a clue on how to produce the higher order conformal operators.

The conformal transformation of D is very important for the construction of the tractor-D

operator so we will look at this below.

Proposition 4.3.2. Dt = Datp + X4(TOV,9) + LYY 1)

Proof.
DAl/J = yA’uﬂ/J + Zﬁ@aw
= (Ya— 257, — %XATbTb)ww + (Z% + XaATY)(Voth + wY 1))
Simplifying gives us the required result. O

Using D# we are able to generate a conformally invariant “Derivative” tractor-D
operator which acts on tractors of any weight. Some of the properties of the tractor-D
operator will be explored here, but none of the history of its derivation. See [14] for a

rigorous derivation of the tractor-D operator.

Definition 4.3.3 (Tractor D Operator). Let D4 : £*[w] — £4*[w — 1] be defined by
D44 = (n + 2w — 2) DAY — XADY

Corollary 4.3.4. The tractor-D is conformally invariant on weighted tractor sections.

Proof. Recall that the transformation of the Yamabe operator, equation (3.4), is:

O = O¢+(n+2w—2)(T- V) + 2(n+ 2w —2)(T- )¢
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Let ¢ € £*[w] then:

Dap = (n+2w—2)Dap — X400
= (n+2w—2)(Dap + Xa(YVth + LYY o0)))
~XA4(3¢% + (n+ 2w — 2)(YV, )Y + L(n + 2w — 2)(TY,)y)
= (n+2w—2)D% — X0y

O

Using the definition of the tractor-D operator, we observe that the contracted action
of the operator on each of the splitting operators is given in the following way.
If ¢ € £*[w] then

DAYy = (n4+w—2)J — A (4.8)
DAZ%) = (n+42w—2)V% (4.9)
DX, = (n+2w+2)(n+w)p (4.10)

This result allows the tractor-D to act on the terms independently and produces pre-
dictable outcomes. It provides some simple rules to work with and prevents the need in

the future to completely expand the formula involving the tractor-D.

Here we will digress briefly in order to look at another invariant operator. This oper-
ator bears a resemblance to the tractor-D, however it acts on 1-forms instead of tractor

densities.

Proposition 4.3.5. [6] Let p, € E,[w] then the operator, A, defined by the mapping

0
Ma — (n+w—2)p, (4.11)
—Vi

is conformally invariant.
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Proof. Written in terms of the tractor splitting operators the A% operator looks like:

(n+w—2)Z% g — XaVu

The transformation under conformal rescale can be carried out by applying equations

(3.1) and (4.6) to the above equation.

(n+w—2) 250 — XaVom, = (n+w—2)(Z5+ T*Xa)pa
—Xa(Vouy + (n+w — 2)Y%1)
= (n+w—2)Z%u, — XaVuy
O

The tractor A /11, € Ealw—1], so when w = 4’T” we know that the conformal Laplacian

acting on this tractor is invariant, by Prop. 3.4.2. On 4-manifolds this generates the

following tractor, described on page 240 of [6]:

0
PAVAA /TR
2LV (VPVE + 4P — 27 g%,
The bottom slot contains an extension to the Maxwell operator (in the secondary slot).

In other dimensions, we know that there are curvature terms associated with the operator

in the secondary slot. We will begin by expanding the equation:

n n(2—n 2—n
OA g = §AZjua — AXAVb,ub + %JZjua — TJXAVbub

This has been calculated using Ricci to produce the tractor:

Z4(2Apq — 2VVapy — O 1 4 (0 — 4) Py
—Xa(V(VEVP = 2g%J +nP")p,)

When n = 4, the curvature terms in the Z4 coefficient fall away, and (up to scale)

there is agreement with the tractor in the middle of the page.
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4.4 Tractor Curvature

As we saw earlier the Riemannian curvature tensor measures the deviation of a particular
Riemannian structure from the flat case. Similarly, the variance of conformal manifolds

from conformally flat models can be measured by the tractor curvature tensor [2].

Definition 4.4.1 (Tractor Curvature). Let VA € 4 and V be the coupled Levi-Civita
tractor connection then the tractor curvature, Q,°p is defined by:

Q. VP = (V.Vy — VpV,)VC

Proposition 4.4.2. Let VC =YY + Z{ ¥k + XCp € EY then:

0 0 0 o
[QijCDVD]g = 2V[in} g Cijkl 0 !

Proof. Let VC =YY% + ZJpuF + XCp € E¢
then by definition:
The expansion of the right hand side of the above equation was carried out using Ricci.

The code is in Appendix D and the output is Fig. 4.1

Qut[s] = —rpu.lﬁ:’_. A'%( +.m;|1( PAA_.X +rh'°(‘)A X
i kj i i)

rh_(J)i 'L}é\ +%i?maAAY_..—sign€‘éA‘ Y +

k k A
nl(u|j Af‘ E;rjnlu AAZJ. i mu é kZ -
rr?ujkPA'%k”z-f’ siér'%ell(z -
. AA
'?k;i sigma

Figure 4.1: Q - the tractor curvature
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The output requires some simplification, but we know that V,V,0 = V,V,0 when o
is a scalar function and by (2.6) we can see that:

Cjly uh =2V p* — plgu Py + plguPf — 65 Py + 1' 7 Py

Therefore:

QpVP = =2VPy pf X + (Ot + 2V Pyto) Zy

This is equivalent to the proposition, using the X, Y, Z notation. O

When n > 4 we know that the following is true [2]:
The coupled Levi-Civita tractor connection is flat if the Weyl curvature is zero. (Recall

that 2(n - 3)V[an]d = VcCabcd).






Chapter 5

Tractor Operators on a Submanifold

5.1 Construction of an Intrinsic Tractor Bundle

Let (M,[g]) be a conformal n-manifold, and ¥ be an embedded hypersurface of M of
co-dimension 1. The pullback, e*, of the embedding operator, e : ¥ — M, gives ¥ a

conformal structure.

In a Riemannian setting, g~ = e*g, where ¢ is a metric on M and ¢~ is a metric on
¥, so for each pair g, § € [g], where § = Q%g, we have 55 =e*g =e*(Q%g) = (e*Q)?g”

This now describes the conformal (n — 1)-submanifold, (X, [gx]). Along 3, Branson &
Gover [5] show that we are able to decompose our tractor bundle £4|y into a “tangential”
component and a “normal” component. The bundle restricted to the hypersurface ¥, is
Eals = EF ® Ny.

This will be illustrated in the next couple of pages.

With regards to the notation, in most cases the restriction to X will be implied by the

context rather than explicitly written.

Definition 5.1.1 (The Normal Tractor). Let N, € &,[1], be a unit vector field along
Y., which is normal to X, and H € E[—1] be the mean curvature

Then:

33
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NA:ZI%NG—XAHENA or

[Nalg = | N, (5.1)

Proposition 5.1.2. The normal tractor is conformally invariant and has unit length.

Proof. We will work with the splitting operator notation to keep the proof compact.

