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1 Introduction

For a given Riemannian manifold .M n; g/, the holonomy group Hol.M; g/ of the
metric g contains fundamental geometric information. If the manifold is locally ir-
reducible, as it can always be assumed locally by the well-known de Rham splitting
theorem, requiring that Hol.M; g/ is smaller that SO.n/ has strong geometric impli-
cations at the level of the geometric structure supported byM (see [52] for an account
of the classification of irreducible Riemannian holonomies). Nowadays, this has been
extended to cover the classification of possible holonomy groups of torsion-free affine
connections (see [9], [10], [44] for an overview).
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From a somewhat different perspective, in the past years there has been increased
interest in the theory of metric connections with totally skew-symmetric torsion on
Riemannian manifolds. The holonomy group of such a connexion is once again anconnexion

or
connection??

insightful object which can be used to describe the geometry in many situations. One
general reason supporting this fact is that the de Rham splitting theorem fails to hold
in this generalised setting and the counterexamples to this extent are more intricate
than just Riemannian products. Additional motivation for the study of connections in
the above mentioned class comes from string theory, where this requirement is part of
various models (see [1], [54] for instance).

Actually, some of these directions go back to the work of A.Gray, in the seventies,
in connection to the notion of weak holonomy [31], [3], aimed to generalise that of
Riemannian holonomy. The study of nearly-Kähler manifolds initiated by Gray in
[30], [32], [33] has been instrumental in the theory of geometric structures of non-
integrable type. As it is well known, for almost Hermitian structures a classification
has been first given by Gray and Hervella in [34], which proved to be quite suitable
for generalisation.

Recently, general G-structures of non-integrable type have been studied in [55],
[26], [17], [25], by taking into account the algebraic properties of the various torsion
modules. Using results from holonomy theory they have indicated how to read off
various intersections ofG-modules interesting geometric properties when in presence,
say, of a connection with totally skew-symmetric torsion. Aspects of such an approach
are contained in the Gray–Hervella classification and its analogues for other classical
groups, we shall comment on later. Note that a central place in [17] is occupied by
connections with parallel skew-symmetric torsion, studied since then by many authors.

By combining these two points of view, let us return to the Gray–Hervella clas-
sification and recall that one of its subclasses, that of nearly-Kähler structures, has a
priori parallel torsion for a connection with totally skew-symmetric torsion [40]. This
suggests perhaps that geometric properties of the intrinsic torsion might by obtained
in more general context.

In this chapter we will at first investigate some of the properties of almost Hermitian
structures in the Gray–Hervella classW1 CW3 CW4, also referred to – as we shall in
what follows – as the class G1. It is best described [26] as the class of almost Hermitian
structures admitting a metric and Hermitian connection with totally skew-symmetric
torsion. Yet, this property is equivalent [26] with requiring the Nijenhuis tensor of the
almost complex structure to be a 3-form when evaluated using the Riemannian metric
of the structure. There are several subclasses of interest, for example the classW3CW4
consisting of Hermitian structures, the classW4 of locally conformally Kähler metrics
and the classW1 of nearly-Kähler structures, which will occupy us in the second half of
the exposition. One general question which arises is how far the classW1CW3CW4
is, for instance, from the subclass W3 CW4 of Hermitian structures.

The chapter is organised as follows. In Section 2 we present a number of algebraic
facts related to representations of the unitary group and also some background material
on algebraic curvature tensors. We also briefly review some basic facts from almost-
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Hermitian geometry, including a short presentation of the Hermitian connections of
relevance for what follows. At the end of Section 2 we introduce the notion of Hermi-
tian Killing form with respect to a Hermitian connection with torsion. Although this
is a straightforward variation on the Riemannian notion it will serve an explanatory
rôle in the next section.

Section 3 is devoted to the study of the properties of the torsion tensor of an almost
Hermitian structure in the class G1. More precisely we prove:

Theorem 1.1. Let .M 2m; g; J / be an almost-Hermitian structure of type G1 and let runningheads
for the title
shortened,
please
check

D be the unique Hermitian connection whose torsion tensor TD belongs to ƒ3.M/.
Then

DX 
C D �1

2
.X ³ dTD/�3

for allX inTM , where C is proportional to the Nijenhuis form ofJ and the subscript
indicated orthogonal projection on �3.M/, the bundle of real valued forms of type
.0; 3/C .3; 0/.

For unexplained notation and the various numerical conventions we refer the reader
to Section 2. In the language of that section, this can be rephrased to say that  C
is a Hermitian Killing form of type .3; 0/ C .0; 3/. Theorem 1.1 is extending to the
wider class of G1-structures the well-known [40] parallelism of the Nijenhuis tensor
of a nearly-Kähler structure. We also give necessary and sufficient conditions for the
parallelism of the Nijenhuis tensor, in a G1-context and specialise Theorem 1.1 to the
subclass of W1 C W4 manifolds which has been recently subject of attention [13],
[16], [47] in dimension 6. Section 3 ends with the explicit computation of the most
relevant components of the curvature tensor of the connection D above, in a ready to
use form.

Section 4 contains a survey of available classification results in nearly-Kähler
geometry. Although this is based on [48], [49] we have adopted a slightly different
approach, which emphasises the rôle of the non-Riemannian holonomy system which
actually governs the way various holonomy reductions are performed geometrically.
We have outlined, step by step, the procedure reducing a holonomy system of nearly-
Kähler type to an embedded irreducible Riemannian holonomy system, which is the
key argument in the classification result which is stated below.

Theorem 1.2 ([49]). Let .M 2m; g; J / be a complete SNK-manifold. Then M is, up
to finite cover, a Riemannian product whose factors belong to the following classes:

(i) homogeneous SNK-manifolds;

(ii) twistor spaces over positive quaternionic Kähler manifolds;

(iii) 6-dimensional SNK-manifolds.

We have attempted to make the text as self-contained as possible, for the conve-
nience of the reader.
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2 Almost Hermitian geometry

An almost Hermitian structure .g; J / on a manifoldM consists in a Riemannian metric
g onM and a compatible almost complex structure J . That is, J is an endomorphism
of the tangent bundle to M such that J 2 D �1TM and

g.JX; J Y / D g.X; Y /

for all X , Y in TM . It follows that the dimension of M is even, to be denoted by 2m
in the subsequent. Any almost Hermitian structure comes equipped with its so-called
Kähler form ! D g.J � ; � / inƒ2. Since ! is everywhere non-degenerate the manifold
M is naturally oriented by the top degree form !m.

We shall give now a short account on some of the U.m/-modules of relevance
for our study. Let ƒ? denote the space of differential p-forms on M , to be assumed
real-valued, unless stated otherwise.

We consider the operator J W ƒp ! ƒp acting on a p-form ˛ by

.J˛/.X1; : : : ; Xp/ D
pX
kD1

˛.X1; : : : ; JXk; : : : ; Xp/

for all X1; : : : ; Xp in TM . For future use let us note that alternatively

J˛ D
2mX
iD1

e[i ^ .Jei ³ ˛/

for all ˛ inƒ?, where fei ; 1 � i � 2mg is some local orthonormal frame onM . The
almost complex structure J can also be extended to ƒ? by setting

.J˛/.X1; : : : ; Xp/ D ˛.JX1; : : : ; JXp/

for all Xi , 1 � i � p in TM .
Let us recall that the musical isomorphism identifying vectors and 1-forms is given

by X 2 TM 7! X [ D g.X; � / 2 ƒ1. Note that in our present conventions one has
JX [ D �.JX/[ whenever X belongs to TM .

Now J acts as a derivation onƒ? and gives the complex bi-grading of the exterior
algebra in the following sense. Let �p;q be given as the �.p � q/2-eigenspace of J2.
One has an orthogonal, direct sum decomposition

ƒs D
M

pCqDs
�p;q;

called the bidegree splitting of ƒs , 0 � s � 2m. Note that �p;q D �q;p . Of special
importance in our discussion are the spaces �p D �p;0; forms ˛ in �p are such that
the assignment

.X1; : : : ; Xp/ ! ˛.JX1; X2; : : : ; Xp/
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is still an alternating form which equals p�1J˛. We now consider the operator
L W ƒ? ! ƒ? given as multiplication with the Kähler form!, together with its adjoint,
to be denoted by L?. Forms in

ƒ?0 D KerL?

are called primitive and one has

ŒL?; L� D .m � p/1ƒp

on the space of p-forms. Note that the inclusion �p � ƒ
p
0 holds whenever p � 0.

Let �p ˝1 �
q be the space of tensors Q W �p ! �q which satisfy

QJ D �JQ;

where J W �p ! �p is given by J D p�1J. We also define �p ˝2 �
q as the space of

tensors Q W �p ! �q such that QJ D JQ. The following lemma is easy to verify.

Lemma 2.1. Let a W �p ˝ �q ! ƒpCq be the total alternation map. Then:

(i) the image of the restriction of a to �p ˝1 �
q ! ƒpCq is contained in �p;q;

(ii) the image of the restriction of a to �p ˝2 �
q ! ƒpCq is contained in �pCq;

(iii) the total alternation map a W �p ˝1 �
q ! ƒpCq is injective for p ¤ q;

(iv) the kernel of a W �p ˝ �q ! ƒpCq is contained in �p ˝2 �
q .

In this chapter most of our computations will involve forms of degree up to 4. For
further use we recall that one has

J D J

on �1;2 and also that

J�2;2˚�4 D 1�2;2˚�4 ; J�1;3 D �1�1;3 :

We will now briefly introduce a number of algebraic operators which play an important
rôle in the study of connections with totally skew-symmetric torsion. If ˛ belongs to
ƒ2 and ' is in ƒ? we define the commutator 1

Œ˛; '� D
2mX
iD1
.ei ³ ˛/ ^ .ei ³ '/;

where fei ; 1 � i � 2mg is a local orthonormal frame in TM . Note that

Œ!; '� D �J'

for all ' in ƒ?. It is also useful to mention that

Œ�1;1; �3� � �3; Œ�1;1; �1;2� � �1;2; Œ�2; �3� � �1;2: (2.1)

1This is proportional to the commutator in the Clifford algebra bundle Cl.M/ ofM .
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Lastly, for any couple of forms .'1; '2/ in ƒp � ƒq we define their product '1 •'2
in ƒpCq�2 by

'1 •'2 D
2mX
kD1

.ek ³ '1/ ^ .ek ³ '2/;

for some local orthonormal frame fek; 1 � k � 2mg on M . We end this section
by listing a few properties of the product • for low degree forms, to be used in what
follows.

Lemma 2.2. The following hold:

(i) '1 •'2 belongs to �2;2 ˚ �1;3 for all '1; '2 in �1;2;

(ii) ' •J' is in �1;3 for all ' in �1;2;

(iii) ' • belongs to �1;3 ˚ �4 whenever ' is in �1;2 and all  in �3;

(iv)  1 • 2 belongs to �2;2 for all  1;  2 in �3;

(v) if  is in �3 we have that  •J D 0.

The proofs consist in a simple verification which is left to the reader.

2.1 Curvature tensors in the almost Hermitian setting

We shall present here a number of basic facts concerning algebraic curvature tensors
we shall need later on. Since this is intended to be mainly at an algebraic level, our
context will be that of a given Hermitian vector space .V 2m; g; J /. Let us recall that
the Bianchi map b1 W ƒ2 ˝ƒ2 ! ƒ1 ˝ƒ3 is defined by

.b1R/x D
2mX
iD1

e[i ^R.ei ; x/

for all R in ƒ2 ˝ƒ2 and for all x in V . The space of algebraic curvature tensors on
V is given by

K.so.2m// D .ƒ2 ˝ƒ2/ \ Ker.b1/

and it is worth observing that K.so.2m// D S2.ƒ2/\ Ker.a/. Restricting the group
to the unitary one makes appear the space of Kähler curvature tensors given by

K.u.m// D .�1;1 ˝ �1;1/ \ Ker.b1/ D S2.�1;1/ \ Ker.a/:

We shall briefly present some well-known facts related to the space of Kähler curvature
tensors, with proofs given mostly for the sake of completeness. First of all, we have
an inclusion of �2;2 into S2.�1;1/ given by

� 7! y�;
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where y�.x; y/ D �1
4
.�.x; y/C�.Jx; Jy// for all x, y in V . This is mainly due to

the fact that forms of type .2; 2/ are J -invariant. A short computation yields

b1.y�/ D � (2.2)

for all� in �2;2. There is also an embedding of �1;3 into �2˝�1;1 given by� 7! {�,
where

{�.x; y/ D �.x; y/ ��.Jx; Jy/
for all x, y in V . It is easily verified that

.b1 {�/x D Jx ³ J� � 2x ³� (2.3)

for all x, y in V and for all � in �1;3.
Similarly to the well-known splitting S2.ƒ2/ D K.so.2m//˚ƒ4 we have:

Proposition 2.1. There is an orthogonal, direct sum splitting

S2.�1;1/ D K.u.m//˚ �2;2:

Explicitly, anyQ in S2.�1;1/ can be uniquely written asQ D RC y� for some Kähler
curvature tensor R and some � in �2;2.

