Introduction to

Conformal Geometry

Lecture 2

Weyl Curvature Tensor

Characterization of Conformal Flatness

 (M^n,g) smooth Riemannian manifold, $n \ge 2$

Fundamental objects: Levi-Civita connection ∇ and Riemann curvature tensor R_{ijkl}

Notation:
$$\nabla_k v_j = v_{j,k} = \partial_k v_j - \Gamma^i_{jk} v_i$$

Curvature tensor defined by commuting covariant derivatives:

$$v_{j,kl} - v_{j,lk} = R^i{}_{jkl}v_i$$
 (index raised using g^{ij})

Theorem: There exist local coordinates x^i so that $g = \sum (dx^i)^2$ if and only if R = 0.

There are many proofs. See Vol. 2 of Spivak's A *Comprehensive Introduction to Differential Geometry*. In Riemann's proof, R = 0 arises as the integrability condition for the application of Frobenius' Theorem to an overdetermined system of pde's.

Next suppose given a conformal class [g] of metrics

$$\widehat{g} \sim g$$
 if $\widehat{g} = e^{2\omega}g$, $\omega \in C^{\infty}(M)$.

Analogous question: given g, under what conditions do there exist local coordinates so that $g = e^{2\omega} \sum (dx^i)^2$? Such a metric is said to be locally conformally flat.

If n = 2, always true: existence of isothermal coordinates. So assume $n \ge 3$.

Certainly R = 0 suffices for existence of x^i , ω . But we'll see only need a piece of R to vanish. Decompose R into pieces: trace-free part and trace part.

(V,g) inner product space, $g \in S^2V^*$ metric Simpler analogous decomposition for S^2V^* . Any $s \in S^2 V^*$ has a trace $\operatorname{tr}_g s = g^{ij} s_{ij} \in \mathbb{R}$. **Fact**: any $s \in S^2 V^*$ can be uniquely written $s = s_0 + \lambda g, \quad \lambda \in \mathbb{R}, \quad s_0 \in S^2 V^*, \quad \operatorname{tr}_q s_0 = 0$ **Proof**: Take trace: $\operatorname{tr}_g s = n\lambda$, so $\lambda = \frac{1}{n}\operatorname{tr}_g s$. Then $s_0 = s - \frac{1}{n}(\operatorname{tr}_g s)g$ works. So $S^2V^* = S_0^2V^* \oplus \mathbb{R}g$, where $S_0^2V^* = \{s : tr_g s = 0\}$ Back to curvature tensors (linear algebra): **Def**: $\mathcal{R} = \left\{ R \in \bigotimes^4 V^* : R_{ijkl} = -R_{jikl} = -R_{ijlk} \right\}$ and $R_{ijkl} + R_{iklj} + R_{iljk} = 0$ same as $R_{i[jkl]} = 0$, where

$$6R_{i[jkl]} = R_{ijkl} + R_{iklj} + R_{iljk} - R_{ijlk} - R_{ikjl} - R_{ilkj}$$

Have tr : $\mathcal{R} \to S^2 V^*$, (tr R)_{*ik*} = $Ric_{ik} = g^{jl}R_{ijkl}$.

Also $\operatorname{tr}^2 R \in \mathbb{R}$, $\operatorname{tr}^2 R = S = g^{ik} Ric_{ik}$

Definition: $W = \{W \in \mathcal{R} : tr W = 0\}$

Need a way to embed $S^2V^* \hookrightarrow \mathcal{R}$ by "multiplying by g", analogous to $\mathbb{R} \hookrightarrow S^2V^*$ by $\lambda \to \lambda g$.

Given s, $t \in S^2V^*$, define $s \otimes t \in \mathcal{R}$ by:

$$(s \oslash t)_{ijkl} = s_{ik}t_{jl} - s_{jk}t_{il} - s_{il}t_{jk} + s_{jl}t_{ik}$$

Theorem: $\mathcal{R} = \mathcal{W} \oplus \left(S^2 V^* \otimes g\right)$

Proof: Given $R \in \mathcal{R}$, want to find W, P so that $R_{ijkl} = W_{ijkl} + (P_{ik}g_{jl} - P_{jk}g_{il} - P_{il}g_{jk} + P_{jl}g_{ik})$ Take tr: $Ric_{ik} = 0 + nP_{ik} - P_{ik} - P_{ik} + P_{j}^{j}g_{ik}$ $= (n-2)P_{ik} + P_{i}^{j}g_{ik}$

Again: $S = (n-2)P_j{}^j + nP_j{}^j = 2(n-1)P_j{}^j$, so

$$P_j{}^j = \frac{S}{2(n-1)}$$
 and $P_{ik} = \frac{1}{n-2} \left(Ric_{ik} - \frac{S}{2(n-1)}g_{ik} \right)$

Proposition: $W = \{0\}$ if n = 3.

