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(Mn, g) smooth Riemannian manifold, n ≥ 2

Fundamental objects: Levi-Civita connection ∇

and Riemann curvature tensor Rijkl

Notation: ∇kvj = vj,k = ∂kvj − Γ i
jkvi

Curvature tensor defined by commuting covariant

derivatives:

vj,kl − vj,lk = Ri
jklvi (index raised using gij)

Theorem: There exist local coordinates xi so that

g =
∑

(dxi)2 if and only if R = 0.

There are many proofs. See Vol. 2 of Spivak’s A

Comprehensive Introduction to Differential Geom-

etry. In Riemann’s proof, R = 0 arises as the inte-

grability condition for the application of Frobenius’

Theorem to an overdetermined system of pde’s.
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Next suppose given a conformal class [g] of metrics

ĝ ∼ g if ĝ = e2ωg, ω ∈ C∞(M).

Analogous question: given g, under what con-

ditions do there exist local coordinates so that

g = e2ω ∑
(dxi)2? Such a metric is said to be lo-

cally conformally flat.

If n = 2, always true: existence of isothermal co-

ordinates. So assume n ≥ 3.

Certainly R = 0 suffices for existence of xi, ω. But

we’ll see only need a piece of R to vanish. Decom-

pose R into pieces: trace-free part and trace part.
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(V, g) inner product space, g ∈ S2V ∗ metric

Simpler analogous decomposition for S2V ∗.

Any s ∈ S2V ∗ has a trace trg s = gijsij ∈ R.

Fact: any s ∈ S2V ∗ can be uniquely written

s = s0 + λg, λ ∈ R, s0 ∈ S2V ∗, trg s0 = 0

Proof: Take trace: trg s = nλ, so λ = 1
n trg s.

Then s0 = s − 1
n(trg s)g works.

So S2V ∗ = S2
0V ∗⊕Rg, where S2

0V ∗ = {s : trg s = 0}

Back to curvature tensors (linear algebra):

Def: R =
{
R ∈ ⊗4V ∗ : Rijkl = −Rjikl = −Rijlk

and Rijkl + Riklj + Riljk = 0︸ ︷︷ ︸

}

same as Ri[jkl] = 0, where

6Ri[jkl] = Rijkl + Riklj + Riljk − Rijlk − Rikjl − Rilkj
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Have tr : R → S2V ∗, (tr R)ik = Ricik = gjlRijkl.

Also tr2 R ∈ R, tr2 R = S = gikRicik

Definition: W = {W ∈ R : tr W = 0}

Need a way to embed S2V ∗ ↪→ R by “multiplying

by g”, analogous to R ↪→ S2V ∗ by λ → λg.

Given s, t ∈ S2V ∗, define s ? t ∈ R by:

(s ? t)ijkl = siktjl − sjktil − siltjk + sjltik

Theorem: R = W ⊕
(
S2V ∗

? g
)

Proof: Given R ∈ R, want to find W , P so that

Rijkl = Wijkl + (Pikgjl − Pjkgil − Pilgjk + Pjlgik)

Take tr: Ricik = 0 + nPik − Pik − Pik + Pj
jgik

= (n − 2)Pik + Pj
jgik

Again: S = (n − 2)Pj
j + nPj

j = 2(n − 1)Pj
j, so

Pj
j = S

2(n−1)
and Pik = 1

n−2

(
Ricik − S

2(n−1)
gik

)
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Proposition: W = {0} if n = 3.

Proof: Choose basis so that gij = δij. Consider

components Wijkl. Two of ijkl must be equal,

say i = k = 1. Now W1j1l = 0 unless j, l ∈ {2,3}.

tr W = 0 =⇒ W1j1l = −W2j2l − W3j3l. This

vanishes unless j = l. So have left W1212, W1313,

W2323, and W1212 = −W2323. Have 3 numbers,

any two are negatives, so all must vanish.

Given g metric on M , take R = curvature tensor

of g and decompose. Then W is called the Weyl

tensor of g and P the Schouten tensor of g.

How are W , P for g related to Ŵ , P̂ for ĝ = e2ωg?

Calculate how Levi-Civita connection changes:

∇̂kvj = ∇kvj − ωkvj − ωjvk + ωivigjk. (ωk = ∇kω)

Commute derivatives to see how R changes.

Iterating formula for ∇̂ gives ∇2ω terms and (∇ω)2

terms.
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End up with:

R̂ = e2ω (R + Λ ? g),

where Λij = −ωij+ωiωj−
1
2ωkωkgij.

(
ωij = ∇i∇jω

)

Decompose:

Ŵ + P̂ ? ĝ = e2ω [W + (P + Λ) ? g]

Conclusion: Ŵ = e2ωW, P̂ = P + Λ.

W is conformally invariant up to the scale factor

e2ω. In particular, if W = 0, then Ŵ = 0. Follows

that if a metric is locally conformally flat, then

its Weyl tensor must vanish. We’ll see that the

converse is true if n ≥ 4.

Under conformal change, P transforms by adding

Λ, which is expressed in terms of ∇2ω and (∇ω)2.

