
Maths 260 Lecture 33

◮ Topics for today:

More nonhomogeneous higher order DEs
Forcing and resonance in the harmonic oscillator

◮ Reading for this lecture: BDH Section 4.3, 4.4

◮ Suggested exercises: BDH Section 4.3; 3,7,9, Section 4.4; 2

◮ Reading for next lecture: None

◮ Today’s handouts: None
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Recap: Method of solution for equations of the form

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f (t)

◮ Find the general solution to the related homogeneous
equation.

◮ Find one solution to the nonhomogeneous equation.

◮ Add answers to steps 1 and 2 to get the general solution to
the nonhomogeneous equation.

◮ If trying to solve an IVP, use the initial conditions to
determine constants in the general solution.
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Recap: Method of solution

To find a particular solution to the DE

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f (t)

where f (t) is

◮ constant, or

◮ tn for n a positive integer, or

◮ e
λt for real nonzero λ, or

◮ sin(bt) or cos(bt), for b constant, or

◮ a finite product of terms like these
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Recap: Method of solution

Step 1: Form the UC set consisting of f and all linearly independent
functions obtained by repeated differentiation of f .

Step 2: If any of the functions in the UC set is also a solution to the
homogeneous DE, multiply all functions in the set by tk ,
where k is the smallest integer so that the modified UC set
does not contain any solutions to the homogeneous DE.

Step 3: Find a particular solution to the DE by taking a linear
combination of all the functions in the (possibly modified) UC
set. Determine the unknown constants by substituting this
linear combination into the DE.
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More complicated forcing functions

We can modify this method to solve DEs for which the forcing
function is a finite sum of terms.

For example, to find a solution to

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f1(t) + f2(t)

◮ first find y1 that solves

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f1(t)

◮ then find y2 that solves

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f2(t)

Then y = y1 + y2 solves the DE with forcing term
f (t) = f1(t) + f2(t).
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Example 1:

Find the general solution to

d2y

dt2
− 3

dy

dt
+ 2y = 2 sin t − e

2t
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Example 1 continued:

Now find a solution to d2y

dt2 − 3dy
dt

+ 2y = 2 sin t

Then find a solution to d2y

dt2 − 3dy
dt

+ 2y = −e
2t
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Example 2:

Find the general solution to

d3y

dt3
+ 2

d2y

dt2
+ 5

dy

dt
= t + 2et
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Example 2 continued:

Now find a solution to d3y

dt3 + 2d2y

dt2 + 5dy
dt

= t

Then find a solution to d3y

dt3 + 2d2y

dt2 + 5dy
dt

= 2et
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The forced harmonic oscillator

A higher order equation of special interest in applications is the
periodically forced harmonic oscillator, i.e.

dy

dt
+ p

dy

dt
+ qy = cos(ωt)

for constants p ≥ 0, q > 0 and ω > 0.

◮ We are interested in the long term behaviour of solutions for
various values of the damping coefficient p.

◮ The characteristic polynomial is λ2 + pλ + q = 0, which has
roots

λ = −p

2
±

√

p2 − 4q

2
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The forced harmonic oscillator, continued

Thus, in the case 0 ≤ p2 < 4q, the homogeneous equation has
general solution

yc = c1e
−

p

2
t cos(αt) + c2e

−

p

2
t sin(αt)

where

α =

√

4q − p2

2

◮ Exercise: Find the general solution to the homogeneous
problem when p2 ≥ 4q.

◮ Exercise: Show that for all values of p > 0 the solution to
the homogeneous equation tends to zero as t → ∞.

A consequence of the result in the previous exercise is that as
t → ∞, all solutions to the forced harmonic oscillator with nonzero
damping behave the same, i.e., like the particular solution to the
non-homogeneous problem.
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The damped forced harmonic oscillator, p > 0

To find the particular solution:
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The damped forced harmonic oscillator, continued

We find
yp = A cos(ωt + θ)

where

A =
1

√

(q − ω2)2 + (ωp)2
, θ = tan−1

(

−ωp

q − ω2

)

◮ Qualitative behaviour of this solution:
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The damped forced harmonic oscillator, continued

Amplitude of yp as a function of ω in the case q = 2 and for
various p:
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The undamped forced harmonic oscillator, p = 0

In the undamped case (p = 0), a particular solution is

yp =



















1

q − ω2
cos ωt, ω2 6= q

1

2ω
t sinωt, ω2 = q

Exercise: Check this.

◮ Qualitative behaviour of this solution:
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Summary:

◮ For the damped periodically forced harmonic oscillator

dy

dt
+ p

dy

dt
+ qy = cos(ωt)

all solutions eventually become periodic with frequency the
same as the forcing frequency, ω, and with amplitude
depending on ω.

◮ The amplitude of the long term solutions can be very large if
the forcing frequency, ω, is close to the natural frequency of
the unforced system (

√
q).

◮ Also, smaller damping (p) leads to a larger amplitude for the
long term solutions.
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Important ideas from today

To find a solution to

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f1(t) + f2(t)

we use linearity, i.e., first find y1 that solves

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f1(t)

and then find y2 that solves

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = f2(t)

Then y = y1 + y2 solves the DE with forcing term
f (t) = f1(t) + f2(t).

17 / 18



For the damped periodically forced harmonic oscillator

dy

dt
+ p

dy

dt
+ qy = cos(ωt)

all solutions eventually become periodic:

◮ The frequency of the periodic behaviour is the same as the
forcing frequency, ω,

◮ The amplitude of the periodic behaviour depends on ω, i.e.
the amplitude is larger if the forcing frequency, ω, is closer to√

q, the natural frequency of the unforced system.
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