Proof. LetQ belong to S2.�1;1/. It satisfiesQ.Jx; Jy/ D Q.x; y/ for all x, y in V
and since Q belongs to S2.ƒ2/ it splits as

Q D RC�;

where R is in K.so.2m// and � belongs to ƒ4. In particular

R.Jx; Jy/C�.Jx; Jy/ D R.x; y/C�.x; y/ (2.4)

for all x, y in V .
SinceQ belongs to �1;1˝�1;1 we have that .b1Q/x belongs to �1;2 for all x in V .

But R is a curvature tensor, hence .b1Q/x D �3x ³�, leading to x ³� in �1;2 for
all x in V . It is then easy to see that�must be an element of �2;2. It follows by direct
verification that R� given by

R�.x; y/ D �.Jx; Jy/ � 1

3
�.x; y/

belongs to K.so.2m//. Setting now R0 D R � 3
4
R� it is easy to see from (2.4) that

R0 belongs to K.u.m// and our claim follows after appropriate rescaling from

Q.x; y/ D R0.x; y/C 3

4

�
�.Jx; Jy/C�.x; y/

�
for all x, y in V . �

Our next and last goal in this section is to have an explicit splitting of certain
elements ofƒ2 ˝ �1;1 alongƒ2 D �1;1 ˚ �2. More explicitly, we will look at this in
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the special case of a tensor R in ƒ2 ˝ �1;1 such that

R.x; y; z; u/ � R.z; u; x; y/ D �x.y; z; u/ � �y.x; z; u/
� �z.u; x; y/C �u.z; x; y/

(2.5)

holds for all x, y, z, u in V . Here � belongs toƒ1 ˝ƒ3 and in what follows we shall
use the notation

T D a.�/

for the total alternation of � . The tensor R is the algebraic model for the curvature
tensor of a Hermitian connection with totally skew-symmetric torsion, which will be
our object of study later on in the chapter.

Remark 2.1. A complete decomposition of K.so.2m// into irreducible components
under the action of U.m/ has been given by Tricerri and Vanhecke in [56]. Further
information concerning the splitting of ƒ2 ˝ ƒ2, again under the action of U.m/ is
given in detail in [20]. While the material we shall present next can be equivalently
derived from these references, it is given both for self-containedness and also as an
illustration that one can directly proceed, in the case of a connexion with torsion, to
directly split its curvature tensor without reference to the Riemann one. As a general
observation we also note that the procedure involves only control of the orthogonal
projections onto the relevant U.m/-submodules.

Recall that for any ˛ in ƒ2 its orthogonal projection on �1;1 is given by

˛�1;1 D 1

2
.˛ C J˛/:

To obtain the decomposition of R we need the following preliminary lemma.

Lemma 2.3. Let � in �1˝�1;2 be given. We consider the tensorsH1,H2 inƒ2˝�1;1
given by

H1.x; y/ D .x ³ �y � y ³ �x/�1;1 and H2.x; y/ D H2.J x; Jy/

for all x, y in V . Then:

(i) 2.b1H1/x D 3�x C J�Jx C x ³ a.�/ � Jx ³ a.J�/;
(ii) 2.b1H2/x D �x C 3J�Jx C Jx ³ ac.�/C x ³ ac.J�/

for all x in V . Here J� in �1 ˝ �1;2 is defined by .J�/x D J�x for all x in V , and
the complex alternation map ac W �1 ˝ �1;2 ! ƒ4 is given by

ac.�/ D
2mX
kD1

e[k ^ �Jek
:
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Proof. (i) Let fek; 1 � k � 2mg be an orthonormal basis in V . Directly from its
definition, the tensor H1 is given by

2H1.x; y/ D x ³ �y � Jx ³ J�y � y ³ �x C Jy ³ J�x;
hence

2.b1H1/x D 4�x �
2mX
kD1

e[k ^ .x ³ �ek
/C

2mX
kD1

e[k ^ .J x ³ J�ek
/

since J D J on �1;2. Now

x ³ a.�/ D �x �
2mX
kD1

e[k ^ .x ³ �ek
/

and

Jx ³ a.J�/ D J�Jx �
2mX
kD1

e[k ^ .J x ³ J�ek
/

for all x in V and the claim follows immediately.
(ii) It is enough to use (i) when replacing � by J�. � “when” ok?

We split now
� D �1;2 C �3

along ƒ1 ˝ƒ3 D .ƒ1 ˝ �1;2/˚ .ƒ1 ˝ �3/ and also

T D T 2;2 C T 1;3 C T 4

along the bidegree decomposition of ƒ4 in order to be able to introduce some of the
components of the tensor R. These are the tensor Ra in �1;1 ˝ �1;1 given by

Ra.x; y/D .�xy��yx/�1;1 C.�JxJy��JyJx/�1;1 �1
2
.T 2;2.x; y/CT 2;2.J x; Jy//

for all x, y in V , and the tensor Rm in �2 ˝ �1;1 defined by

Rm.x; y/D .�xy��yx/�1;1 �.�JxJy��JyJx/�1;1 �1
2
.T 1;3.x; y/�T 1;3.J x; Jy//

for all x, y in V . Here we use �xy as a shorthand for y ³ �x , whenever x, y are in V .
The promised decomposition result for R is achieved mainly by projection of (3.5)

onto
ƒ2 ˝ �1;1 D .�1;1 ˝ �1;1/˚ .�1;1 ˝ �2/

while taking into account that R belongs to ƒ2 ˝ �1;1.

Theorem 2.1. Let R belong to ƒ2 ˝ �1;1 such that (2.5) is satisfied. We have a
decomposition

R D RK C y�C 1

2
Ra C Rm;
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where RK belongs to K.u.m// and � is in �2;2 . Moreover:

(i) Ra belongs to ƒ2.�1;1/ and satisfies the Bianchi identity

.b1R
a/x D �2.�1;2x C J�

1;2
Jx / � 1

2
x ³ A1 � 1

2
Jx ³ A2

for all x in V . The forms A1 and A2 are explicitly given by

A1 D a.�1;2/C ac.J �1;2/ � 4T 2;2;
A2 D ac.�1;2/ � a.J �1;2/:

(ii) The Bianchi identity for Rm in �2 ˝ �1;1 is

.b1R
m/x D �.�1;2x � J�1;2Jx / � 1

2
x ³ A3 C 1

2
Jx ³ A4

for all x in V , where

A3 D a.�1;2/ � ac.J �1;2/ � 2T 1;3;
A4 D a.J �1;2/C ac.�1;2/ � JT 1;3:

Proof. We first show that Ra belongs toƒ2.�1;1/. Directly from the definition of the
map a we have that the tensor

Q.x; y/ WD �xy � �yx � 1

2
T .x; y/

belongs to ƒ2.ƒ2/, so after projection on �1;1 ˝ �1;1 it follows that

.�xy � �yx/�1;1 C .�JxJy � �JyJx/�1;1 � 1

2
.T .x; y/C T .Jx; Jy//�1;1

is an element of ƒ2.�1;1/. We conclude by recording that

.T .x; y/C T .Jx; Jy//�1;1 D T 2;2.x; y/C T 2;2.J x; Jy/

since forms in �1;3 are J -anti-invariant whilst those in �2;2 ˚ �4 are J -invariant and
moreover any ' in �4 satisfies '.J �; J � ; � ; � / D �'. � ; � ; � ; � /.

The next step is to notice that (2.5) actually says that R � Q belongs to S2.ƒ2/
and to project again on �1;1 ˝ �1;1. By the argument above it follows that

R.x; y/C R.J x; Jy/ �Ra.x; y/
is in S2.�1;1/, thus by Proposition 2.1 we can write

R.x; y/C R.J x; Jy/ �Ra.x; y/ D 2RK.x; y/C 2 y�.x; y/ (2.6)

for all x, y in V , where � is in �2;2 and RK belongs to K.u.m//.
Now, rewriting (2.5) as

R.x; y; z; u/ � R.z; u; x; y/ D 2.�x.y; z; u/ � �y.x; z; u// � T .x; y; z; u/
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we obtain after projection on �2 ˝ �1;1 that

R.x; y/ � R.J x; Jy/ D 2.�xy � �yx/�1;1 � 2.�JxJy � �JyJx/�1;1

� .T .x; y/ � T .Jx; Jy//�1;1

for all x, y in V . Since �4 ˚ �2;2 consists in J -invariant forms, it is easy to see that

.T .x; y/ � T .Jx; Jy//�1;1 D T 1;3.x; y/ � T 1;3.J x; Jy/;
in other words

1

2
.R.x; y/ � R.J x; Jy// D Rm.x; y/ (2.7)

for all x, y in V . The splitting of R follows now from (2.6) and (2.7) and from the
fact that the component of � on �1 ˝ �3 is not seen by the projection on �1;1.

To finish the proof, it remains only to prove the Bianchi identities for Ra and Rm.
Using Lemma 2.3 and (2.2) it is easy to get that

.b1R
a/x D �2.�1;2x C J�

1;2
Jx /C 2x ³ T 2;2

� 1

2
x ³ .a.�1;2/C ac.J �1;2// � 1

2
Jx ³ .ac.�1;2/ � a.J �1;2//

for all x inV . The Bianchi identity for Rm is proved along the same lines and therefore
left to the reader. �

Remark 2.2. Underlying Theorem 2.1 are the following isomorphisms of u.m/-
modules. The first is

b1 W ƒ2.�1;1/ ! .�1 ˝1 �
1;2/ \ Ker.a/;

where

�1 ˝1 �
1;2 D f� 2 �1 ˝ �1;2 W �Jx D �J�x for all x 2 V g:

The second is given by

b1 W �2 ˝ �1;1 ! �1 ˝2 �
1;2;

where �1 ˝2 �
1;2 D f� 2 �1 ˝ �1;2 W �Jx D J�x for all x 2 V g.

This makes that in practice it is not necessary to work with the somewhat involved
expressions forRa,Rm but rather with their Bianchi contractions, which are tractable.

2.2 The Nijenhuis tensor and Hermitian connections

Let .M 2m; g; J / be an almost Hermitian manifold. Recall that the Nijenhuis tensor
of the almost complex structure J is defined by

NJ .X; Y / D ŒX; Y � � ŒJX; J Y �C J ŒJX; Y �C J ŒX; J Y �
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for all vector fields X , Y on M . It satisfies

NJ .X; Y /CNJ .Y;X/ D 0;

NJ .JX; J Y / D �NJ .X; Y /;
NJ .JX; Y / D �JNJ .X; Y /

for all X , Y in TM . By evaluating NJ using the Riemannian metric g we can also
form the tensor N J defined by

N J
X .Y;Z/ D g.NJ .Y;Z/;X/

for all X , Y , Z in TM , which therefore belongs to �1 ˝2 �
2. When NJ vanishes

identically, J is said to be integrable and givesM the structure of a complex manifold.
Denoting by r the Levi-Civita connection attached to the Riemannian metric g

we form the tensor rJ in �1˝�2. Then one can alternatively compute the Nijenhuis
tensor as

NJ .X; Y / D ��
.rJXJ /Y � .rJ Y J /X

� C J
�
.rXJ /Y � .rY J /X

�
: (2.8)

It is now a good moment to recall that an almost Hermitian structure .g; J / is called
Kähler if and only if rJ D 0, or equivalently r! D 0. This implies the integrability
of J by making use of (2.8) and also that ! is a symplectic form, in the sense that
d! D 0 where d denotes the exterior derivative. It turns out that for an arbitrary
almost complex structure .g; J /, the tensors d! in ƒ3 and N J in �1 ˝2 �

2 form a
full set of obstructions to having .g; J / Kähler as the following general fact shows.

Proposition 2.2. For any almost Hermitian structure .g; J / onM we have

2rX! D �N J
JX CX ³ d! C JX ³ Jd! (2.9)

for all X in TM .