~

Ny = ZaR, - RuH
= (Z%+ XAY*)N, — Xa(H + T°Ny)
= Nyu

NyN4 = (Z4N,— X,H)(Z{Nb - X“H)

= §N,N° =1

O

Let us identify the intrinsic tractor bundle to ¥ with that tractor subbundle which is
orthogonal to N4. The normal tractor gives us the ability to project tractors into the

intrinsic tractor bundle using the projection defined by:

Oy = (6§ — NyNP)
We see that for V4, a tractor in the ambient tractor bundle restricted to ¥, the de-
composition follows:

VAWA — NANgVE) + NANGVE =TIz VA + NANGV 5

When acting on weighted tractors, the projection sends the ambient bundle restricted

to X to the bundle intrinsic to the submanifold, I15;(£4) = £5.

Definition 5.1.3 (Intrinsic Metric on X). h%p = hap — NaNp
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It is interesting to note that along > the splitting tractor, X 4, agrees with its pro-
jection into the intrinsic tractor bundle of the hypersurface. N, is orthogonal to £%, so
contraction of N4 with X4 is zero. This clearly follows from the fact that there is no Y
component in Ny. When the second fundamental form is trace free, Y4 is equivalent to

Yg‘ and hence contraction with the normal tractor is also zero in this case.

5.2 The Splitting Operators of the Intrinsic Tractor
Bundle

The next step will be to determine a set of tractors in the intrinsic tractor bundle which
act like the ambient tractor splitting operators when differentiated and contracted. The
method used when working in the tangent space is to project using the projection tensor.

Hence one possibility will be to pursue an analogous approach.

Consider (6% — NAN®)Y3p
(68 — NANBY(62 — NANG)YC = V(6% — NaNP)(64 — NANG)YC
= Yp(0B — NBNG)YC
— (Yo+ HNg)Y®
- _H?

However if YT € £F then the tractor identities state that Y}V =

As stated earlier, when the mean curvature is zero our result is correct. However, we
see clearly that Y* is not simply a projection of the ambient splitting operator, Y, in all
other cases.

In order to be in the set of splitting operators, Y* must meet the identity conditions
described on pg 25 when contracted [15]. In each of the following propositions it is

assumed that the ambient splitting operators are acting along 3.

Proposition 5.2.1. The following are true:
i) YYXA =1
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i) YV =0
i) YYNA =0

iof and only if

YE = ’YYA + Zf‘Na,B + XAOé

where y=1, =H andOz:—HT2

Proof. i) Y X# = 1 is true for all values of & and 3, but v must be equal to 1.
ii)
YiYEh = 0
(Ya+ aXa+ BZaNY) (YA 4+ aXA+ BZANY) = 0
20+ 32 = 0

= a = _2
iii) Finally, the Y'® is intrinsic to ¥ and hence orthogonal to N4
YINA = 0

(Ya+ BZ4N, — EX4)(ZANC — XAH) = 0

—H + BN,N* =

o

B = H

Proposition 5.2.2. The following are true:
i) Z3 azéb = gfb
i) Z3° X4 =0
i) Z53Vi =0
) Z3*N4 =0

Zpe =2,
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Proof. 1)
73750 = ToZacZgTly
= (5 — NaN®)gea(d§ — NyN*)
= gab — NalVb
= g
ii) There is no Y component in Z* so the inner product of Z* and X* is trivially null.

iii) Using the decomposition of Y* described by Prop. (5.2.1).

Z50Y4 = TeZy (YA + ZANH — XALL)
= [¢Z4Z{N'H
= TIEN.H =0
iv)
Z5eNA = (68 — N°N,)Z%(ZANC — XAH)
= (0§ — N°N,)N?
=0
O

If the operators Y*, Z*, are to be the usual operators acting on tensor fields along ¥

then they need to transform correctly under a conformal rescaling of the metric.
Proposition 5.2.3. )YE =Y} - Z570 - LXITPTY
i) 250 = 75 4 YL X3

Proof. 1)

VP = Ya+ Z4(H + T°N)N, — L(H + TN)>X
= (Ya—"TuZ% — T X4) + (24 + TP X ) (H + T°N,) Ny—
L(H + TNy X 4
= (Ya+Z4HN, — LX) — T(gup — NuN,) Z4
—3T°(gap — NalNp) T X4
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Now g% = gap — NoNNp so this implies that Y°(g., — N,N,) T = TZ.

YAE = YAE - gEbTngl - %T%XA
VP YeZE, - ATRXG
i)
75 = (0p - N°N,)Z4
= (0§ — N°Ny)(Z5 + 10X )
= 73"+ YL X3
U

Using the three intrinsic splitting operators we should be able to confirm the relation-

ship between them in terms of the intrinsic tractor metric, h% 5, defined earlier.
Corollary 5.2.4. Rip=X3YF+YPXE+ 72575
Proof. From the definition of the intrinsic tractor metric:
hiB - hAB - NANB
= XaYs+ 2975+ YaXp— (N°Zsy — XaH)(N°Zp, — XgH)
= Xa(Yg+ HNZp, — L Xp) + (9°° — N°N®) Z4pZ 54
+(Ya+ HN®Z 4 — H72XA)XB
— X3VE 4 2573 4 YIXE

5.3 Tractor Second Fundamental Form

Earlier we saw that the second fundamental form was defined by the projected connection
acting on the normal vector. In light of this, it is very interesting to determine what the

projected coupled Levi-Civita - Tractor connection acting on the NZ tractor looks like.

Proposition 5.3.1. Let NB be the normal tractor. NB € £B
HZVCNB = ZBbL(ab)o — (TL — 2)_1XBV%L(ab)O
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Proof. We will begin by looking at the ambient connection on NZ. This is simply obtained
by applying eqn (4.4) to the normal tractor. This is written in column vector notation as
follows [2]:
—N,
VNP, = V.Nb— 6t H

~V.H — P,N°®

Our interest lies with the connection which is orthogonal to the unit normal field along
Y. Action of the tensor projection operator on our « index will produce the following
tractor:

MCV,NB = VBTN, + ZP(TIEV, N, — Mg, H) — XP(TIEV,H + TSP, N?)
which when simplified using the relationship between the second fundamental form and
the mean curvature, generates:

[EV NP = ZBL 4o — XB(VEH + TIE P, NY).
It is clear that the projection kills the primary slot.
The application of Codazzi equation, (n — 2)IIyN° Py, = V% L(ayo — (n — 2)VZH, further

simplifies this to the tractor-tensor field in the proposition. O

The tractor coefficients are tensors in the submanifold, and so the tractor itself may
be identified with its ¥ component in the intrinsic tractor bundle, £4. Hence we can add
>’s to the splitting operators as follows:

MEVeN? = Z5 Liano = (n = 2) 7' XZ V5 Lianyo

We know that the Levi-Civita - tractor connection acts invariantly on tractors with
no weight (such as the normal tractor), so by construction, the above tractor-tensor field
has weight zero and is conformally invariant.