Proof: Choose basis so that $g_{ij} = \delta_{ij}$. Consider components W_{ijkl} . Two of ijkl must be equal, say i = k = 1. Now $W_{1j1l} = 0$ unless $j, l \in \{2,3\}$. tr $W = 0 \implies W_{1j1l} = -W_{2j2l} - W_{3j3l}$. This vanishes unless j = l. So have left W_{1212} , W_{1313} , W_{2323} , and $W_{1212} = -W_{2323}$. Have 3 numbers, any two are negatives, so all must vanish.

Given g metric on M, take R = curvature tensor of g and decompose. Then W is called the Weyl tensor of g and P the Schouten tensor of g.

How are W, P for g related to \widehat{W} , \widehat{P} for $\widehat{g} = e^{2\omega}g$?

Calculate how Levi-Civita connection changes:

$$\widehat{\nabla}_k v_j = \nabla_k v_j - \omega_k v_j - \omega_j v_k + \omega^i v_i g_{jk}. \quad (\omega_k = \nabla_k \omega)$$

Commute derivatives to see how R changes.

Iterating formula for $\widehat{\nabla}$ gives $\nabla^2 \omega$ terms and $(\nabla \omega)^2$ terms.

End up with:

$$\widehat{R} = e^{2\omega} \left(R + \Lambda \oslash g \right),$$

where $\Lambda_{ij} = -\omega_{ij} + \omega_i \omega_j - \frac{1}{2} \omega_k \omega^k g_{ij}$. $\left(\omega_{ij} = \nabla_i \nabla_j \omega\right)$

Decompose:

 $\widehat{W} + \widehat{P} \otimes \widehat{g} = e^{2\omega} \left[W + (P + \Lambda) \otimes g \right]$

Conclusion: $\widehat{W} = e^{2\omega}W, \qquad \widehat{P} = P + \Lambda.$

W is conformally invariant up to the scale factor $e^{2\omega}$. In particular, if W = 0, then $\widehat{W} = 0$. Follows that if a metric is locally conformally flat, then its Weyl tensor must vanish. We'll see that the converse is true if $n \ge 4$.

Under conformal change, P transforms by adding Λ , which is expressed in terms of $\nabla^2 \omega$ and $(\nabla \omega)^2$.

If n = 3, the condition W = 0 is automatically true. There is another tensor, the Cotton tensor C, which plays the role of W. Involves one more differentiation. C is also relevant for $n \ge 4$, as we will see.

7

First see how C arises in the context of the second Bianchi identity. Recall

$$R_{ijkl,m} + R_{ijlm,k} + R_{ijmk,l} = 0$$

Contract on *i*, *m*. Get
$$R^{i}_{jkl,i} - Ric_{jl,k} + Ric_{jk,l} = 0, \text{ or}$$
$$R^{i}_{jkl,i} = Ric_{jl,k} - Ric_{jk,l}$$

Now write everything in terms of *W* and *P* via:
$$R = W + P \otimes g, \qquad Ric = (n-2)P + P_{i}^{i}g$$

Plug in, simplify, get

$$W^{i}_{jkl,i} = (3-n) \left(P_{jk,l} - P_{jl,k} \right)$$

Definition: $C_{jkl} = P_{jk,l} - P_{jl,k}$ Cotton tensor

Have $C_{jkl} = -C_{jlk}$ and $C_{[jkl]} = 0$.

Rewrite Bianchi formula:

$$W^i_{jkl,i} = (3-n)C_{jkl}.$$

This is vacuous if n = 3. But if $n \ge 4$, shows that C = 0 if W = 0. In particular C = 0 if $n \ge 4$ and g is locally conformally flat.

Suggests to see how C transforms conformally. Could use above identity for $n \ge 4$, but not for n = 3.

Need to calculate $\widehat{\nabla}_l \widehat{P}_{jk}$. Recall $\widehat{P} = P + \Lambda$, or:

$$\hat{P}_{jk} = P_{jk} - \omega_{jk} + \omega_j \omega_k - \frac{1}{2} \omega^i \omega_i g_{jk}.$$
 Differentiate:
$$\widehat{\nabla}_l \hat{P}_{jk} = \nabla_l \hat{P}_{jk} + \nabla \omega \cdot \hat{P}$$

$$= \nabla_l P_{jk} - \omega_{jkl} + \nabla^2 \omega \cdot \nabla \omega + \nabla \omega \cdot P + (\nabla \omega)^3$$

Recall that:

$$\widehat{C}_{jkl} = \widehat{\nabla}_l \widehat{P}_{jk} - \widehat{\nabla}_k \widehat{P}_{jl}$$

Obtain

$$\widehat{C}_{jkl} = C_{jkl} - \left(\omega_{jkl} - \omega_{jlk}\right) + \nabla^2 \omega \cdot \nabla \omega + \nabla \omega \cdot P + (\nabla \omega)^3$$

But
$$\omega_{jkl} - \omega_{jlk} = R^i{}_{jkl}\omega_i$$
. Use $R = W + P \otimes g$. Get

$$\hat{C}_{jkl} = C_{jkl} - W^{i}{}_{jkl}\omega_{i} + \left[\nabla^{2}\omega \cdot \nabla\omega + \nabla\omega \cdot P + (\nabla\omega)^{3}\right]$$

Turns out that $[\ldots] = 0$, so that

$$\hat{C}_{jkl} = C_{jkl} - W^i{}_{jkl}\omega_i$$

If n = 3, have W = 0, so $\hat{C} = C$. The Cotton tensor is conformally invariant when n = 3! So: if n = 3 and g is locally conformally flat, then C = 0. When $n \ge 4$, the condition C = 0 is not conformally invariant, but it is in the presence of W = 0 (which forces C = 0 too as we have seen).