If n = 3, the condition W = 0 is automatically

true. There is another tensor, the Cotton tensor

C, which plays the role of W . Involves one more

differentiation. C is also relevant for n ≥ 4, as we

will see.
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First see how C arises in the context of the second

Bianchi identity. Recall

Rijkl,m + Rijlm,k + Rijmk,l = 0

Contract on i, m. Get

Ri
jkl,i − Ricjl,k + Ricjk,l = 0, or

Ri
jkl,i = Ricjl,k − Ricjk,l

Now write everything in terms of W and P via:

R = W + P ? g, Ric = (n − 2)P + Pi
ig

Plug in, simplify, get

W i
jkl,i = (3 − n)

(
Pjk,l − Pjl,k

)

Definition: Cjkl = Pjk,l − Pjl,k Cotton tensor

Have Cjkl = −Cjlk and C[jkl] = 0.
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Rewrite Bianchi formula:

W i
jkl,i = (3 − n)Cjkl.

This is vacuous if n = 3. But if n ≥ 4, shows that

C = 0 if W = 0. In particular C = 0 if n ≥ 4 and

g is locally conformally flat.

Suggests to see how C transforms conformally.

Could use above identity for n ≥ 4, but not for

n = 3.

Need to calculate ∇̂lP̂jk. Recall P̂ = P + Λ, or:

P̂jk = Pjk − ωjk + ωjωk − 1
2ωiωigjk. Differentiate:

∇̂lP̂jk = ∇lP̂jk + ∇ω · P̂

= ∇lPjk − ωjkl + ∇2ω · ∇ω + ∇ω · P + (∇ω)3

Recall that:

Ĉjkl = ∇̂lP̂jk − ∇̂kP̂jl
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Obtain

Ĉjkl = Cjkl−
(
ωjkl − ωjlk

)
+∇2ω·∇ω+∇ω·P +(∇ω)3

But ωjkl − ωjlk = Ri
jklωi. Use R = W + P ? g. Get

Ĉjkl = Cjkl−W i
jklωi+

[
∇2ω · ∇ω + ∇ω · P + (∇ω)3

]

Turns out that [. . .] = 0, so that

Ĉjkl = Cjkl − W i
jklωi

If n = 3, have W = 0, so Ĉ = C. The Cotton

tensor is conformally invariant when n = 3! So:

if n = 3 and g is locally conformally flat, then

C = 0. When n ≥ 4, the condition C = 0 is not

conformally invariant, but it is in the presence of

W = 0 (which forces C = 0 too as we have seen).

Main Theorem: g metric on M

n ≥ 4. g is locally conformally flat ⇐⇒ Wg = 0

n = 3. g is locally conformally flat ⇐⇒ Cg = 0
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Proof. Note first that hypotheses imply W = 0

and C = 0 for all n. Try to find ω ∈ C∞(M) so

that ĝ = e2ωg has P̂ = 0. Gives R̂ = 0; then use

Riemann’s criterion for isometric to Euclidean.

Recall P̂ = P + Λ. So P̂ = 0 is −Λ = P , or

ωjk − ωjωk + 1
2ωiωigjk = Pjk.

Unknown: single scalar function ω.

n(n + 1)/2 equations. Very overdetermined.

Recall: Frobenius’ Theorem produces solutions of

overdetermined systems, if an integrability condi-

tion is satisfied.

Frobenius’ Theorem. Let n ≥ 2, N ≥ 1, x ∈ Rn.

Unknowns: uα(x), 1 ≤ α ≤ N .

Given smooth functions F α
k (x, u), consider system:

∂kuα(x) = Fα
k (x, u(x)), 1 ≤ k ≤ n, 1 ≤ α ≤ N .

Integrability condition: comes from ∂2
klu

α = ∂2
lkuα

Chain rule gives ∂2
klu

α = ∂lF
α
k + ∂βFα

k · ∂lu
β
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So require the integrability condition:

∂lF
α
k + F

β
l ∂βFα

k = ∂kFα
l + F

β
k ∂βFα

l .

Frobenius’ Theorem: if this condition holds identi-

cally in (x, u), then the overdetermined system has

a solution uα(x), and uα(x0) can be prescribed ar-

bitrarily.

Apply to

ωjk − ωjωk + 1
2ωiωigjk = Pjk. Write as

∂2
jkω = Γ i

jkωi + ωjωk − 1
2ωiωigjk + Pjk.

First forget that ωj = ∂jω. Try to find n functions

uj so that

∂kuj = Γ i
jkui + ujuk − 1

2uiuigjk + Pjk ≡ Fjk(x, u).

If we have uj, then certainly ∂kuj = ∂juk, so

Poincaré Lemma (special case of Frobenius)

implies uj = ∂jω for some ω, and we are done.

Use Frobenius with N = n. Check integrability.
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Equation is same as

∇kuj = ujuk − 1
2uiuigjk + Pjk.

Can calculate integrability condition commuting

∇l∇k instead of ∂l∂k, using ∇l∇kuj − ∇k∇luj =

Ri
jklui. Can do it directly (or note that this is

essentially the same calculation we did before in

calculating ∇̂lP̂jk − ∇̂kP̂jl).

Directly:

∇l∇kuj = uj,luk + uk,luj − ui
,luigjk + Pjk,l

= Pjk,l + P · u + u3.

Skew on k, l:

Ri
jklui = Cjkl + P · u + u3.

Substitute R = W +P ?g. Turns out the u3 terms

vanish and the (P ? g) ·u term on LHS cancels the

P ·u term on RHS. Thus the integrability condition

is precisely

Cjkl − W i
jklui = 0.

This is satisfied because W = 0 and C = 0.
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