Let us define an operator [15] which we will call the Tractor Second Fundamental
Form, and denote it by Lap. Recall the tractor operator, A% described by (4.11). If we
apply the (X, [gs]) version of this operator to the differentiated normal tractor above, we

will obtain a conformally invariant tractor in £55[—1].

Definition 5.3.2 (Tractor Second Fundamental Form). Let Ng be a unit normal
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tractor on ©. Ng € N

0
[Lagly = | (n®—2)[I¢V.Npg
_VLITIV, N

We know that this is conformally invariant because the operator described by the
mapping (4.11) is invariant on weighted forms, and it is straight forward to see that this
operator has weight —1.

An interesting exercise for our purposes is to convert the column vector notation into
that involving the splitting operators.

Lig = Z5%(n* — 26V (Z4N, — HXp) — X5VEIIEV 4 (Z4N, — HXp)
= (n—3)Z54Z5 Loy — XBIIEP4uN® — YRII!N, — XpVEH —11¢Z5 H)
— XAV (Z5 Loy — XpI¢PYN, — YII¢N, — XpViH — 1 Zp H)

Applying the rules for the intrinsic splitting operators, eqns (5.2.1) & (5.2.2), helps us to

determine the following:
Lap = (n—3)Z5(Z5"(Liabyo + 9 H) — XplIcPyuN® — XpVZH — ZF H)
—XYZ5VLay + X3XEP® Loy + (n — 1)X3YFH + X3 X5VEIEIPIN,
+ X5 ZEMEPIN, + X3 XEAYH + X575 VY H + X525V H
—XIXZJ*H — (n —1)X3YSH
In the process of simplifying the above formula we will use the form of the Codazzi
equation, (n—2)V&IIgN® Py, = VEVS Ligye — (n —2)A¥ H, as well as the equation (2.8).

After substitution and simplification we end up with the tractor:

n—3
Lip = (n - 3)Z§ GZE bL(ab)o - nfzi GXEV%L(ab)o

2
—3
Z —5XaZ5 "V Liano + XiX5(Py L + (n = 2) ' VE Vi Lw,) (5:2)

The tractor second fundamental form is completely symmetric and trace free and could

just as readily be denoted by L(ap). creating a tractor analogue to Lgp)o-
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Let VB € £Bw] then Sy = LagV? € EF[w — 1]. This tractor, Sy, resides in the

tractor bundle along 3 which is orthogonal to the normal tractor.

5.4 Tractor D Operator acting along a Hypersurface

Recall that the intrinsic-to-X tractor bundle may be identified with the projection by II*
of £4 along ¥. Tt follows then that the operator DAIT® : E4[w] — E[w — 1] given by
Vi DSHE V4 is conformally invariant.
We will verify this directly.
Part 1: Expansion of the operator
For V4 € E4]w]
There exist sections
o€ Elw+1]
fa € Eo[w +1]
p€&lw-—1]
such that V4 = Y 0 + Z9 1, + Xap

DAV, = DA (Yao + Z%uq + Xap)

In order to be able to use the intrinsic-to-X tractor-D operator we need to express I1*V in
terms of the usual intrinsic splitting operators, X%, Y and Z% ¢. Props (5.2.1) and (5.2.2)
show how these intrinsic operators are related to the splitting operators in the ambient
space along ¥. Using this knowledge, in conjunction with the respective expansions of

[1*X 4, [1*Y, and [1¥Z4%, we are able to determine the following relationships:

55X = X3}
%224 = Z%°+XXHN°
%Yy = Y7 - LXYH?

= DATIEV, = DA(YFo + Z5°uE + X5(p+ HNy — LH?0))
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Although the tractor-D is heavily dependent on the coupled tensor-tractor connection,
it is not necessary to obtain an explicit expansion for this connection. We know that
the tractor connection V* is induced from the ambient connection V [5], and our only
requirement is that the intrinsic connection is Leibniz and satisfies the ¥ equivalent of

Prop. (4.2.3).

Earlier we established that the intrinsic splitting operators have the usual contraction
rules, and we have implicitly defined the intrinsic coupled Levi-Civita - tractor connection
to have the usual rules of differentiation; so there exists a (3, [gs]) version of equations
(4.8), (4.9) and (4.10). They reveal to us how the intrinsic tractor-D acts on each term
individually.

DaYio = (n®+ (w+1)—-2)J% — A¥g
DEZ}uy = (0" +2(w+1) —2)Veuy

DiXar = (WP +2w-1)+2)(n"+w—-1)7

where T = p+ HN°y, — L H?o

Combining these we obtain:

DA™V, = (n+w —2)J% — A¥0 + (n + 2w — 1)V&u>
1
+(n+2w—1)(n+w—2)(p+ HN uy — §H2a) (5.3)

Part 2: Conformal Invariance
We will apply the conformal transformation rules specified in Chapter 3 to the above

operator, and ignore all Y2 terms.

DAV, = (n+w—2)(J% = VAYT + E2T8T8)0 — VA (Vi + (w + 1) TE0)
—(n+w—-2)T4(Vio+ (w+1)Y5 o) + (n+ 2w — D)VE(p> + o)
+(n+2w—1)(n+w—2)Yg(uZ + TZ0) + (n+ 2w —1)(n+w — 2)
((p— Yeue — 7Y .0) + (H + YN)N(up + Tyo) — (H + TN,)%0)



5.4. TRACTOR D OPERATOR ACTING ALONG A HYPERSURFACE 43

= DQ/HZ\VA = (n+w-2)J% — (n+w—2)(ViT)o — A¥o

—(w+1)(VeYH)o — (w+ )Ty Vo — (n+w — 2)Y4Vio

+(n+ 2w —1)V&uZ + (n + 2w — 1)(VEYL)o + (n+ 2w — 1) T3 Vio
n+w—2)Teu> + (n+2w—1)(n+w—2)p
—(n+2w—-1

+(n+2w-—-1

(

( )
+(n + 2w — 1)( )Y

( Y(n+w—2)Y%+ (n+2w—1)(n+w —2)HN,

( Yn+w—2)HN Y0+ (n+ 2w —1)(n+w — 2)T N,Np,
—(n+2w—-1D)n+w-2 20— (n+2w—1)(n+w—2)HN, Yo
Careful simplification will result in the cancellation of all terms involving T, and its
submanifold equivalent. This completes the explicit check of the invariance.

As an example, if we take the ambient tractor-D acting on some density, v, of weight

w, then we know that:

DAIPD, = (n+w— 3)((n + 2w — 2)0%

+(n+2w—3)((n+ 2w — 2)(HVy — ©H?) — III))

is a conformally invariant operator which has weight w — 2.