Proof. Although this is a standard fact we give the proof for self-containedness. From
the definition of the exterior derivative we have

d!.X; Y;Z/ D .rX!/.Y;Z/ � .rY!/.X;Z/C .rZ!/.X; Y /
for all X , Y , Z in TM . Since rX! is in �2 for all X in TM we obtain

d!.X; Y;Z/ � d!.JX; J Y;Z/
D .rX!/.Y;Z/ � .rY!/.X;Z/

� .rJX!/.J Y;Z/C .rJ Y!/.JX;Z/C 2.rZ!/.X; Y /
for all X , Y , Z in TM . This can be rewritten by using (2.8) as

d!.X; Y;Z/ � d!.JX; J Y;Z/ D hNJ .X; Y /; JZi C 2.rZ!/.X; Y /
whenever X , Y , Z belong to TM , and the claim follows. �

Therefore d! D 0 and NJ D 0 result in rJ D 0, in other words in .g; J / being
Kähler.



Chapter 10. Totally skew-symmetric torsion and nearly-Kähler geometry 13

We shall call a linear connection on the tangent bundle to M Hermitian if it re-
spects both the metric and the almost complex structure. In the framework of almost
Hermitian geometry two connections play a distinguished rôle. The first is called the
first canonical Hermitian connection and it is defined by

xrX D rX C �X ;

where � in �1 ˝ �2 is given by �X D 1
2
.rXJ /J . The tensor � is called the intrinsic

torsion tensor of the U.m/-structure on M induced by .g; J /. The connection xr is
minimal [28], in the sense of minimising the norm within the space of almost Hermitian
connections.

To introduce the second Hermitian connection we need some preliminaries. First of
all let us decompose the3-formd! D d1;2!Cd3! along the splittingƒ3 D �1;2˚�3.
Then:

Lemma 2.4. Let .M 2m; g; J / be almost Hermitian. Then a.N J / D 4Jd3!.

Proof. Using (2.9) we obtain

d! D a.r!/ D �
2mX
iD1

e[i ^N J
Jei

C 3d! C J.Jd!/;

where fei ; 1 � i � 2ng is some local orthonormal frame. Since N J belongs to
�1 ˝2 �

2 it is easy to see that J.a.N J // D 3
P2m
iD1 e[i ^N J

Jei
and the claim follows

by taking into account that J D J on �1;2. �

Since �3 � �1 ˝2 �
3 it follows that the Nijenhuis tensor splits as

N J
X D yN J

X C 4

3
X ³ Jd3!

for all X in TM , where the tensor yN J belongs to the irreducible U.m/-module ker –> Ker

W2 D .�1 ˝2 �
2/ \ Ker.a/:

Proposition 2.3. Let .M 2m; g; J / be almost Hermitian. The linear connection D
defined byDX D rX C �X , where

2�X D X ³ Jd1;2! � 1

3
X ³ Jd3! C 1

2
yN J
X ;

is Hermitian.

Proof. That D is metric is clear since �X is a two form for all X in TM . To see that
D! D 0 it is enough to show that rX! C Œ�X ; !� D 0 or equivalently

rX! C J�X D 0
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for all X in TM . But

2J�X D J.X ³ Jd1;2!/ � 1

3
J.X ³ Jd3!/C 1

2
J yN J

X

D �X ³ d1;2! � JX ³ Jd1;2! � 2

3
X ³ d3! C yN J

JX

after taking into account that yN J belongs to �1 ˝2 �
2. Therefore, after taking into

account (2.9),

2rX! C 2J�X D �
�

yN J
JX C 4

3
JX ³ Jd3!

�
CX ³ d! C JX ³ Jd!

�X ³ d1;2! � JX ³ Jd1;2! � 2

3
X ³ d3! C yN J

JX D 0

after a straightforward computation, and the result follows. �

It follows from Proposition 2.2 and Lemma 2.4 that the intrinsic torsion tensor of
the almost Hermitian structure .g; J / is completely determined by

.d!; yN J / in ƒ3 ˚W2:

Since ƒ3 ˚W2 has four irreducible components under the action of U.m/ the Gray–
Hervella classification [34] singles out 16-classes of almost Hermitian manifolds.
Similar classification results are available for the groups G2 [22], [16] and Spin.7/
[21] as well as for quaternionic structures [41] and SU.3/-structures on 6-dimensional
manifolds [14]. The case of Spin.9/-structures on 16-dimensional manifolds has been
equally treated in [24]. For PSU.3/-structures on 8-dimensional manifolds and SO.3/-
structures in dimension 5 the decomposition of the intrinsic torsion tensor has been
studied in [37], [58] and [8].

2.3 Admissible totally skew-symmetric torsion

In this section we shall start to specialise our discussion to a particular class of almost
Hermitian manifolds, to be characterized in terms of the torsion tensor of the Hermitian
connection D. We recall that the torsion tensor of a linear connexion on M , e.g. D,
is the tensor TD in ƒ2 ˝ƒ1 given by

TD.X; Y / D DXY �DYX � ŒX; Y �
for all vector fields X , Y on M . In the case of the connection xr, the torsion will be
denoted simply by T .

The following result of Friedrich and Ivanov clarifies in which circumstances an al-
most Hermitian structure admits a Hermitian connection with totally skew-symmetric
torsion.
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Theorem 2.2 ([26]). Let .M 2m; g; J / be almost Hermitian. There exists a Hermitian
connection with torsion in ƒ3 if and only if N J is a 3-form. If the latter holds, the
connection is unique and equalsD.

Almost Hermitian manifolds with totally skew-symmetric Nijenhuis tensor form
the so-called Gray–Hervella class W1 C W3 C W4 and are usually called G1 almost
Hermitian structures. As it follows from the discussion above an almost Hermitian
structure .g; J / belongs to the class G1 if and only if yN J D 0. Because of its
uniqueness, the connection D in Theorem 2.2 will be referred to as the characteristic
connection of the G1-manifold .M 2m; g; J /.

In the remaining part of this section we will work on a given G1-manifold
.M 2m; g; J / and we will derive a number of facts to be used later on. We have

N J D 4

3
Jd3!;

2� D TD D Jd1;2! � 1

3
Jd3!:

It is also worth noting that (2.9) is then updated to

2rX! D X ³ d1;2! C JX ³ Jd1;2! C 2

3
X ³ d3!

for all X in TM . Under a shorter and perhaps more tractable form this reads

rX! D X ³ t C JX ³ J t CX ³  C (2.10)

for all X in TM , where the 3-forms t in �1;2 and  C in �3 are given by

t D 1

2
d1;2!;  C D 1

3
d3!:

In the same spirit we can also re-express d! and the torsion form as

d! D 2t C 3 C (2.11)

and
TD D 2J t C  �; (2.12)

where the 3-form  � in �3 is given by  � D  C.J � ; � ; � /.
Remark 2.3. (i) Whenm D 2 any almost Hermitian structure of class G1 is automat-
ically Hermitian, that is NJ D 0. This is due to the vanishing of �3 in dimension 4.
In what follows we shall therefore assume that m � 3.

(ii) From (2.10) it is easy to see that almost Hermitian structures in the class G1
are alternatively described as those satisfying .rJXJ /JX D �.rXJ /X for all X
in TM .

When J is integrable it is easy to see that TD D 2Jd! belongs to ƒ3 (actually
�1;2 after taking into account Lemma 2.4). In this case the connection D is referred
to as the Bismut connection [7].
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Almost quaternionic or almost hyperhermitian structures admitting a structure pre-
serving connection with totally skew-symmetric torsion have been introduced and
given various characterisations in [38], [29], [39], [43]. The resulting geometries are
known under the names QKT (quaternion-Kähler with torsion) and HKT (hyperkähler
with torsion).

2.4 Hermitian Killing forms

In this section, briefly recalling the definition of Killing forms in Riemannian geometry
we shall present a variation of that notion, more suitable to the almost Hermitian
setting. This is done to prepare the ground to present, after proving the results in the
next section, the special relationship binding together almost Hermitian structure of
type G1 and this kind of generalised Killing form.

Let .M 2m; g; J / be almost Hermitian in the class G1. Using the metric connection
D we can form the associated exterior differential dD . It is given as in the case of the
usual exterior derivative d by

dD D
2mX
iD1

e[i ^Dei
:

Given that D is a Hermitian connexion it is easy to see that

ŒJ; dD� D .�1/pJdDJ (2.13)

holds on ƒp . Its dual reads

ŒJ; d?D� D .�1/pJd?DJ (2.14)

on ƒp , where d?D W ƒ? ! ƒ? is the formal adjoint of dD . Note that d?D is computed
at a point m of M by

d?D D �
2mX
iD1

ei ³Dei
;

where fei ; 1 � i � 2mg is a local frame around m, geodesic at m w.r.t. the connec-
tion D. A straightforward implication of (2.13) is that

dD' 2 �pC1;q ˚ �p;qC1

for all ' in �p;q . Denoting by '�p;q the orthogonal projection of ' in ƒ? on �p;q we
split

dD D @D C N@D;
where @D' D .dD'/�pC1;q and N@D' D .dD'/�p;qC1 for all ' in �p;q .

Lastly, we mention that the Kähler identities

ŒdD; L
?� D .�1/pJd?DJ and Œd?D; L� D .�1/pC1JdDJ (2.15)
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hold whenever ' belongs to ƒp . We can now make the following

Definition 2.1. A form ' in �p;q is a Hermitian Killing form if and only if

DX' D .X ³ A/�p;q

for some form A in �p;qC1 ˚ �pC1;q and for all X in TM .

This is much in analogy with the concept of twistor form from Riemannian geom-
etry, see [53] for details. We shall just recall that that a differential form ' inƒp.N /,
where .N n; h/ is some Riemannian manifold, is called a twistor form or conformal
Killing form if

rX' D 1

p C 1
X ³ d' C 1

n � p C 1
X [ ^ d?'

holds, for all X in TM . Moreover ' is called a Killing form if it also coclosed, that
is d?' D 0.

Remark 2.4. Hermitian Killing 1-forms are dual to Killing vector fields for the met-
ric g. This is essentially due to the fact that D has totally skew-symmetric torsion.

In the rest of this section we shall make a number of elementary observations on
Hermitian Killing forms in �?, the most relevant case for our aims.

Proposition 2.4. Let ' in �p; p � 2 be a Hermitian Killing form. The following hold:

(i) DX' D .X ³ A/�p for all X in TM , where A D @' C 1
pC1 N@';

(ii) J' is a Hermitian Killing form.

Proof. (i) From the definition we have

DX' D .X ³ A/�p

for all X in TM , where A is in �p;1 ˚ �pC1. We split A D B C C where B and C
belong to �p;1 and �pC1 respectively. Since for all X in TM we have

.X ³ B/�p D 1

2.p � 1/.JX ³ JB C .p � 1/X ³ B/;
.X ³ C/�p D X ³ C;

we find, after taking the appropriate contractions that

dD' D B C .p C 1/C

and the claim follows.
(ii) After applying J to the Hermitian Killing equation satisfied by ', it is enough

to notice that
J.X ³ B/�p D p

p � 1.X ³ JB/�p



18 Paul-Andi Nagy

holds, together with

J.X ³ C/ D p

p C 1
X ³ JC

for all X in TM . �

Note that, unlike Riemannian Killing forms, Hermitian Killing ones need not be
necessarily coclosed. This can be easily verified by means of (2.14) and (2.15). The
following identity is useful in order to better understand the notion of Hermitian Killing
form.

Lemma 2.5. Let ' in �p; p � 1 be given. Then:

DJX' �DXJ' D �2.X ³ @DJ'/�p

for all X in TM .

Proof. Let us consider the tensor � in �1 ˝1 �
p given by

�X D DJX' �DXJ'

for all X in TM . For notational convenience we define B D @DJ' in �1;p and note,
as in the proof of Proposition 2.4 that X 2 TM 7! .X ³ B/�p belongs to �1 ˝1 �

p

as well. Now a straightforward calculation shows that

a.X 2 TM 7! .X ³ B/�p / D B:

At the same time one has
a.�/ D �2@DJ'

hence �X D �2.X ³ @DJ'/�p for all X in TM by making use of Lemma 2.1 (iii)
when p ¤ 1. When p D 1 the claim follows by a simple direct verification which is
left to the reader. �

Let us now give an equivalent characterisation of Hermitian Killing forms.

Proposition 2.5. The following hold:

(i) a form ' in �p; p � 2 is a Hermitian Killing form if and only if the component
ofD' on �1 ˝2 �

p is determined by N@DJ', that is

DJX' CDXJ' D 2

p C 1
X ³ N@DJ'

for all X in TM ;

(ii) a form ' in �m is a Hermitian Killing form if and only if

j'jD' D 1

2
d j'j2 ˝ ' C 1

2
Jd j'j2 ˝ J':
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Proof. (i) We have

DXJ' D 1

2
.DJX' CDXJ'/ � 1

2
.DJX' �DXJ'/

D .X ³ @D'/�3 C 1

2
.DJX' CDXJ'/

for all X in TM , and the claim follows immediately from (i) in Proposition 2.4.
(ii) If ' is in �m, we have that N@D.J'/ D 0 since �mC1 D 0. From (i) we know

that ' is a Hermitian Killing form if and only if

DJX' CDXJ' D 0 (2.16)

holds for any X in TM . Let U be the open subset of M given by U D fm 2 M W
'm ¤ 0g and let Z be the complement of U in M . We claim that (2.16) holds iff it
holds on U . Indeed (2.16) holds trivially on int.Z/ and U [ int.Z/ is dense in M .