Main Theorem: g metric on M

 $n \geq 4$. g is locally conformally flat $\iff W_g = 0$

n = 3. g is locally conformally flat $\iff C_g = 0$

Proof. Note first that hypotheses imply W = 0and C = 0 for all n. Try to find $\omega \in C^{\infty}(M)$ so that $\hat{g} = e^{2\omega}g$ has $\hat{P} = 0$. Gives $\hat{R} = 0$; then use Riemann's criterion for isometric to Euclidean.

Recall $\hat{P} = P + \Lambda$. So $\hat{P} = 0$ is $-\Lambda = P$, or

 $\omega_{jk} - \omega_j \omega_k + \frac{1}{2} \omega^i \omega_i g_{jk} = P_{jk}.$

Unknown: single scalar function ω .

n(n+1)/2 equations. Very overdetermined.

Recall: Frobenius' Theorem produces solutions of overdetermined systems, if an integrability condition is satisfied.

Frobenius' Theorem. Let $n \ge 2$, $N \ge 1$, $x \in \mathbb{R}^n$. Unknowns: $u^{\alpha}(x)$, $1 \le \alpha \le N$. Given smooth functions $F_k^{\alpha}(x, u)$, consider system:

$$\partial_k u^{\alpha}(x) = F_k^{\alpha}(x, u(x)), \quad 1 \le k \le n, \quad 1 \le \alpha \le N.$$

Integrability condition: comes from $\partial_{kl}^2 u^{\alpha} = \partial_{lk}^2 u^{\alpha}$

Chain rule gives $\partial_{kl}^2 u^{\alpha} = \partial_l F_k^{\alpha} + \partial_{\beta} F_k^{\alpha} \cdot \partial_l u^{\beta}$

So require the integrability condition:

$$\partial_l F_k^{\alpha} + F_l^{\beta} \partial_{\beta} F_k^{\alpha} = \partial_k F_l^{\alpha} + F_k^{\beta} \partial_{\beta} F_l^{\alpha}.$$

Frobenius' Theorem: if this condition holds identically in (x, u), then the overdetermined system has a solution $u^{\alpha}(x)$, and $u^{\alpha}(x_0)$ can be prescribed arbitrarily.

Apply to

$$\omega_{jk} - \omega_j \omega_k + \frac{1}{2} \omega^i \omega_i g_{jk} = P_{jk}$$
. Write as

$$\partial_{jk}^2 \omega = \Gamma_{jk}^i \omega_i + \omega_j \omega_k - \frac{1}{2} \omega^i \omega_i g_{jk} + P_{jk}.$$

First forget that $\omega_j = \partial_j \omega$. Try to find *n* functions u_j so that

$$\partial_k u_j = \Gamma^i_{jk} u_i + u_j u_k - \frac{1}{2} u^i u_i g_{jk} + P_{jk} \equiv F_{jk}(x, u).$$

If we have u_j , then certainly $\partial_k u_j = \partial_j u_k$, so Poincaré Lemma (special case of Frobenius) implies $u_j = \partial_j \omega$ for some ω , and we are done.

Use Frobenius with N = n. Check integrability.

Equation is same as

$$\nabla_k u_j = u_j u_k - \frac{1}{2} u^i u_i g_{jk} + P_{jk}.$$

Can calculate integrability condition commuting $\nabla_l \nabla_k$ instead of $\partial_l \partial_k$, using $\nabla_l \nabla_k u_j - \nabla_k \nabla_l u_j = R^i{}_{jkl}u_i$. Can do it directly (or note that this is essentially the same calculation we did before in calculating $\widehat{\nabla}_l \widehat{P}_{jk} - \widehat{\nabla}_k \widehat{P}_{jl}$).

Directly:

$$\nabla_l \nabla_k u_j = u_{j,l} u_k + u_{k,l} u_j - u^i_{,l} u_i g_{jk} + P_{jk,l}$$
$$= P_{jk,l} + P \cdot u + u^3.$$

Skew on k, l:

$$R^i_{jkl}u_i = C_{jkl} + P \cdot u + u^3.$$

Substitute $R = W + P \otimes g$. Turns out the u^3 terms vanish and the $(P \otimes g) \cdot u$ term on LHS cancels the $P \cdot u$ term on RHS. Thus the integrability condition is precisely

$$C_{jkl} - W^i{}_{jkl}u_i = 0.$$

This is satisfied because W = 0 and C = 0.