Chapter 6

The (P4, P3) Problem

Definition 6.0.1 (Normal Order). /5] Let B : £*[w] — £*[w'] be a kth-order operator,
and X be the kernel of a defining function, f. B has normal order m at x € X if there
exists a section ¢ € EX[w| such that B(f™¢)(z) # 0 however for any section ¢' € E*[w],
B(f™¢')(x) = 0. If B has normal order m for all x € ¥ then B has normal order m.

For example, differential operators intrinsic to X have normal order zero.

Given the conformally invariant Laplacian, O, on a manifold M, we are interested
in the first order conformally invariant operator, §, defined along the boundary X of
M, which has normal order 1 and is compatible with O. By compatible we mean that,
along Y, this operator acts on densities from the domain £ [Q_T"], the same domain as
0. 0 = N*V, — wH is the conformally invariant Neumann operator, called the Robin
operator, which acts on a domain space of densities of weight w € R [5]. We can see that
the Robin operator has normal order of 1 on ¥. The pair (O, ) can then be used to set
up a conformally invariant Neumann problem.

For each GJMS operator, Py, an analogous Neumann problem is established by ob-
taining each of the compatible conformally invariant boundary operators of odd normal
order < 2k. Each m-order Neumann-type operator has normal order equal to m. P, is one
such GJMS operator which has been studied extensively that we will look at shortly. The
Robin operator acts as the compatible first order boundary operator, however in order to

complete the Neumann data we also require the 3rd order Neumann-type operator. In

45
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their paper on Conformal Non-Local Operators, Branson & Gover describe tractor meth-
ods for generalising the Robin operator above to higher orders, m, creating an m-th order
Neumann-type operator, d,, [5]. Unfortunately, their tractor construction for d3 does not
have normal order 3 in dimension 4.

A slightly alternative tractor construction will be applied in order to generate P53 and
complete the pair, (P4, P3) for all dimensions > 4. Note that this can be extended to
include ambient dimension 3, but it is not looked at here.

We will begin by explicitly calculating the P, operator.

6.1 Part 1: The Paneitz operator, Py

Definition 6.1.1 (Paneitz Operator). [19/ The Paneitz Operator is a conformally
invariant fourth order differential operator which acts on densities of weight, 2 — 3.

It is described by the equation:
A? + (2= n)JA +4P®V,V, + (6 — n)(VeI)V, + 252 (2] — AJ — 2P®P,,)

In [16] it is shown that the GJMS operators can be generated using the tractor calculus.

I have adopted the method used in that paper to produce the P, below.
Proposition 6.1.2. [16] Let ¢ € ][] then
(n—4)Pw = D*ODy (6.1)
where Py is the Paneitz operator.

Proof. Step 1: The invariant tractor-D is applied to ¢, where
Dy : 5[4’7"] — Ea[52]
Dyyp = (4 =n)Yap +2Z4V b — X400
Step 2: The tractor-coupled Yamabe operator is applied to the resultant operator. We

know that this is the conformal Laplacian only when acting on densities of weight Z_T”
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O: 5,4[2_7"] — 5A[_22_”]

ODay = V. V(4 —n)Yah+ 273V 0p — XaOy)
P2 (4 )Y+ 223V~ XaDW)
= —XA(A% + (2= n)JAY + 4PV, V) + (6 — n)(VT) V1)
n—4 n

5 (§J2 — AJ = 2P®Py)1) (6.2)

Step 3: The final tractor-D is applied, via the mapping below, to produce the 4th order
operator.
DA : EA[#] — g[_Z_n]

After applying (4.10) and the Bianchi identity to (6.2) we end up with

DAODyp = (n—4)((A%) + (2 = n)JAY + 4PV, V) + (6 — n)(VOT) V0

4
n (gﬁ — AJ — 2P%Py)y)

2
(—4+n)III:JnJ —(-4+ny(-2+mFn I+
2 .
(_44J)n—2FnJ 72(_—4+'n) Fn J -
2 . .
C22NFhny +_2|(—j4|_+|1|)Fn P+

4(—4+nI)iFr1|] P (—|4]+r'd FnP P

Figure 6.1: Ricci Output of (n — 4) P, operator

The tractor calculus gives a multiple of the Paneitz operator which is polynomial in
(n—4). Tt has also been generated in Ricci. The output is Fig. 6.1 (not yet simplified by
the Bianchi identity), and the code can be found in Appendix Fig. D.7. O

6.2 Q4 Curvature

A differential operator is natural if it can be given by a universal polynomial expression
in g, its inverse ¢!, the Levi-Civita connection V, and the Riemannian curvature tensor

[8]. The operator P4 is natural by this definition, because it is polynomial in the metric
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g, its inverse, the Levi-Civita connection V, and P,;, and its trace. Keeping this in mind,
let us proceed to describe the Q curvature.

We begin by separating the above formula into two components. The first component
Q4,5 is the part of the Paneitz operator which is scalar in dimension n on the density ),
and the second part, denoted Pin is the part with order of at least 1 which annihilates
constant functions. Hence we will describe the Paneitz operator by:

Pin="Pi,+ %5 Qun
The Q component is a zeroth order term which is composed entirely of curvature terms
and their derivatives.

In his paper on Sharp Inequalities [8], T. Branson describes the conformal transforma-
tion of the Q component provided that both P and Q are natural operators. He worked
in the covariant setting for a particular metric in the conformal class. This is equivalent
to identifying our densities in the conformal structure to homogeneous functions in the
Riemannian structure. In this setting the P, is not invariant but rather conformally co-
variant. He proceeds to show that Q., transforms as follows in dimension 4. Note that
we have written the formula in terms of densities, and not their trivialised functions, and

we rewrite Y, as V, Y, where T = log,(€2).
(34,4 =PusT + Qua (6.3)

In dimension 4, P} ; may be identified with P, 4 because the Q component is eliminated.
Recall the transformation of the scalar curvature in dimension 2 and compare this with
(6.3).

Theorem 1.1 of [8] states that the P, operator defined above must be the 4th order
GJMS operator. Note that we drop the second subscript on the operator for general n.

The Q44 Curvature is the scalar function explicitly described by:
2J% — AJ —2P%P, (6.4)

The Paneitz operator acting on Y (in dimension 4) is:
PuuY = AT — 2JAY + 4P, VAVPYT + 2(V,J) VP T

We will conformally transform equation (6.4) in order to illustrate that its transformation
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is governed by equation (6.3)..

(34’4 == 2ﬁ - Zj - 2@?;)
= 2(J — AY)? = V*(Vy(J — AY) — 27,(J — AY))
—2(P® — VoY) (Pyy, — VoV, T)

= Qui = Qua+ (= 2JAT + A?T + 4P, VYT +2(V,))V'T)

= Qa4+ PysY
This has confirmed that P4 controls the transformation of Q4 in dimension 4.
Another interesting point to note is that le;,4 is a conformal divergence of a weighted

1-form. By Stokes Theorem, this implies that [,, Q44de is a global invariant [7].

6.3 Part 2: The P; Operator Acting on a Hypersur-

face

The P53 operator is the third normal order boundary operator compatible with the Paneitz
operator. It acts (along X) invariantly on the same domain space as the Paneitz operator.