Suppose now that ' in �m is a Hermitian Killing form. Then ', J' is a basis of
�mjU , hence

D' D a˝ ' C b ˝ J'

for a couple of 1-forms a, b on U . The first is determined by j'ja D 1
2
d j'j2. On the

other hand the fact that ' is a Hermitian form implies that b D Ja, hence our claim
is proved on U and by the density argument above on M . The converse statement is
also clear from the previous observations. �

An immediate consequence of (ii) in the proposition above is that a Hermitian
Killing form in �m is parallel with respect to the connection D as soon as it has
constant length. It is now a good moment to provide some examples of Hermitian
Killing forms.

Proposition 2.6. Let .M 2m; g; J / be a Kähler manifold and let �k , k D 1; 2 be
holomorphic Killing vector fields, that is

L�k
g D 0 and L�k

J D 0 for k D 1; 2:

The form ' D .�[1 ^ �[2/�2 is a Hermitian Killing form.

Proof. The Killing equation yields

rX�[k D 1

2
X ³ d�[k

for all X in TM and k D 1; 2. After a few manipulations we get

rX .�[1 ^ �[2/ D 1

2
.X ³ d�[1/ ^ �[2 C 1

2
�[1 ^ .X ³ d�[2/

D 1

2
X ³ d.�[1 ^ �[2/ � 1

2
h�2; Xid�[1 C 1

2
h�1; Xid�[2
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for all X in TM . Since our given vector fields are also holomorphic, the forms d�[
k

,
k D 1; 2 belong to �1;1 and the claim is proved by projecting onto �2 while using the
Definition 2.1. We note that N@' D 0 because one has, as is well known, d.J�[

k
/ D 0

for k D 1; 2. �

We continue by giving an exterior algebra characterisation of Hermitian Killing
forms, in the context of a G1-manifold .M 2m; g; J /.

Proposition 2.7. Let p � 3 be odd. Then:

(i) if ' in �p is a Hermitian Killing form, then

d?D.' ^ J'/ D .d?D'/ ^ J' � ' ^ d?DJ' � 2

p C 1
' • N@DJ'I

(ii) if ' in �p satisfies

d?D.' ^ J'/ D .d?D'/ ^ J' � ' ^ d?DJ' � 2

p C 1
' • N@DJ'

and it is everywhere nondegenerate, then ' is a Hermitian Killing form.

Proof. We have

ei ³Dei
.' ^ J'/ D ei ³ .Dei

' ^ J' C ' ^Dei
J'/

D .ei ³Dei
'/ ^ J' �Dei

' ^ .ei ³ J'/

C .ei ³ '/ ^Dei
J' � ' ^ .ei ³Dei

J'/:

After summation, we get

�d?D.' ^ J'/ D �.d?D'/ ^ J' C ' ^ d?DJ'

�
2mX
kD1

Dei
' ^ .ei ³ J'/C

2mX
kD1

.ei ³ '/ ^Dei
J':

But
2mX
kD1

Dei
' ^ .ei ³ J'/ D

2mX
kD1

Dei
' ^ .Jei ³ '/

D �
2mX
kD1

DJei
' ^ .ei ³ '/ D �

2mX
kD1

.ei ³ '/ ^DJei
'

whence

�d?D.' ^ J'/ D �.d?D'/ ^ J' C ' ^ d?DJ'

C
2mX
kD1

ei ³ ' ^ .DJei
' CDei

J'/:
(2.17)
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(i) If ' is a Hermitian Killing form one uses (2.17) and (i) in Proposition 2.5 to obtain
the conclusion.

(ii) In this case, using (2.17) again we have that

2mX
iD1
.ei ³ '/ ^ �ei

D 0;

where � in �1 ˝2 �
p is given by

�X D DJX' CDXJ' � 2

p C 1
X ³ N@DJ'

for all X in TM . We define now O� in �p�1 ˝ �p by

O�.X1; : : : ; Xp�1/ D �X1³���³Xp�1³'
wheneverXk , 1 � k � p�1 belong toTM . It is easy to verify that O� is in�p�1˝1�

p ,
and since a. O�/ D 0 Lemma 2.1 (iii) yields O� D 0. Because ' is everywhere non-
degenerate we obtain that � vanishes and we conclude by Proposition 2.5 (i). �

To end this section let us present another way of characterizing Hermitian Killing
forms, this time under the form of a product rule with respect to the exterior differential
dD .

Proposition 2.8. Let p � 3 be odd. We have:
(i) any Hermitian Killing form ' in �p satisfies

�dD.' •'/ D dD' •' C dDJ' • J' � 2

p C 1
J.' • N@DJ'/I

(ii) if ' in �p satisfies

�dD.' •'/ D dD' •' C dDJ' • J' � 2

p C 1
J.' • N@DJ'/

and it is nowhere degenerate, then ' is a Hermitian Killing form.

Proof. We will mainly use Proposition 2.7 and the Kähler identities. Indeed, let us
observe that

L?.' ^ J'/ D �' •':

Using (2.15) it follows that

dDL
?.' ^ J'/ D L?dD.' ^ J'/C .Jd?DJ /.' ^ J'/

hence

�dD.' •'/ D L?dD.' ^ J'/C Jd?D.' ^ J'/:

It is easy to see that

L?.dD' ^ J'/ D .L?dD'/ ^ J' C dD' •';
�L?.' ^ dDJ'/ D �.L?dDJ'/ ^ ' C dDJ' • J';
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hence we get further

�dD.' •'/ D .L?dD'/ ^ J' C dD' •'
� .L?dDJ'/ ^ ' C dDJ' • J' C Jd?D.' ^ J'/:

Suppose now that ' is a Hermitian Killing form. Then, by using (i) in Proposition 2.7
we get

d?D.' ^ J'/ D d?D' ^ J' � ' ^ d?D.J'/ � 2

p C 1
' • N@D.J'/

while the second part of the Kähler identities (2.15) provides us with

�L?dD.J'/ D d?D';

L?dD' D d?DJ':

The claim in (i) follows now by a simple computation. The converse statement in (ii)
is proved by using methods similar to those employed for (ii) in Proposition 2.7, and
it is therefore left to the reader. �

3 The torsion within the G1 class

3.1 G1-structures

In the following .M 2m; g; J / will be almost-Hermitian, in the class G1. The connec-
tion D acts on any form ' in ƒ? according to

DX' D rX' C 1

2
ŒX ³ TD; '�

for all X in TM . Based on this fact it is straightforward to check that the differential
dD is related to d by

dD' D d' �
2mX
kD1

.ek ³ TD/ ^ .ek ³ '/

for all ' inƒ?. This yields, in the particular case of 3-forms the following comparison
formula

dD' D d' � TD •' (3.1)

for all ' in ƒ3.
Let now R be the curvature tensor of the metric g with the convention that

R.X; Y / D �r2
X;Y C r2

Y;X for all X , Y in TM . In the same time we consider

the curvature tensor RD of the connectionD where the same convention applies. We
shall now recall that the first Bianchi identity for the connectionD takes the following
form.
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Lemma 3.1. For all X in TM ,

b1.R
D/X D DXT

D C 1

2
X ³ dTD:

Proof. It is easy to see, directly from the definition, that the curvature tensors of the
Levi-Civita connection and of the connection D are related by

RD.X; Y / D R.X; Y / � 1

2

�
Y ³DXTD �X ³DY TD

� C 1

4
"T

D

.X; Y / (3.2)

for all X , Y in TM . Here we have set

"T
D

.X; Y / D ŒTDX ; T
D
Y � � 2TDTD

X
Y
:

Since R satisfies the algebraic Bianchi identity and

b1."
TD

/X D 2X ³ .TD •TD/;

the assertion follows eventually by setting X D ek , taking the wedge product with ek
in (3.2) and summing over 1 � k � 2m. Note that in the process one also uses the
comparison formula (3.1). �

Let us gather now some information on the differentials of the components of the
torsion form TD .

Proposition 3.1. Let .M 2m; g; J / belong to the class G1. The following hold:

(i) @Dt D 0;

(ii) 3@D C C 2N@Dt D �4.t •J t/ � 4.J t • C/�1;3;

(iii) N@D C D �8
3
.J t • C/�4 :

Proof. Since d! D 2t C 3 C is closed it follows that

2dt C 3d C D 0:

Rewritten by means of the connection D this identity yields, when also using the
comparison formula (3.1),

2.dDt C TD • t /C 3.dD 
C C TD • C/ D 0:

We now take into account that TD D 2J t C  � to arrive, after expansion of the
product and use of Lemma 2.2 (v) at

2dDt C 4J t • t C 2 � • t C 3dD 
C C 6J t • C D 0:

An elementary computation yields J. � • t / D J t • C, in particular

. � • t /�4 D .J t • C/�4 ;

. � • t /�1;3 D �.J t • C/�1;3 :
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It suffices thus to use Lemma 2.2 to obtain the proof of the claims after identifying the
various components in the equation above along the bidegree decomposition of ƒ4.

�

We are now ready to prove the main result of this section.

Theorem 3.1. Let .M 2m; g; J / be almost Hermitian, of type G1. Then  � is a Her-
mitian Killing form, that is

DX 
� D

�
X ³ .@D � C 1

4
N@D �/

�
�3

for all X in TM .

Proof. SinceD is a Hermitian connection we have ŒRD.X; Y /; !� D 0, in other words

2mX
iD1

RD.X; Y /ei ^ .Jei /[ D 0

for all X , Y in TM . Setting X D ek and taking the exterior product with ek we find

2mX
i;kD1

e[k ^RD.ek; Y /ei ^ .Jei /[ D 0:

Obviously, this is equivalent with

2mX
i;kD1

ei ³ .e[k ^RD.ek; Y // ^ .Jei /[ D
2mX
iD1

RD.ei ; Y / ^ .Jei /[

or further, by using Lemma 3.1,

�J.DXT
D C 1

2
X ³ dDTD/ D

2mX
iD1

RD.ei ; Y / ^ .Jei /[

for all Y in TM . Since D is Hermitian, we have that RD.X; Y / is in �1;1, hence the
right-hand side above is in �1;2 given that ƒ1 ^ �1;1 � �1;2. Thus�

DXT
D C 1

2
X ³ dTD

�
�3

D 0;

and it follows that

DX 
� D �1

2
.X ³ dTD/�3 (3.3)

for allX in TM . Therefore,  � is a Hermitian Killing form and the claim follows by
using Proposition 2.4. �

We have the following immediate consequence of the above result.
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Theorem 3.2. Let .M 2m; g; J / have totally skew-symmetric Nijenhuis tensor. Then

DNJ D 0 if and only if dTD belongs to �2;2:

In particular NJ is parallel if TD is a closed 3-form.

Proof. This is a direct consequence of (3.3) and of the properties of the projection
on �3. �

Remark 3.1. It also follows from (3.3) when combined with Theorem 3.1 that dTD

belongs to �2;2 if and only if dD C D 0.

In dimension 6, the fact that  C is a Hermitian Killing form is described by (ii)
in Proposition 2.5. As observed in [13], it amounts then to the local parallelism of
 C w.r.t. the characteristic connection, after performing a conformal transformation in
order to normalise the length of C to a constant. In dimension 6 structures of type G1
withDTD D 0 have been classified in [4]. Classification results are also available [2]
under the same assumption in the Hermitian case, provided that the holonomy of D
is contained in S1 � U.m � 1/.

3.2 The classW1 CW4

W1 CW4 structure In this section we shall record some of the additional features of
the geometry of almost Hermitian manifolds in the Gray–Hervella class W1 CW4. It
can be described as the subclass of G1 having the property that t has no component on
ƒ30, or alternatively

t D � ^ !: (3.4)

Here � is a 1-form onM , called the Lee form of the almost-Hermitian structure .g; J /.
It can be recovered directly from the Kähler form of .g; J / by

.m � 1/J� D d?!;

in particular we have that d?.J�/ D 0.

Proposition 3.2. Let .M 2m; g; J /;m � 3 be almost-Hermitian in the classW1CW4.
The following hold:

(i) @D� D 0;

(ii) �@D C D 2.J� ^  � C � ^  C/C 2
3
.N@D� � 2� ³  �/ ^ !;

(iii) 1
4

N@D C D � ^  C � J� ^  �.