We have seen that the P, can be derived by the tractor formula (6.1). In Theorem 5.1
of the Branson & Gover paper [5] a similar tractor formula is proposed to generate the
Neumann operator analogue, 3. This construction fails to produce a third normal order
operator when n = 4, though we shall see that one exists for all dimensions n > 4. The
P3 operator which we generate here will incorporate 5.

Chang & Qing have generated one form of the P3 operator to act on the boundary
of compact 4-manifolds [9], however a remark made by them indicates that they cannot
tell if the P3 exists in other dimensions. Our construction will produce an operator
which is invariant in ambient dimensions n > 4. Unfortunately it is difficult to compare
their operator with that produced by myself in dimension 4, because of the differences in

convention and notation used.

Proposition 6.3.1. Let ¢ € £[42], then
(4 = n)Pgth = d3¢p + DELap D5y
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where §3 = DgHg 0D 4, is the invariant third order Robin analogue.

Proof. The proof will proceed over the following three pages. Each of the terms on the
right hand side will be explicitly calculated separately.
i) 3¢
Step 1: Expand the operator described by:
0D E[4FH] — Ea[F]

This operator is conformally invariant and has normal order 3.

§Dap = 5((4 — ) Yath + 225V 1) — XAIZM/;)
D40 = NO°Vu((4 = n)Ya) + 225V 1p — X 400))
2R H (4= n)Yag + 225V — XA00)

2
= (2= YNV — 2" )

+Z% 2NV Vo) — (2 = n)HV o) + (4 — n) N° Pyytp — N, O¢)

2 —
—XA(N'V,0 — = " HOy + 2NP POV ) (6.5)

We are able to see that the X coefficient contains a term which has a normal order of 3.
Step 2: Expand the operator described by:

DAIT» : E4[F] — E[E2

We will begin by obtaining the coefficients of the splitting operators of eqn (6.5), which
are intrinsic along X. (Note that o is the Y coefficient, p, is the Z coefficient, and p is

the X coefficient).

o = (2—n)(N°Vyp — 52Hy) e &£7[%2]
pe = Mg

= IIE(2N°Vy Ve — (2 = n)HV 1) + (4 — n) NP Pyyp — N.Og)
= 2[EN WV, V) — (2 = n)HVZEe) + (4 — n)TIENO Pya) e &X5
p = —N°Vy,0¢ + Z2HDO — 2N°P,, V) e X[

The explicit equation for DAII®§D 4% is obtained by inserting the above three formulae

into eqn (5.3).
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DEIE6D 4y = (n—4) (%Nbvbmp + A*N®

~VLHVZ) — HN*N°V, V) — WHQN”VM/J

+N°P,, Vo) — nT_ZlN”V,, 2JEN”V,,¢

_(n- 2)4(" —4) JEHy + 2 5 4HN“N"Pab¢ + VIS N Pyot)
=20 oy 202D ) 4 Vs Ve (66)

The leading term has normal order 3 and the composition of invariant operators tells us
that the resultant operator is conformally invariant.

Unlike the Paneitz tractor formula, the right hand side does not drop away in the
critical dimension, 4. In this dimension the remaining term, involving the derivative of
the trace free part of the second fundamental form, does not have a normal order of 3.
We will show that the intrinsic tractor D acting on Lap (the tractor SFF) also produces

a multiple of this term in dimension 4.

ii) DAL gDy
When acting on the above density v, along ¥, the operator DAL pD? is conformally

Based upon the definition of L4p (equation 5.2) the operator can be explicitly calcu-

lated.
LapDP¢ = Z3°C + X3¢
Where, along :
= 2(n—3)Lino Vet + 203 (VL L )9
¢ = —(n—4PgLly - Z—E(V%V%L(ab)o)w
=2(223) (V5 L(anye) Vi¥

Given that ¢ € £ [4’7”], and both the D? operator and L,z tractor lower the weight by
1, it is seen that (¥ € £X[%2] and £ € E[=5].



52 CHAPTER 6. THE (P4, P3) PROBLEM

Dg(Z3¢) = (n"+203%) - 2)VE ¢
—2—

Dg(X36) = (n”+2(52) +2)(n” + =)

Adding the two terms together we obtain:

DgLapD%y = -V -5
= 23— 1) VL Vet + (0 — ) — HVEVELo)t + 5 PELEO")
In dimension 4, the remaining term is identical, up to sign, as the remainder of equation
(6.6).
Our proposition states that the Paneitz compatible operator, P3, is the combination
of the DATI®§D 4 operator and DAL 45 DE.

Addition of the two operators and some simplification using the Codazzi equation,

creates an (n — 4) multiple of a P3. One form of this Py operator is shown below.

IN'W A + AENO Vg + PHAY + " HASY — 2044, VEVEY
—HN“N”V,,VGUJ + NbP@V“U) n— ZJENbV 1/} 3(n— 2 HQNbV 1/} ”‘4JN”V,,¢
+(n — 4)(VEH)VEY + 222(VE Liapyo) VEY + 252 (AEH — L VEVE Lab)s
—IN®(VyJ) + HNN°P,, — 2HJ — 252 HJ* 4 PLL®° — 222 H3)q)

The addition of the two operators has not affected the normal order of the resulting

operator, which has a normal order of 3 regardless of dimension. O

This operator annihilates constant functions in dimension 4, in an analogous way to
P,. We also see that this P3 operator has a universal expression which is polynomial in g,
g~!, N* V., P, and L. Note that the submanifold curvature terms are related to the

Riemannian curvature via Gauss’ Theorem [22].

6.4 Q3 Curvature

The part of the Paneitz operator which is zero order on 1 is the scalar, integral invariant

Q4 curvature term which drops away in dimension 4. A similar property of Pj3 is that it
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is associated with a natural curvature operator, Qs, which has the relationship described

by Branson. That is, there exists an odd dimensional analogue of the Q-curvature.