Proof. All claims follows from Proposition 3.1, applied to our present situation, that
is t D � ^!. Therefore, (i) is immediate from (i) in the previously cited proposition.
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Through direct computation we find

.J� ^ !/ • C D �.� ³  �/ ^ ! C 3J� ^  �

.J� ^ !/ •.� ^ !/ D 0:

Our last two assertions follow now from Proposition (3.1), after projection of the
formulae above onto ƒ4 D �2;2 ˚ �1;3 ˚ �4. �

In dimension 6 it has been shown in [13], [16] that an almost Hermitian manifold
in the classW1 CW4 has closed Lee form, i.e., d� D 0. Theorem 3.1 combined with
Proposition 3.2 seems a good starting point to investigate up to what extent structures of
W1CW4 are closed in arbitrary dimensions but we shall not pursue this direction here.

3.3 The u.m/-decomposition of curvature

In this section we shall investigate, for further use, the splitting of the curvature tensor
of the Hermitian connectionD. Our main goal is to identify explicitly the "non-Kähler"
part of the tensor RD and to give it an explicit expression in terms of the torsion form
TD of the characteristic connection. Note that for almost quaternionic-Hermitian or
G2-structures (not necessarily with skew-symmetric torsion) similar results have been
obtained in [42], [15]. We will mainly use that

RD.X; Y;Z;U / �RD.Z;U;X; Y /
D �1

2

�
.DXT

D/Y .Z;U / � .DY TD/X .Z;U /
�

C 1

2

�
.DZT

D/U .X; Y / � .DUTD/Z.X; Y /
�

(3.5)

holds for all X; Y;Z;U in TM , as it easily follows from the difference formula (3.2),
after verifying that "T

D
belongs to S2.ƒ2/.

Theorem 3.3. Let .M 2m; g; J / be almost Hermitian of type G1. We have

RD D RK C y�C 1

2
Ra CRm;

where RK belongs to K.u.m//. Moreover:
(i) Ra belongs to ƒ2.�1;1/ and satisfies the Bianchi identity

1

2
.b1R

a/X D DX .J t/ �DJX t � 1

2
X ³ @D.J t/

for all X in TM .

(ii) The Bianchi identity for Rm in �2 ˝ �1;1 is

.b1R
m/X D DX .J t/CDJX t C 1

4
.JX ³ J@D 

� � 2X ³ @D �/

for all X in TM .
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(iii) � in �2;2 is given by

� D 3

2
@D.J t/C 2.J t •J t/�2;2 C 1

2
 � • �:

Proof. This is a direct application of Theorem 2.1 which can be used, as it follows
from (3.5), for the tensor R D RD and

� D �1
2
DTD D �D.J t/ � 1

2
D �:

Then we have �1;2 D �D.J t/ and �3 D �1
2
D �, and in order to prove our claims

we only need to determine the various antisymmetrisations of �1;2. Also note that in
this context

T D �1
2
dDT

D D �dD.J t/ � 1

2
dD 

�;

in particular T 2;2 D �@D.J t/.
(i) Now, it is easy to see that

a.�1;2/ D �dD.J t/;
a.J �1;2/ D dDt;

ac.�1;2/ D �JdDt;
ac.J �1;2/ D �JdDJ t:

Hence,

A1 D �dD.J t/ � JdD.J t/ � 4T 2;2 D �dD.J t/ � JdD.J t/C 4@D.J t/

D �2@D.J t/C 4@D.J t/ D 2@D.J t/

and
A2 D �JdDt � dDt D �2@Dt D 0

by (i) of Proposition 3.1.
(ii) Since T 1;3 D �N@D.J t/ � 1

2
@D 

� we have

A3 D �dD.J t/C JdDJ t C 2N@D.J t/C @D 
� D @D 

�

and

A4 D dDt � JdDt C J N@D.J t/C 1

2
J@D 

� D 1

2
J@D 

�

after making use of (2.13). The claim in (ii) now follows.
(iii) We apply the Bianchi operator to

RD D RK C y�CRa CRm

and find after making use of (i), (ii) and of (2.2) that

b1.R
D/X D X ³�C 2DX .J t/� 1

2
X ³ @D.J t/C 1

4
.JX ³ J@D 

� � 2X ³ @D �/
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for allX inTM . Plugging into this the Bianchi identity forD in Lemma 3.1, combined
with the fact that  � is a Hermitian Killing form as asserted in Theorem 3.1 yields
further

1

2
.X ³ dTD/�1;2 D X ³

�
� � 1

2
@D.J t/

�
C 1

4
.JX ³ J@D 

� � 2X ³ @D �/

D X ³
�
� � 1

2
@D.J t/

�
� .X ³ @D C/�1;2

for allX in TM . After identifying components on �1 ˝1 �
1;2 and �1 ˝2 �

1;2 respec-
tively (see also Remark 2.1 for the definition of these spaces) we find that

1

2
.dTD/�2;2 D � � 1

2
@D.J t/:

Now dTD D dDT
D C TD •TD by the comparison formula (3.1) thus by projection

on �2;2 we find

.dTD/�2;2 D 2@D.J t/C .TD •TD/�2;2

D 2@D.J t/C 4.J t •J t/�2;2 C  � • �

after expansion of the product and use of Lemma 2.2 (iii). The claim in (iii) follows
now immediately. �

Remark 3.2. The curvature decomposition in Theorem 3.3 can be still refined, given
that the U.m/-modules

K.u.m//; �2;2; ƒ2.�1;1/ and �2 ˝ �1;1

are not irreducible. Although this is an algebraically simple procedure, the computa-
tions at the level of the derivativeDTD of the torsion form become somewhat involved
and will not be presented here. We just illustrate the situation in the simpler case of
W1 CW4 below.

Theorem 3.3 has various applications, a class of which consists in giving torsion
interpretation of curvature conditions imposed on the tensorsRD orR. As an example
in this direction we have the following:

Proposition 3.3. Let .M 2m; g; J / belong to the class G1. The curvature tensor RD

is Hermitian, that is
RD.JX; J Y / D RD.X; Y /

for all X , Y in TM , if and only if

DJX t CDX .J t/ D 2

3
.X ³ N@D.J t//�1;2

for all X in TM and
2N@D.J t/ D 3@D 

�:
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Proof. By Theorem 3.3 the tensor RD is Hermitian if and only if Rm D 0 which in
turn happens if and only if b1Rm D 0. Therefore, by (ii) in Theorem 3.3 the curvature
of D is Hermitian if and only if

DX .J t/CDJX t C 1

4
.JX ³ J@D 

� � 2X ³ @D �/ D 0

for all X in TM . Taking the alternation above we find

2N@D.J t/ � 3@D � D 0:

We conclude by recalling that

.X ³ A/�1;2 D 1

4
.2X ³ A � JX ³ JA/ (3.6)

for all X in TM , where A belongs to �1;3. �

Remark 3.3. In the case when the curvature tensor of the connectionD is Hermitian
the fact that 2N@D.J t/ D 3@D 

� combined with (ii) in Proposition 3.1 further yields

N@D.J t/ D �.t •J t/ � .J t • C/�1;3 :

For the subclass W1 ˚W4 � G1 more information on the curvature tensor of the
connectionD is available and it will actually turn out that the componentsRa andRm

have simple algebraic expressions. We define

S2;�.M/ D fS 2 S2.M/ W SJ C JS D 0g:
This is embedded in �2 ˝ �1;1 via S 7! VS where

VS.X; Y / D 1

2
..SJX/[ ^ Y [ CX [ ^ .SJ Y /[ C .SX/[ ^ .J Y /[ C .JX/[ ^ .SY /[/

for all X , Y in TM . One verifies that

.b1 VS/X D .SX/[ ^ ! (3.7)

for all X in TM . We also have an embedding �1;3 ,! �2 ˝ �1;1 given by � 7! z�
where we define

z�.X; Y / D 1

4
.�.JX; J Y / ��.X; Y //

for all X , Y in TM . Elementary considerations ensure that this is well defined and
subject to

.b1 z�/X D .X ³�/�1;2 (3.8)

whenever X belongs to TM . As a last piece of notation let the symmetrized action of
D on 1-forms be defined by

. VD˛/.X; Y / D 1

2
..DX˛/Y C .DY ˛/X/

whenever ˛ is in �1 and X , Y belong to TM .
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Proposition 3.4. Let .M 2m; g; J / belong to the classW1 CW4. If � denotes the Lee
form of .g; J / the following hold:

(i) � D �
3
2
@D.J�/C 2j� j2! � 4� ^ J�� ^ ! C 1

2
 � • �;

(ii) Ra D @D.J�/˝ ! � ! ˝ @D.J�/;

(iii) Rm D �N@D.J�/ ˝ ! C VS� � A@D 
�, where S� in S2;�.M/ is defined by

S� D .1 � J / VD.J�/.

Proof. Recall that for the class W1 C W4 we have that t D � ^ !. Taking this into
account we will apply now Theorem 3.3.

(i) follows from (iii) in Theorem 3.3 when observing that

.J t •J t/�2;2 D j� j2! ^ ! � 2! ^ � ^ J�:
(ii) First of all we note that

DX .J�/ �DJX� D X ³ @D.J�/
for all X in TM . The quickest way to see this is to observe that the tensor q in
�1 ˝ �1 defined by q.X/ D DX .J�/ � DJX� � X ³ @D.J�/ for all X in TM is
actually in �1 ˝1 �

1 and satisfies a.q/ D ac.q/ D 0, by using also that @D� D 0

(cf. Proposition 3.2 (i)). Our claim now follows by observing that (iii) in Lemma 2.1
continues to hold when p D q D 1.

Using now (i) in Theorem 3.3 we get

.b1R
a/X D .X ³ @D.J�// ^ ! � @D.J�/ ^ .X ³ !/

for all X in TM .
Now for any ' in �1;1 we consider the element !˝'�'˝! inƒ2.�1;1/, which

is explicitly given by

.! ˝ ' � ' ˝ !/.X; Y / D !.X; Y /' � '.X; Y /!
for all X , Y in TM . A straightforward computation following the definitions yields

b1.@D.J�/˝ ! � ! ˝ @D.J�//X D .X ³ @D.J�// ^ ! � @D.J�/ ^ .X ³ !/
for all X in TM , and we conclude by using the injectivity of the Bianchi map
b1 W ƒ2.ƒ2/ ! ƒ1 ˝ƒ3.

(iii) By (iii) in Theorem 3.3 we have

.b1R
m/X D �

DX .J�/CDJX�
� ^ ! � .X ³ @D �/�1;2

after also making use of (3.6). Since

DX .J�/CDJX� D X ³ N@D.J�/C .S�X/
[

it follows by means of (3.7), (3.8), that Rm C N@D.J�/˝ ! � VS� C A@D 
� belongs to

Ker.b1/ \ .�2 ˝ �1;1/. It therefore vanishes and the proof is finished. �
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Finally, we remark thatRm can be given a more detailed expression by taking into
account (ii) of Proposition 3.2.

4 Nearly-Kähler geometry

We shall begin here our survey of nearly-Kähler geometry. This is the class of almost
Hermitian structures introduced by the following.

Definition 4.1. Let .M 2m; g; J / be an almost Hermitian manifold. It is called nearly-
Kähler (NK for short) if and only if

.rXJ /X D 0

whenever X belongs to TM .

This can be easily rephrased to say that an almost Hermitian structure .g; J / is
nearly-Kähler if and only if its Kähler form is subject to

rX! D 1

3
X ³ d! (4.1)

for all X in TM . In other words, the Kähler form of any NK-structure is a Killing
form and conversely U. Semmelmann [53] shows that any almost Hermitian structure
with this property must be nearly-Kähler. Therefore, nearly-Kähler structures belong
to the class W1 in the sense that the 3-form t in Proposition 2.2 vanishes identically.

From now on we shall work on a given nearly-Kähler manifold .M 2m; g; J /. For
many of the properties of an NK-structure are best expressed by means of its first
canonical Hermitian connection, it is important to note then the coincidence of the
canonical connection and D, that is

D D xr:
For this reason, the torsion tensor TD will be denoted simply by T in what follows.
It is given by

TD D  �

and hence belongs to �3. Therefore, in dimension 4 NK-structures are Kähler and we
shall assume from now on thatm � 3. The Nijenhuis tensor of the almost complex J
is computed from (2.8) by

N J D �4 �:

As an immediate consequence one infers that the almost complex structure of an
NK-manifold is integrable if and only if the structure is actually a Kähler one. This
observation motivates the following

Definition 4.2. Let .M 2m; g; J / be an NK-structure. It is called strict iff rXJ D 0

implies that X D 0 for all X in TM .
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Therefore the non-degeneracy of any of the forms  C and  � is equivalent with
the strictness of the NK-structure .g; J /. An important property of NK-structures is
contained in the following result.

Theorem 4.1. Let .M 2m; g; J / be a nearly-Kähler manifold. Then

xr ˙ D 0

in other words the Nijenhuis tensor of J is parallel w.r.t. the canonical Hermitian
connection.

This has been proved first by Kirichenko [40] and a short proof can be found in
[5]. It also follows from our Theorem 3.1, which is unifying this type of property in
the class G1.

Let us introduce now the symmetric tensor r in S2M given by

hrX; Y i D hX ³  C; Y ³  Ci
for all X , Y in TM . It is easily seen to be J -invariant and if .M 2m; g; J / is strict
then r is non-degenerate. Moreover, from Theorem 4.1 it also follows that

xrr D 0:

Corollary 4.1 ([48]). Any NK-manifold is locally the product of a Kähler manifold
and a strict nearly-Kähler one.

Proof. Consider the xr-parallel distribution V WD fV 2 TM W  C
V D 0g. Since the

torsion of the connection xr vanishes in direction of V the latter must be parallel for
the Levi-Civita and the result follows by using the de Rham splitting theorem. �

It follows that locally and also globally if our original manifold is simply connected
we can restrict to the study of strict nearly-Kähler structures (SNK for short). Note
however that in dimension 6, any NK-structure which is not Kähler must be strict.

The parallelism of the torsion tensor w.r.t. xr is eventually reflected in the properties
its curvature tensor. Indeed

Proposition 4.1 ([30], [33]). The following hold:

(i) xR.X; Y;Z;U / D xR.Z;U;X; Y / for all X; Y;Z;U in TM ;

(ii) xR.JX; J Y / D xR.X; Y / for all X , Y in TM ;

(iii) xR.X; Y /Z C xR.Y;Z/X C xR.Z;X/Y D Œ �
X ;  

�
Y �Z �  �

 �
X
YZ for all X , Y ,

Z in TM .

Proof. (i) is immediate from (3.5) and the parallelism of the torsion, whilst (ii) follows
from (i) and the fact that xR belongs to ƒ2 ˝ �1;1. The last claim follows for instance
from Lemma 3.1 �
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Remark 4.1. Proposition 4.1 continues to hold when the nearly-Kähler metric is
allowed to have signature. This has been exploited in [18] to classify NK-structures
compatible with a flat pseudo-Riemannian metric.

To establish first order properties of SNK-structures we will have a look at the
Ricci tensor of such metrics. The Hermitian Ricci tensor of .g; J / is defined by

hRicX; Y i D
2mX
iD1

xR.X; ei ; Y; ei /

for all X , Y in TM , where fei ; 1 � i � 2mg is some local orthonormal frame. By
making use of Proposition 4.1 we find that Ric is actually symmetric and J -invariant.
The Hermitian Ricci tensor is related to the usual Riemannian one by

Ric D Ric � 3

4
r (4.2)

as implied by the general curvature comparison formula (3.2).

Theorem 4.2 ([48]). Let .M 2m; g; J / be a strict nearly-Kähler manifold. The fol-
lowing hold:

(i) the Ricci tensor of the metric g is parallel w.r.t. xr, that is xrRic D 0;

(ii) Ric is positive definite.

Proof. The proof of both relies on the explicit computation of the Ricci tensor of the
metric g. From the parallelism of  C, after derivation and use of the Ricci identity
for the connection with torsion xr we find

Œ xR.X; Y /;  C� D 0 (4.3)

for all X , Y in TM . In a local orthonormal frame fei ; 1 � i � 2mg this reads

2mX
iD1

xR.X; Y /ei ^  C
ei

D 0

for all X , Y in TM . We now set Y D ek , take the interior product with ek above to
find, after summation over 1 � k � 2m and some straightforward manipulations that

 C
RicX

D
X

1�k;i�2m
xR.X; ek/ei ^  C

ei ;ek
:

Since  C is a form, the sum in the right-hand side equals

1

2

X
1�k;i�2m

. xR.X; ek/ei � xR.X; ei /ek/ ^  C
ei ;ek

D 1

2

X
1�k;i�2m

�
Œ C
X ;  

C
ek
�ei �  C

 
C

X
ek

ei
	 ^  C

ei ;ek
C 1

2

X
1�k;i�2m

xR.ei ; ek/X ^  C
ei ;ek



34 Paul-Andi Nagy

after using the Bianchi identity for xR. Now the last sum vanishes since  C is J -anti-
invariant in the first arguments whereas xR is J -invariant and our frame can be chosen
to be Hermitian. After neglecting terms which are J -invariant in ei ; ek in the algebraic
sum above we end up with

 C
RicX

D 1

2

X
1�k;i�2m

 C
X  

C
ek
ei ^  C

ei ;ek

for all X in TM . Using now the definition of the tensor r a straightforward manipu-
lation yields

 C
RicX

D �1
2

2mX
kD1

 C
X ek ^ .rek/[ (4.4)

for all X in TM . By derivation and using the parallelism of  C it follows that

 C
.xrX Ric/Y

D 0

for all X , Y in TM . (i) follows now from the fact that  C is nondegenerate and the
comparison fact in (4.2). For the claim in (ii) we refer the reader to [48]. �

Using Myer’s theorem it follows from the above that complete SNK-manifolds
must be compact with finite fundamental group. Therefore, in the compact case one
can restrict attention, up to a finite cover, to simply connected nearly-Kähler manifolds.

Another important object is the first Chern form of the almost Hermitian structure
.g; J / defined by

8	�1.X; Y / D
2mX
iD1

xR.X; Y; ei ; Jei /

for allX , Y in TM . Since xR is J -invariant we have that �1 belongs to �1;1 so one can
write 4	�1 D hCJ �; �i for someC inS2.TM/ such thatCJ D JC . A straightforward
computation using the first Bianchi identity yields the relation

C D Ric � r;
hence C must be parallel w.r.t. the canonical connection, that is

xrC D 0

by means of Theorem 4.2. Since �1 is a closed form, as it follows from the second
Bianchi identity for xr, this results in the algebraic obstruction

� C. C
X Y / D  C

X CY C  C
CXY (4.5)

for all X , Y in TM . Note that this can be given a direct algebraic proof by observing
that Œ�1;  C� D 0, as it follows from (4.3) when taking into account that xR belongs
to S2.ƒ2/.
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4.1 The irreducible case

To obtain classification results for strict nearly-Kähler manifolds we shall start from
examining the holonomy representation of the canonical Hermitian connection. At a
point x of M where .M 2m; g; J / is some SNK-manifold this is the representation

Holx.xr/ W TxM ! TxM

obtained by parallel transport w.r.t. xr along loops about x. The holonomy representa-
tion is Hermitian, for xr is a Hermitian connection and this gives rise to two different
notions of irreducibility as indicated by the following well-known result from repre-
sentation theory.

Proposition 4.2. Let .V 2m; g; J / be a Hermitian vector space and let .G; V / be a
Hermitian representation of some group G. If we write V C for the complex vector
space obtain from V by setting iv D Jv for all v in V , the following cases can occur:

(i) .G; V / is irreducible.

(ii) .G; V C/ is irreducible but not .G; V /. In this case V splits orthogonally as
V D L˚ JL for some G-invariant subspace L of V .

(iii) .G; V C/ is reducible.

In this section we shall deal with the instances when the holonomy representation
of xr is irreducible in the sense of (i) or (ii) in the Proposition 4.2. The first is actually
covered by the following powerful result of R. Cleyton and A. Swann.

Theorem 4.3 ([17]). Let .N n; g/ be Riemannian such that there exists a metric con-
nectionD such that the following hold:

(i) the torsion tensor T ofD belongs to ƒ3;

(ii) DT D 0 and T does not vanish identically.

If the holonomy representation of D is irreducible then D is an Ambrose–Singer
connection in the sense thatDRD D 0 where RD denotes the curvature tensor of the
connectionD, provided that n ¤ 6; 7.

The two exceptions in the result above correspond actually to nearly-parallel G2-
structures in dimensions 7 (see [27] for an account) and SNK-structures in dimension6.

In the situation in the theorem above .N n; g/ is a locally homogeneous space (see
[57]) for more details). Theorem 4.3 is proved by making use of general structure
results on Berger algebras and formal curvature tensors spaces, for irreducible repre-
sentations of compact Lie algebras (see also [44] for the non-compact case). We can
now state the following.

Theorem 4.4. Let .M 2m; g; J / be a strict nearly-Kähler manifold. Then either:

(i) xr is an Ambrose–Singer connection; or
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(ii) m D 3; or

(iii) the holonomy representation of xr is reducible over C.

Proof. By making use of Theorem 4.3 we see that the case (i) in Proposition 4.2
corresponds to (i) in our statement. To finish the proof let us suppose that at some
point x of M we have an orthogonal splitting

TxM D Lx ˚ JLx

for some Holx.xr/-invariant subspace of TxM . Using parallel transport Lx extends
to a xr-parallel distribution L of TM such that

TM D L˚ JL:

It follows that xR.L; JL/ D 0 by also using Proposition 4.1 (ii). Since xR belongs to
S2.�1;1/, this means that xR is an algebraic expression in  C, which can be explicitly
determined from the first Bianchi identity (see [49] for details). It follows that that
xr xR D 0 and then xr is an Ambrose–Singer connection. �

5 When the holonomy is reducible

In this section we present classification results for SNK-structures in the case when
the holonomy representation of xr is complex reducible. We begin by setting up
some terminology which is aimed to gain some understanding concerning the relation
between the algebraic properties of the torsion form of an SNK-structure and the
geometry of the underlying Riemannian manifold.

5.1 Nearly-Kähler holonomy systems

We start by the following definition which extracts the more peculiar facts from NK-
geometry which relate to the holonomy of the canonical Hermitian connection.

Definition 5.1. A strict nearly-Kähler holonomy system .V 2m; g; J;  C; R/ is con-
stituted of the following data:

(i) a Hermitian vector space .V 2m; g; J /;

(ii) a nondegenerate 3-form  C in �3;

(iii) a tensor R in �1;1 ˝ �1;1 of the form

R D RK C y�;
where RK in K.u.m// is such that

ŒR.x; y/;  C� D 0 (5.1)
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holds for any x, y in V . Moreover the form � in �2;2 must be given by � D
1
2
 C • C.

Geometrically, the assumption of having the form  C nondegenerate amounts to
working on an SNK-manifold (see also Definition 4.2 and Corollary 4.1). In what
follows we shall work on a given strict nearly-Kähler holonomy system to be denoted
by .V 2m; g; J;  C; R/. As with Riemannian holonomy systems, the liaison with the
holonomy algebra of the canonical connection of a geometric SNK-structure is through
the Lie subalgebra

h WD LiefR.x; y/ W x; y 2 V g
of �1;1.

Definition 5.2. An SNK-holonomy system .V 2m; g; J;  C; R/ is complex reducible
if the representation .h; V C/ is reducible.

Another object of relevance here is the isotropy algebra g of the form  C defined
by

g D f˛ 2 ƒ2 W Œ˛;  C� D 0g:
It is easy to see, starting from (2.1) and then using an invariance argument together
with the non-degeneracy of  C that

g � �1;1:

Moreover, the condition (5.1) in Definition 5.1 reads h � g.
We are interested here in the structure of complex invariant subspaces of the metric

representation .h; V /. The following definition singles out three main classes of
subspaces of relevance for our situation.

Definition 5.3. A proper, J -invariant subspace V of V is said to be (w.r.t.  C):

(i) isotropic if  C.V ;V/ � V ;

(ii) null if  C.V ;V/ D 0;

(iii) special if it is null and  C.H;H/ D V , whereH is the orthogonal complement
of V in V .

Remark 5.1. Any 2-dimensional, J -invariant subspace of V is null w.r.t.  C. More-
over, in dimension 6, any two dimensional J -invariant subspace is special w.r.t.  C.
However, we are interested here in isotropic or special subspaces which are invariant
w.r.t. a particular Lie group or Lie algebra.

A useful criterion to prove that a subspace is special is the following.

Lemma 5.1. Let .V 2m; g; J / be a Hermitian vector space and let  C be non-
degenerate in �3. If V � V is null w.r.t.  C and such that  C.H;H/ � V ,
then:
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(i) V is special w.r.t.  C;

(ii)  C.V ;H/ D H .