Definition 6.4.1. The scalar function:
A¥H — 2VEVY Liapyo — 3N°VyJ + HNN® Py — SH? + P8 Lyo — HJ — J*H
i5s Q34

(n—4)
2

In general dimension, Py = Pl + Q3, so by an easy adaptation of Branson’s

argument for the recovery of Q-curvature from GJMS used earlier, we are able to conclude
that in dimension 4, Q34 must transform according to:

63,4 =P34T 4+ Q34
Here we recall that T = log,(£2) and by this, T, = V, Y. As a check of our formulae let
us verify that Qs 4 does indeed transform correctly. Under a rescale of the metric g to g,

Q3,4 transforms by:
Qsa = AZH = 1VEVLLw. — ANV, T + HNONVB,, — LH® + POLwy, — HT — T°H
= (A*H + A*NV, Y — HA*Y — (VL H)V?Y)

_(%V%V%L(ab)o + L(ab)oV%V%T + (V%L(ab)o)V%T)
—(%N”VbJ — %N”VbAT — %JN”V,,T) + (HNeN®P,, — HN®N’V,V,T
+N*N°Py NV, T) — (3H® + 3H NV, Y) + (P& Liat)o — L(ar)o VEVET)
—(HJ + JN°V,YT — HAY) — (J*H + JEN°V,T — HA*Y)

Here we note that:

Ps T = %N”VbAT + ANV, Y + HAY — 2L(ab)oV%V”ET — HN°®N®V,V,Y
+N°P,VeY — JENV, Y — %HQN”VI,T — %(V%L(ab)o)V%T

= Qs = Qsa+P3aT + NNP PNV, YT — NP Py VoY + (VL) VEY — (VEH)VEY

The terms involving P,;, can be simplified as follows:

N*PyVeY — NeN*PuNeV,Y = geN'PuV,Y = g¥N°P,,VEY
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Now by the Codazzi equation (in dimension 4), II¢N°Py, = 1V% Ly — VEH, we have

shown that :
—(Hngde)V%T = _%(V%L(ab)O)vaET + (VEH)V%T
This conveniently cancels the remainder of the terms in the transformation equation

above.

Hence (33,4 = Q34 + P347 as claimed.

To summarise, the tractor calculus has provided us with a concise, specific formula
for a third normal order boundary operator as the n* = 3 specialisation of a formula
that gives P3 in all dimensions n* > 3. Additionally, the P3, operator governs the
transformation of an odd order Q-curvature analogue, Qs 4, in dimension 4. It is unknown
whether the integral of this Qs 4 function is a globally invariant curvature term.

It is also unknown how to generate the higher order Py, | operators of 2k-order GIMS
operators in the critical dimension 2k. One drawback to the procedure used for the
construction of P3 is that it has only dealt with this unique situation and it would be
difficult to generalise the method which we have used to all Py;_; operators.

The above problems could form the basis of further research. Future work could look
at extending the ideas presented here to CR-manifolds and complex scalar fields. On
another hand, the digression of page 29 provides us with a brief introduction to looking
at tractor-tensor operators acting on 1-forms. There is still work to be done on the

Q-curvature analogues of these operators, and also on the X versions of these operators.



Appendix A

Manifolds and Riemannian

Manifolds

Definition A.0.1 (Manifold). /18, 21] Let M be a topological space, then if each of the
following hold true M is called a smooth n-dimensional manifold:
1) {U;} forms a covering of M, where U; C M
2) VY U; and Uj, open sets € M there exist homeomorphisms:
h, :U; — V; CR*,
h;j :U; — V; CR?,
3) Let U;j = U;(Uj then h;; exists where
hij = hj o hi* : hi(Usj) — hy(Uy)

Definition A.0.2 (Riemannian Manifold). Let M be a smooth n-dimensional man-
ifold, and g be a smooth positive definite metric acting on M. Then (M, g) is called a

Riemannian Manifold.

Definition A.0.3 (Riemannian Submanifold). Let (M, g) be a Riemannian manifold
and X C M with TY a subbundle of TM]|s, then (X, ¢g%) is a Riemannian submanifold,
where g* is the restriction of g to TY. C TM|x.

%)






Appendix B

Lie Algebras

Definition B.0.1 (Lie Algebra). [18, 12] A Lie algebra, g, is a real vector space with
a bilinear operator,

[.-]:exg—9g
such that for all A,B & C € g:

[A, B] = —[B, A]

[[A, B], C]+[[C, A], B + [[B, C], A] = 0
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Appendix C

Fundamental Equations of

Submanifolds

Theorem C.0.1 (Codazzi-Mainardi Equation). [22] Let U,V & W € T'(TX) then
the following equation s true:
L RUVIW = (VELI)(V, W) — (VEII)(U, W)
Where II(U,V) = —(VyN) -V is the second fundamental form

Proof.

RUWNVW = VyVyW -V VW — Vg W

= Vy(ViW) = VyUII(V,W)N) - Vy(ViW) + V(I I({U,W)N) —
VigyW + 1I([U, V],W)N

= ViVEW — II(U,VyW)N = Vy(II(V,W)N) —
VEVEW + II(V,VEW)N + Vy (II(U,W)N) —
VignW + II(VEV,W)N — II(VyU,W)N

= R¥UV)W = II(UVEW)N = Vy(II(V,W)N) +II1(V,VEW)N +
Vy([I(U,W)N)+I1I(V;;V,W)N — II[(VyU,W)N

According to the Liebniz rule:
Vx(II(Y, 2)) = Vx(I1)(Y, Z) + II(VxY, Z) + II(Y, V. 2)

29



60 APPENDIX C. FUNDAMENTAL EQUATIONS OF SUBMANIFOLDS

L RUVIW = —II(UYNVyW)—=NVy(II(V,W)N)+II(V,VEW) +
NVy(II({UW)N)+ II(VEV,W) — II(V3U, W)
= (VoID(V,W) - (VVIL)(U, W)

C.0.1 Note:

Let X% Y? € £2 then

II(X,)Y) = —(VxN)-Y

= —X%°'V,N,
By virtue of the fact that X is intrinsic to X we are confident that the connection is
the projection of the ambient connection onto our hypersurface. The negative sign clearly

indicates that Spivak’s interpretation of the Second Fundamental Form is the opposite to

that which has been adopted for this paper.



Appendix D

Ricci Code in Mathematica

All of the programming code was done in Ricci, a differential geometry package designed
for use in Mathematica. To save time, I borrowed some of the initial macros from Larry
Peterson. They are the following:

Generation of the tangent bundle of an n-dimensional manifold: tangent.m

Generation of the tractor bundle for the associated tangent bundle: tracbund.m

Assignment of the tractor rules: tracbase.m

All subsequent code has been written by myself:

Definition of the V tractor

* V Tractor_ & Projections 2 )

* Second Fundamental Form Codazzi Rules *)

* lLast updated 5/6/03 * )
efineTensor[V, 1, Bundle -> tractorl, Variance —> Con]
DefineTensor[sigma, O]f' DefineTensor[mu, 1,

Variance -> Co]; DefineTensor[rho, 1;

DefineRule[VToBase, V[U AAE,
sigma*Y[U[AA]]  + mu[[U[[I]]* [U[AA],

Projn == n - 1;

L[] + rho*X[U[AA]I];

Figure D.1: V Tractor
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APPENDIX D. RICCI CODE IN MATHEMATICA

* Curvature.m (’;)
ﬁ* file  last updated 4/6/03 *)

DefineTensor[P, 2, Symmetries —> Symmetric];
DefineTensor|J, O];

DefineTensor[Weyl, 4, Symmetries -> RiemannSymmetries];
DeflneRuIe[[RmToPC Rm[[L[]

W ™ M o

DeflnReRuIeL(l:_'[lﬁ)ET L Weyl[L[i],L[j],L[K], I[_[IEJ(] LRI ) .
m i11*
[{[{ ]PH [LH LP]T - g[L[I[], w[i]]*P[L[i], Lk +
DeflneRuIe[PToR P[L[] L [|]] L LTS /(2 _ onhk
DefmeRule Rc)‘)l' R Ll il EP + g[L[i], [i11Sc/( m)l;

(n = 2)PLL[], L[l]] + gLt LO;

DefineRule[PTod,  PL[i,  UIil.J;
DefineRule[JToP, J, PIL[i], U[i;
DefineRule[PDerivative, PL[i], LIV IILLTIT;
Def i neTensor [ CY, 3, Vari ance—>{ Co, Co, Con}] ;

E[EfLI[P]elejl[E{](:f}_Ef)?f{]chk CY[LLiT, LLiT, UKID, PLLLjT, UKITLLLET] -

* TractorD  Operator *)
* Robin Operator *)

* Updated by D Grant 4/6/03  *)
dgTractorD[operand_, weight_, mdexzﬂ =
Module[{l’iocOp LocX,  LocY, LocZ},
LocOp = NewDummy[opera d;.
LocY = (weight(n” '+ 2*we IB - 2)*LocO *Yélndex]); )
LocZz = ((n+2*weight-2)*New ummy[LocO {L[Iﬁ)]]* [index, U[i);
LocX = (—=(NewDummy[LocOp [)Q
weight*J*LocOp)* [|ndex])

NewDummy[LocY + LocZ + LocX]
I;

dgRobin[operand_,weight
g I\/b(!iurl)e LocOpg LOJCRObI n},

LocOE = NewDumm [operand]; ]
ocRobin = (I ewDummy[norm[U[|]]*LocOp[L[|]]] - weight*H*LocOp);
;\lev\DJrrrry[ LocRobi n]

Figure D.2: Assignment of the curvature rules



* This package sets up the sub bundles to the tangent *
* and the tractor bundle. *
* |t defines the intrinsic calculus on both. *
* D Grant 21/6/03 %)

DefineTensor[H, 0]; )
DefineTensor[norm, 1, Variance -> Con]; )
DefineTensor[UN, 1, Bundle -> tractorl, Variance —> Con];
* |ntrinsic Tractor bases *)

efineTensor[SX, 1, Bundle -> tractorl];
DefineTensor|SZ, 2, Bundle -> {tractorl, tangent}];
DefineTensor|SY, 1, Bundle -> tractorl];
DefineTensor|SP, 2, Bundle—>{tangent,tangent}];
DefineTensor[SJ,  0f;

DefineTensor[ProjTang, 2, Bundle—>{tangent, tan%ent} ,Variance —> {Co,
DefineTensor|ProjTract, 2, Bundle -> {tractor tractorl}, Variance
DefineRule[Project2,ProjTan L[] U[Il,

KroneckerﬂL[l] ? orm[L[l]]*norm U[i0;
DefineRule[Pro ect?, PrOJTract Lé L

KroneckerﬂL[AA] ]] - UN[L[AA]]* N [BB]]]
Def i neRul e[ | Prod, UNT U *SZ[ L U[)I]] , 0];
Def i neRul e[ | Prod, UNT U *SX| L[ AA
Defi neRul e[ | Prod, UN[ U AA *SYLAA
Defi neRul e Nor ni Pr od, Pr o] ang L ]*norn{L 0
Def i neRul e[ Nor ml Prod, nornf Ul I r0] ang[L[l
DefineRule[GradXYZ, SX[L AA SZ L AA
DefineRule|GradXYZ, SX[L AA
DefineRule|GradXYZ, Sz L A L[|]]*SX[L[AA]]—

) I 0j Tan [ L] |4 [ ] ] ]
DefineRule Grad_lg(Y m Z[L U =SP[L[i],U[j]]*SX[L[AA]]-
ro an
DefineRule GradXY AY[L AA [J[]]]] [U[[]] HH*SZH ]Jﬂl]]]]]]
DefineRule GradXYZ Y[LIAA *SZ|L[AA], ;
DefineRul e[ PToJd, SP[L[i],Ui]], SJ3];
*
)

ge DefineRule[Project,Pro Tan L[a],U[j ]*mu[L[J] Smu[L alll;
fineRul e[ Proj ect, rOj ang[ L[ a J *Fn[ EJ]],FI’I[L[&]]];

The purpose = of the projection tract %
eflneRuIe[ ntrinsic, rojTract[L[AA AABBH*X L[BB
Defi neRul e[ I ntrinsic, Proj Tract ]
SZJL[AAL VL + H*norm[U ]AAX[L
Def i neRul e[ I'ntfinsic, Proj Tract J

(*The intrinsic to Sigma tractor D operator is defined - analogous
nglﬁﬂmaTractorDJ)operand welg index ] =
odule[{LocOp,k,LocX;LocY,Loc

LocOp = NewDummy[operand]
k= Pr01n+2*we| ht-2
LocY "= (we| t*k*LocOp*SY[lnde ; )
Locz = k*NewDummy[LocOp[L ]]*SZ[lndex U[iID;
LocX = (—-(NewDummy[LocOp|L [|] +
weight*SJ*Loc SX[lndex
NewDummy|[LocY + LocZ + LocX )

].

EThe second fundamental form and its trace free (TF) component
efineTensor[Lab, = 2,Bundle —>{tangent,tangent},Variance—>{Co,Co},Symmetries—>

metric

S

are created

Con}];

U
[L[BB], Uill,ProjTang[Ui],L[j]]*
*Y[L[BB]],SY[L[AA]]—H"Z/Z*SX[L[AA]]];

to the original

")

Def i neTe?s,or[TFLaL 2, Bundl e->{t angent, t angent }, Vari ance->{ Co, Co}, Symmetri es—>

Symmetric];

* The second fundamental form and its decomposmon are defined *)

fi neRul e[ TraceFr ee, gLU[l| UL *TFLab i ] L[] ]]
Def i neRul e[ MeanCurv, La [ (1]
DefineRule[MeanCurviny, H, norm[U )
Defi neRul e SecFundForm Pr oj TanE *nor ] [:;L[ k ]_ L l ;
DefineRul e Ex;lgandSec Lab L L TF a L[i] ] roj Tan LL i ;
DeflneRuIe[Norm ract L[i] *norm[U[l]i )?[

Def i neRul e[ Nor Prodnrn{ [ ]
DefineRule[NormIProd, LablL[i], L[]][]_ norm[ (0] §
DefineRule[NormIProd, TELab[L[i], ]*norm [|]] (0]
DeflneRuIe[l\lorrnProd H[L[|]]*norn{ ]] 0

E)The projected Codazzi rule is defin
e

, Lab[ L

fmeRuIe[Codazm PrOJTanﬁhLU Ijl.j[k]]*norm[u|_[||ﬂ PﬁL[k] L[,

(n = 2)TFLab[L[]