Proof. (i) First of all let us notice that

 C.V ;H/ � H

since  C.V ;H/ is orthogonal to V , as it follows from the fact that V is null. Let
V0 WD  C.H;H/ � V and let V1 be the orthogonal complement of V0 in V . From the
definition of V1 it follows that  C.H;V1/ is orthogonal to H thus  C.H;V1/ D 0.
But  C.V ;V1/ D 0 as well since V is null, in other words  C.V1; � / D 0 and we
conclude that V1 D 0 using that  C is nondegenerate. This proves (i).

(ii) is proved by an argument similar to that in (i), which we leave to the reader. �

We end this section with the following:

Definition 5.4. An SNK-holonomy system .V 2m; g; J;  C; R/ is said to split as

V D V1 ˚ V2

if V admits an h-invariant, orthogonal and J -invariant splitting V D V1 ˚ V2 such
that

 C belongs to �3.V1/˚ �3.V2/:

It is clear that if an SNK-holonomy system splits as V D V1 ˚ V2 then each of
.Vk; gjVk

; JjVk
;  C

jVk
/, k D 1; 2 is again an SNK-holonomy system. Note that factors

of dimension � 4 are not permitted by this definition since in dimension 2 or 4 there
are no non-zero holomorphic 3-forms. Also note that this type of decomposition of
an SNK-holonomy system corresponds exactly to local products of SNK-manifolds.

5.2 The structure of the form  C

We are now ready to have a look at the structure of the form  C when a complex
holonomy reduction is given. The starting point of our approach to the classification
problem of reducible SNK-holonomy systems is:

Proposition 5.1. Let V be a proper, J -invariant subspace of .h; V /. IfH denotes the
orthogonal complement of V in V , the following hold:

(i) . C
x B  C

v /w D 0 for all x inH and v, w in V ;

(ii) . C
x B  C

y /z belongs toH whenever x, y, z are inH ;

(iii) . C
v B  C

w /x belongs toH for all x inH and v, w in V ;

(iv) . C
x B  C

y /v is in V , for all x, y inH and all v in V .
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Proof. Directly from the first Bianchi identity for R, combined with the fact that
R.V ;H/ D 0 we get

R.x; y; v; w/ D hŒ C
v ;  

C
w �x; yi � h C

v w; 
C
x ; yi (5.2)

for all x in H;y in V and v, w in V . All claims are now easy consequences of the
fact that R belongs to S2.�1;1/ and  C is in �3, see [49] for details. �

We can show that any complex reducible SNK-holonomy system contains, up to
products, a null invariant sub-space.

Proposition 5.2. Let .V 2m; g;  C; R/ be a complex reducible SNK-holonomy system.
Then V splits as

V D V1 ˚ V2;

where V2 contains a null invariant space.

Proof. The proof is completed in two steps we shall outline below.

Step 1: Existence of an isotropic invariant subspace.
The reducibility of .h; V / implies the existence of an invariant splitting

V D E ˚ F

which is moreover orthogonal and stable underJ . LetF0 be the subspace ofF spanned
by f. C

v w/F W v;w inEg, where the subscript indicates orthogonal projection. Using
Proposition 5.1 (i) we get

 C
x  

C
y .. 

C
v w/F /C  C

x  
C
y .. 

C
v w/E / D 0

for all x, y in F and whenever v, w are in E. But the first summand is in E by
Proposition 5.1 (iv) while the second is in F by (ii) of the same proposition. therefore
both summands vanish individually, and a positivity argument yields then

 C.F; F0/ D 0:

In particular F0 is null and from (5.1) and the h-invariance of E and F we also get
that F0 is h-invariant. Now F0 ¤ V since  C ¤ 0 and if F0 D 0 we have that E is
isotropic, that is  C.E;E/ � E.

Step 2: Existence of an invariant nullspace.
Using Step 1, we can find a h-invariant subspace , say V in V , which is isotropic in

the sense that C.V ;V/ � V . Let us consider now the h-invariant tensor r1 W V ! V in the dis-
play, is this
T � r
or
Tr for trace?

given by
hr1v;wi D T rV . 

C
v B  C

w /

for all v, w in V . Obviously, this is symmetric and J -invariant. It follows that there
is an orthogonal, h-invariant splitting

V D V0 ˚ V1;
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where V0 D Ker.r1/. Since V is isotropic, r1 is given by r1 D � Pd
kD1. C

vk
/2v for

all v in V , where d WD dimR V and fvk; 1 � k � dg is an orthonormal basis in V .
Then Proposition 5.1 (i) implies that  C

x .r1v/ D 0 for all x in H and for all v in V ,
in other words

 C.H;V1/ D 0:

But the definition of V0 yields that  C.V ;V0/ D 0, in particular V0 is null. We now
form the h and J -invariant subspace H1 D V0 ˚H0 which is easily seen to satisfy
that

 C.H1;H1/ � H1;  
C.V1;V1/ � V1;  

C.V1;H1/ D 0:

In other words V D V1 ˚ H1 is a splitting of our holonomy system in the sense of
Definition 5.4 and the result is proved. �

This can be furthermore (see [49] for details) refined to:

Proposition 5.3. Let .V 2m; g; J;  C; R/ be an SNK-holonomy system. If it contains
a proper invariant nullspace, it splits as

V D V1 ˚ V2;

where V2 contains a special invariant subspace.

Summarising the results obtained up to now we obtain, after an easy induction
argument on the irreducible components of .h; V /:

Theorem 5.1. Let .V 2m; g; J;  C; R/ be a complex reducible SNK-holonomy system.
ThenV is product of SNK-holonomy systems belonging to one of the following classes:

(i) irreducible SNK-holonomy systems;

(ii) SNK-holonomy systems which contain a special invariant subspace.

To advance with the classification of our holonomy systems we need therefore
only to discuss the second class present in the theorem above. We first observe that
given a special invariant subspace in some SNK-holonomy system one can explicitly
determine the curvature along the special subspace.

Proposition 5.4. Let .V 2m; g; J;  C; R/ be an SNK-holonomy system containing a
special invariant subspace V . Then:

R. C
x y; v1; v2; v3/ D hŒ C

v1
; Œ C

v2
;  C

v3
��x; Jyi

whenever x, y are inH D V? and for all vk , 1 � k � 3 in V .

Actually, Proposition 5.4 singles out a second Lie algebra of relevance for us,
obtained as follows. Consider the subspace p � �2.H/ given by

p WD f C
v W v in Vg

together with the subspace q of �1;1.H/ given by q WD Œp; p�.
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Proposition 5.5. The following hold:

(i) p \ q D 0;

(ii) r D p ˚ q is a Lie subalgebra of ƒ2.H/.

Proof. From Proposition 5.4 we get

Œ C
v1
; Œ C

v2
;  C

v3
� D  C

R.v1;v2/v3

for allvk; 1 � k � 3 in V . That is p is a Lie triple system in the sense that Œp; Œp; p�� � p
hence p C q is a Lie algebra (see [36] for details). To prove (i), let us pick z in
p \ q. Then z D  C

v for some v in V and moreover Œz; p� � p. In particular
Œ C
v ;  

C
Jv� D  C

w for some w in V , or equivalently 2. C
v /

2 D  C
Jw . But the left-

hand side of this equality is symmetric whilst the right-hand is skew-symmetric which
yields easily that v D 0. �

The Lie algebra r is best though of as the holonomy algebra of a symmetric space
of compact type. In the realm of NK-geometry this will turn out to be precisely the
case.

5.3 Reduction to a Riemannian holonomy system

We shall consider in what follows an SNK-holonomy system .V 2m; g; J;  C; R/
containing a special invariant sub-space V , with orthogonal complement to be denoted
by H .

At this moment need a finer notion of irreducibility for an SNK-holonomy system
containing an h-invariant special subspace. Let us now defineRH W ƒ2.H/ ! ƒ2.H/

by
RH .x; y/ D R.x; y/C  C

 
C
x y

for all x, y inH . Note this is well defined because C.H;H/ � V and C.V ;H/ D
H and also because H is h-invariant. Moreover, the Bianchi identity for R ensures
thatRH is an algebraic curvature tensor onH , that isRH belongs to K.so.H//. The
second Lie subalgebra of ƒ2.H/ of interest for us is

hH D LiefRH .x; y/ W x; y in H g:

Definition 5.5. .H; g; hH / is called the Riemannian holonomy system associated to
.V 2m; g; J;  C; R/. It is irreducible if the metric representation .hH ;H/ is irre-
ducible.

The main result in this section is to prove that we can reduce, up to products in
the sense of Definition 5.4 – hence of Riemannian type, the study of special SNK-
holonomy to the case when the associated Riemannian holonomy system is irreducible.
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Theorem 5.2. Let .V 2m; g; J;  C; R/ be an SNK-holonomy system containing an
h-invariant subspace V . Then V splits as

V D V1 ˚ � � � ˚ Vq;

a product of special SNK-holonomy systems, such that each factor has irreducible
associated Riemannian holonomy system.

Proof. Let V be a special h-invariant subspace and let us orthogonally decompose

H D H1 ˚H2

in invariant subspaces for the action of hH . As a straightforward consequence of
having R in S2.�1;1/ we note that

RH . C
v / D 1

2
 C
rv (5.3)

on H , for all v in V . Since RH .H;H;H1;H2/ D 0 by assumption and since r is
invertible on V it follows that  C

V
H1 and H2 are orthogonal, hence

 C
V
Hk � Hk; k D 1; 2 (5.4)

given that  C
V
H � H . It also follows that  C.H1;H2/ D 0. We will need now

several preliminary steps.

Step 1: Hk are J -invariant for k D 1; 2.
From (5.4) it follows that rV .Hk/ � Hk , k D 1; 2 where rV W H ! H is defined

by

rVx D �
dX
kD1

. C
vk
/2x

for all x in H , where fvk; 1 � k � d D dimRVg is some orthonormal basis in V .
But rV has no kernel, as an easy consequence of the fact that  C is non-degenerate
and V is special. It follows that rV

jHk
W Hk ! Hk is injective, hence surjective, that is

rV .Hk/ D Hk

for k D 1; 2. Again from (5.4) we find that rV .JHk/ � Hk hence after applying
.rV /�1 (which as we have seen preserves Hk) we get that JHk � Hk for k D 1; 2.

Step 2: A first decomposition of V .
Let V 0 WD V ˚H1 and consider the orthogonal and J -invariant splitting

V D V 0 ˚H2:

Since RH .H1;H2;H;H/ D 0 and also because  C.H1;H2/ D 0 we find that
R.H1;H2;H;H/ D 0. In other words we have R.H;H/H2 � H2 and also
R.H;V/H2 D 0 since V is h-invariant andR is symmetric. Now the Bianchi identity
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for R, combined again with the h-invariance of V and its nullity gives

R.v;w/x D Œ C
v ;  

C
w �x

for all v, w in V and for all x inH . Using again (5.4) we find that R.V ;V/H2 � H2
so H2 is actually h-invariant.

Step 3: The decomposition of V .
Thus we may apply Proposition 5.1 (i) to the splitting V D V 0 ˚H2 whence

 C
x  

C
v w D 0

for allx inH2 and whenever v,w belong to V 0. Let us define Vk D  C.Hk;Hk/ � V

for k D 1; 2 and notice these are J -invariant. Then

 C.H2;V1/ D 0

in particular V1 and V2 are orthogonal, after taking the scalar product with elements
in H2. Therefore

V D V1 ˚ V2

after using that  C.H;H/ D V and  C.H1;H2/ D 0.
Now sinceH1 andH2 play equal rôles, by repeating the arguments above we also

get that  C.V2;H1/ D 0.

Step 4: Proof of the theorem.
We consider the orthogonal and J -invariant splitting

V D V1 ˚ V2;

where Vk WD Vk ˚Hk , k D 1; 2. From Step 3 it follows that  C belongs to

�3.V1/˚ �3.V2/

and moreover that Hk are invariant under h for k D 1; 2. Let us prove that, say V1,
is h-invariant too. From (5.1) we get

R.x; y/. C
x1
x2/ D  C

R.x;y/x1
x2 C  C

x1
R.x; y/x2

for all x, y in V and x1; x2 inH1 and for all x, y inH . SinceH is h-invariant and we
have seen that  C.H;H1/ D  C.H1;H1/ D V1, the invariance of of V1 follows
and that of V2 is proved analogously. We conclude that V k are invariant under h, for
k D 1; 2.

The claim follows now by induction on the number of irreducible components of
.hH ;H/, provided we show that hH does not fix any vector inH . But this is implied
by (5.3), for such a vector, say x0 in H would satisfy then  C.V ; x0/ D 0. Taking
scalar products with elements in H this yields  C.x0;H/ D 0 as  C.H;H/ � V .
This is to say that C

x0
D 0 hence x0 D 0 since C is non-degenerate. This proves the

absence of fixed points for the representation .hH ;H/ and the proof is finished. �

More properties of the non-Riemannian holonomy representation .h; V / can now
be formulated.
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Proposition 5.6. Let .V 2m; g; J;  C/ be a special SNK-holonomy system containing
an invariant subspace V and such that the Riemannian holonomy system .hH ;H/ is
irreducible. Then the representation .h;V/ is irreducible over C.

Proof. Let us suppose that V is not irreducible and split V D V1 ˚ V2 as orthogonal
sum of J -stable and h-invariant subspaces. Then R. C

x y; v; v1; v2/ D 0 for all x, y
in H , v in V and for all vk in Vk , k D 1; 2. Using Proposition 5.4 this leads to

Œ C
v ; Œ 

C
v1
;  C

v2
�� D 0

whenever v belongs to V and v1, v2 are in V1, V2 respectively. An easy invariance
argument which can be found in [49], page 492 yields

 C
v1
 C
v2

D 0 (5.5)

for all vk in Vk , k D 1; 2. We form H k WD  VkH , k D 1; 2 which are therefore
orthogonal, J -invariant and such that H D H 1 ˚H 2. The spaces H k , k D 1; 2 are
actually invariant under h a fact which follows from (5.1) and the h-invariance of Vk ,
k D 1; 2. Now by using (5.5) we obtain that

 C
 

C
x y
H k � H k

for all x, y in H , since  C
VkH � H and  C.H;H/ � V . This means, see also

the definition of the tensor RH , that H k , k D 1; 2 are invariant under hH hence they
cannot be both proper since .hH ;H/ is irreducible. IfH 1 D 0 for instance, a routine
argument leads to V1 D 0, a contradiction and the proof is finished. �

5.4 Metric properties

Let .V; g; J;  C; R/ be an SNK-holonomy system with special invariant subspace
V and such that the associated representation .hH ;H/ is irreducible. Let us define
the tensors Ric, Ric and C exactly as in the beginning of this section, and note they
are still subject to (4.4) and (4.5) as it follows from the corresponding proofs. Their
invariance under h is an easy consequence of (4.4). We shall prove here that one
reduces the discussion to the case when C has only a few eigenvalues but skip most
of the technical details. The eigenspaces of the tensor C will be used to construct
invariant subspaces of the representation .h;H/ which is not necessarily irreducible,
in contrast to .h; V / which is irreducible by Proposition 5.6.

Proposition 5.7. The tensor C has at most 3-eigenvalues.

Proof. Directly from its definition C preserves the splitting V D V ˚ H . Since
C is h-invariant and .h;V/ is irreducible it follows that CjV D �1V for some real
number �. Using (4.5) we find that the symmetric and J -invariant tensor S W H ! H ,
S WD CjH C �

2
satisfies

S. C
v x/ D � C

v Sx;
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hence
S2. C

v x/ D  C
v S

2x (5.6)

for all x inH and for all v in V . Since C is h-invariant, so is S2, and in fact the latter
turns out to be hH -invariant, after using (5.6). It follows that S2 is a multiple of the
identity and the claim follows. �

Let us consider the tensor rV W H ! H given by

rV D �
2dX
kD1

. C
vk
/2;

where 2d D dimR V and fvk; 1 � k � 2dg is some orthonormal basis in V . It is easy
to see that rV is positive, J -commuting, symmetric and h-invariant and moreover that
rjH D 2rV .

When C has only one eigenvalue, then C D 0 and one can show [49] by using
(4.4) that both Ric and r must actually by diagonal on V .

It remains to investigate the cases when C has two, respectively three eigenvalues
which are described below.

Proposition 5.8. The following hold:

(i) If C has exactly two eigenvalues then there exists k > 0 such that rV D k1H
and moreover the eigenvalues together with the corresponding eigenspaces for
the tensors r , C , Ric are given in the following table:

Eigenvalue r Ric C Eigenspace

�1
n�d
d
k nC7d

4d
k 4.n�3d/

d
k V

�2 2k nC2d
2d

k �2.n�3d/
d

k H

(ii) If C has exactly 3-eigenvalues we have a h-invariant, orthogonal and J -invari-
ant splitting

V D V ˚H1 ˚H2

such that  C.H1;H2/ D  C.H2;H2/ D 0 and  C.H1;H2/ D V .

(iii) In all cases, including when C D 0, we have

RicH D 
gjH
for some 
 > 0, where RicH denotes the Ricci contraction of RH .

We refer the reader to [49] for details of the proof and also mention that in case (ii)
above it is also possible to display the relations between the eigenvalues of all relevant
symmetric endomorphisms.
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5.5 The final classification

ByTheorem 5.2 it is enough to consider an SNK-holonomy system .V 2m; g; J;  C; R/
with a special invariant subspace V and such that the Riemannian holonomy system
.hH ;H/ is irreducible, in the notations of the previous section. We shall combine
here some well-known results for irreducible Riemannian holonomy systems and the
information which is available in our present context. To progress in this direction we
will first make clear the relationship between the Lie algebra r and the Riemannian
holonomy algebra hH .

Proposition 5.9. The following hold:

(i) r is an ideal in hH ;

(ii) RH D �
2
1r on r for some � > 0 such that rjV D �1V .

Proof. (i) That p � hH follows from (5.3) hence q D Œp; p� is contained in hH as
well. To see that r is an ideal we use (5.1) to observe that

ŒR.x; y/;  C
v �

belongs to p for all x, y in H and for all v in V . The definition of RH and that of r
now yields

ŒRH .x; y/;  C
v �

in r and it easy to conclude by using the Jacobi identity and Proposition 5.5.
(ii) First of all let us observe that r preserves V , since the latter is special. The

h-invariance of r , together with the irreducibility of .h;V/ implies the existence of a
constant � > 0 such that rjV D �1V . For the action of RH on p our claim follows
now from (5.3). To prove it on q we observe we proceed as follows. Given that R
belongs to S2.ƒ2/ we can alternatively rewrite (5.1) under the form

R. C
x1
x2; x3/CR.x2;  

C
x1
x3/ D R.x1;  

C
x2
x3/

whenever xk are in V , k D 1; 2; 3. Using this for x1 D v; x2 D  C
w ei ; x3 D ei where

v, w are in V and feig is some orthonormal basis in H yields after summation and
rearrangement of terms X

i

R.ei ; Œ 
C
v ;  

C
w �ei / D R.v; rw/

that is R.Œ C
v ;  

C
w �/ D �

2
Œ C
v ;  

C
w � on H , after also using (5.2). After a straightfor-

ward invariance argument this leads to RH .Œ C
v ;  

C
w �/ D �

2
Œ C
v ;  

C
w � and the claim

is proved. �

Now we recall that for a given metric representation .l; W / of some Lie algebra l
we have the Berger list of irreducible Riemannian holonomies, and proceed to the
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final classification result, hence proving Theorem 1.1 in the introduction. cancel
empty
column or is
something
missing?

l W

so.n/ Rn

u.m/ R2m

su.m/ R2m

sp.m/˚ sp.1/ R4m

sp.m/ R4m

spin.7/ R8

g2 R7

Theorem 5.3. Let .M 2m; g; J / be a complete SNK-manifold. ThenM is, up to finite
cover, a Riemannian product whose factors belong to the following classes:

(i) homogeneous SNK-manifolds;

(ii) twistor spaces over positive quaternionic Kähler manifolds;

(iii) 6-dimensional SNK-manifolds.

Proof. First of all, because M must be compact with finite fundamental group we
may assume up to a finite cover that it is simply connected. Pick now a point x in
M and consider the holonomy representation .Holx.xr/; TxM/. If this is irreducible
over R or complex irreducible but real reducible we conclude by Theorem 4.4.

If the holonomy representation of xr is reducible over C at x we consider the SNK-
holonomy system .TxM;gx; Jx;  

C
x ;

xRx/. By the theorem of Ambrose–Singer we
have that h � holx.xr/. Also note that when starting the whole reduction procedure
leading to Theorem 5.2 from some holx.xr/ complex invariant sub-space we end up
with a splitting

TxM D V1 ˚ � � � ˚ Vp

with the properties in Theorem 5.2 and which is furthermore holx.xr/-invariant to-
gether with the special sub-spaces contained in each factor. Using parallel transport
w.r.t. to xr this extends to a xr-parallel decomposition, which is actually r-parallel
since the torsion of xr is split along the decomposition. The splitting theorem of de
Rham applies and our study is reduced to that of SNK-manifolds such that at each
point, we have an invariant special subspace having the property that the associated
holonomy system is irreducible in the sense of Definition 5.5. Then we show (see
[49]) that M is the total space of a Riemannian submersion

	 W .M; g/ ! .N 2n; h/
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whose fibres are totally geodesic and w.r.t. the induced metric and almost complex
structure are simply connected, irreducible and compact Hermitian symmetric spaces.
The tensor RH defined in Section 5.3 projects onto the Riemann curvature tensor of
h making of hH a subalgebra of hol.N; h/ at each point. Using this, one shows that
the Riemannian manifold .N 2n; h/ is irreducible and Proposition 5.8 (iii) gives that h
is Einstein of positive scalar curvature.

If the tensor C has three eigenvalues a short manipulation of the second Bianchi
identity for xr combined with the algebraic structure of the splitting of TM given in
(ii) of Proposition 5.8 gives that xr is an Ambrose–Singer connection.

Let us discuss now the case when C has two eigenvalues or it vanishes.
If .N 2n; h/ is a symmetric space the relations of O’Neill (see [6]) for the Rie-

mannian submersion 	 W M ! N essentially say that the curvature tensor xR is an
explicit expression of  C; RH and the curvature of the fibre (which is a symmetric
space) along the xr-parallel splitting TM D V ˚H . This information results easily
in having xr an Ambrose–Singer connection again.

Suppose now that .N 2n; h/ is not a symmetric space. Then the holonomy repre-
sentation of .N; h/, at the Lie algebra level, corresponds to the representation .hH ;H/
and as it is well known (see [52]), must be one of the entries in the Berger list above. We
shall mainly use now Proposition 5.9. The Lie algebras su.m/, sp.m/, spin.7/, g2 are
excluded because their curvature tensors are Ricci-flat. Supposing that hH D u.n/,
given that the ideal r is at least two-dimensional we can only have r D su.n/;u.n/.
But using Proposition 5.9 combined with the fact that a curvature tensor of Kähler-
Einstein type is completely determined by its restriction to su.m/we find that .N 2n; h/

is symmetric a contradiction. Similar arguments together with results from [5] enable
us to conclude in the case when hH D so.2n/ or when r D sp.m/. The only case
remaining is when hH D sp.m/˚ sp.1/ and r D sp.1/ which implies that V is of
rank 2. Hence the holonomy group of xr is contained in U.1/ � U.2m/ and the fact
that .M 2m; g; J / is a twistor space over a positive quaternionic-Kähler manifold has
been proved in [48]. �

6 Concluding remarks

Due to considerations of space and time we have omitted to present some important
facts related to nearly-Kähler geometry. The first aspect is related to the construction
of examples, which is implicit in our present treatment. Given a quaternion-Kähler
manifold .M 4m; g;Q/ of positive scalar curvature the Salamon twistor construction
[51] yields a Kähler manifold .Z; h; J / such that there is a Riemannian submersion
with totally geodesic, complex fibres

S2 ,! .Z; h/ ! .M; g/:



Chapter 10. Totally skew-symmetric torsion and nearly-Kähler geometry 49

Using this structure and a canonical variation of the metrich it has been shown [19] that
Z admits an SNK-metric. Enlarging the context to that of Riemannian submersions
with complex, totally geodesic fibres from Kähler manifolds one draws a similar
conclusion [48] (see also [50] for some related facts). This observation can also be
used to describe the homogeneous SNK-manifolds which appear in Theorem 5.3 as
twistor spaces in the sense of [11] over symmetric spaces of compact type.

We have also omitted to discuss NK-structures in dimension 6, which have a rich
geometry, although not yet fully understood. If .M 6; g; J / is a strict NK manifold the
structure group automatically reduces to SU.3/, hence c1.M; J / D 0 [33]. Moreover
the metric g must be Einstein [33], of positive scalar curvature. There is also a 1-1
correspondence between 6-dimensional manifolds admitting real Killing spinors and
SNK-structures in dimension 6 [35].

In the compact case the only known examples are homogeneous, and various char-
acterisations of these instances are available [12], [45]. However, compact examples
with two conical singularities have been very recently constructed in [23] building
on the fact that one can suitably rotate the SU.2/-structure of a Sasakian–Einstein
5-manifold and then extend it to a SU.3/-structure of NK-type through a generalised
cone construction.
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