Figure D.3: Assignment of the intrinsic rules
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64 APPENDIX D. RICCI CODE IN MATHEMATICA

* This package defines the hypersurface intrinsic inner  products

g* This package defines the inner products on Normal tractors *)
* Last updated 13/10/03 *)

DefineRule[IProd, UNI[L[AA]*X[U[AA]], Oh
DefineRule[IProd, UNI[L[AA]*Y[U[AA]], —HJ; ]
DefineRule[IProd, UNIL[AA *Z UJAA], L[|]1, norm([L[il]];
DefineRule[IProd, UNI[L[AA [AA]] I;

Def i neRul e[ | Prod, SX[ L[ AA]]*SY[ U AAL

o el € b e LD S (3101

i neRul e r od,

i neRul e r od, L[ roj Tang i i ;
DefineRul e[ | Prod, SZ[ L] AA], L[ LSZ AAL ,ProjT L , L
DefineRul e[ | Prod, SZ[ L] AA], L[i]]*SX U AA ﬂ
Defi neRul e[ | Prod, SX| L[ AA] ] * [ AA]], O];

Figure D.4: Inner Product rules on submanifold

*

<< Ricci.m; << tangent.m; << tracbund.m; << tracbase.m; << dgCurvature.m;
dgVTractorm << dgConformaIm << dgTractorD.m; << dglnnerProduct.m;

2!

Let us generate the Tractor Curvature $\Omega$

(* —

}U[AA]][L[I]][L[J]] = VIU[AA]J[LONILLT

%’ensorS| lif
TensorS|rrTnppI|fy[y[
TensorSimplify[
Tensorslmpl|f¥
% /. VToBase]
/. GradXYZ]
/. GradXYZ]
/. 1Prod]

Figure D.5: Generation of the tractor curvature

<<
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*

<< Ricci.m; << tangent.m; << tracbund.m; << trachase.m; << dgCurvature.m; <<
dgVTractor.m; << dgConformal.m; << dgTractorD.m; << dglnnerProduct.m;

*)

*
gfhis notebook will be used to generate the action of the Tractor D operator
on the splitting operators

*
*grractor D on $Y_A$
*

égTraetorD[Y[L[AA]]*Fn, w - 1, U[AA]

grensorSi lif
TensorSirerpIify[y[ .
TensorSimplify[
TensorSimplify[
% /. GradXYZ]
/. ]GradXYZ]

/. 1Prod]
ir;ensorSimplify[% /. PToJ]

*
ﬁ'ractor D on $Z_A"a$
*

égTractorD[Z[L[AA], U[i*Fn[L[i], w - 1, U[AA]

gI'ensorSi lif
TensorSirrTnppIify[y[ )
TensorSimplify[
TensorSimplify[
% /. GradXYZ]
/. GradXYZ]
/. IProd]
/. PToJ]

*
ﬁ'ractor D on $X_A$
*

éngractorD[X[L[AA]]*Fn, w + 1, U[AA]

gI'ensorSi lif
TensorSirrTnppIify[y[ )
TensorSimplify[
TensorSimplify[
% /. GradXYZ]
/. GradXYZ]
/. IProd]
/. PToJ]

Figure D.6: The tractor D acting on the splitting operators X, Y and Z



APPENDIX D. RICCI CODE IN MATHEMATICA

g* Generation  of the $P_4$ operator, or Paneitz operator *)
* Step 1. Take the Tractor of the Fn *)

dgTractorD[Fn, 4 - n)2, L[AA]]
(* Step 2: Take the Yamabe operator of the above result *)
%[L[I], Uil + (2 - n)2*3*%
Tensor Si npl j f
TensorSirrrnppIify[y[ )
TensorSimplify[
% /. GradXYZ]
/. GradXYZ]
/. 1Prod]

g* Step 3: Take the final Tractor D - This will be done using identities *)
* Tractor D on X %)

Y[ U AA] ] * %

Tensor Si npl i f
Tenscg/rSir|Ir1ppIify[y[
(1]

/. 1Prod]
(n + 2w + 2)(n  + w)*%
(* Tractor D on Z *
Z[U[AA], L[i]]*%4

Tensor Si npl i f
Tens%/rSir|Ir1ppIify[y[
0

/. 1Prod]
(n + 2w = 2)*%[U[j]
(* Tractor Don Y *
X[ U AA] | * %

Tensor Si npl | f
Tens%/rSi%pplify[y[

0

/. 1Prod]
TensorSimplify[% /. PToJ]
(* Assign a specific weight  *)
w= -n/2
Sinmpli fy[ %49
Exggnd[g ] !
TensorSimplify[% /. PToJ]
w= (-4 - n)/2

Sinplify[ %6
TerqgorSir)r/\[plify[/o I. PToJ]

(* As can be seen this is $(n-4)P_4$ *)

Figure D.7: Generation of an (n — 4) multiple of the P, operator



(* The purpose of this notebook is to generate the \delta_3 operator
the intrinsic tractor calculus.
D Grant : 21/6/03 *)
DefineTensor[Fn, (0]
(* Step 1. Apply Tractor D *
dgTrac?orD[Fn PP @4 - n)2, L[%B]]
* Ste Apply Robin operator and simpli *
ggRob% A) fpy V2] p plify )
Tensor Si erI i f
TensorS|mpI|fy[
%
/. radXYZ]
%_ Step  3: Project onto the submanifold ’?
ensorS|mpI|fy ProlTract[L[AA] UBB]] %
TensorSimplify[% /. Intr|n5|c]
TensorS|mpI|fy% /. NormlProd]
* |solate the coefficients of the above tractor *)
*  Coefficients of X *
ensor Si npl i fy[
TensorS|m§JI
l’DU[ AAl ] * 9B
* Coeffnments of Y %)
ensor Si npl i f [
Tensor Si np |f
SX[U[AA]]
] 1. 'IProd
* Coefficients of Z %)
ensor Si npl i fy[
TensorSim I| [
SZ} U[l1*%8
| | IP od
DéfineRule[Substitute, rho, %9]
DefineRule[Substitute, mu[U[I]] %11]
DefineRule[Substitute, sigma,” %10]
* Step 4: Apply intrinsic  Tractor D— the rules are established
* Intr|n3|c tractor D acting on Y
Projn_ + n)y/2 - 2)*SJ*sigm )
ProjTang[ [Ik] U[I]]*PrOJTan %L[r] U[s]]*sigma]L][l], L[s]]
Tensor Si npl |

% /. Substltute

Prom 3 2 T hproltanall, UpmUUIILPY
ron + - n) - rojTang mu
ensor&mpln‘y[% . Substitute P P
TensorSimplify[% /. SecFundForm]

* Intrinsic D acting on X *)

Projn + 2(-=2 - n)/2 + 22%Pron + (-2 - n)/2)*rho
ensorSimplify[% /. Subsmtei

S* Sum the three operators %)

0016+ %19 + %21

Figure D.8: Generation of the d; operator

while

using

in dgTractorD

\
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