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Abstract Motivated by understanding the limiting case of a certain systolic
inequality we study compact Riemannian manifolds having all harmonic 1-forms
of constant length. We give complete characterizations as far as Kähler and hyper-
bolic geometries are concerned. In the second part of the paper, we give algebraic
and topological obstructions to the existence of a geometrically 2-formal Kähler
metric, at the level of the second cohomology group. A strong interaction with
almost Kähler geometry is to be noted. In complex dimension 3, we list all the pos-
sible values of the second Betti number of a geometrically 2-formal Kähler metric.
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1 Introduction

Let (Mn, g) be a compact oriented Riemannian manifold. We denote by �p(M),
0 ≤ p ≤ n the space of smooth, real valued, p-forms of M . The standard deRham
complex

· · · → �p(M)
d→ �p+1(M) → · · ·
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where d stands for the exterior derivative is then used to introduce the deRham
cohomology groups, to be denoted by H p

DR(M). The topological information con-
tained in these cohomology groups may be understood geometrically, using Hodge
theory, by means of the isomorphisms

H p
DR(M) ≡ Hp(M, g), 0 ≤ p ≤ n (1.1)

Here the space of harmonic p-forms of (Mn, g) is defined by

Hp(M, g) = {α ∈ �p(M) : �α = 0}.
The Laplacian on forms is given by � = dd� + d�d where d� is the formal adjoint
of d with respect to the given metric and orientation of M .

In this paper we investigate various notions of “constancy” related to harmonic
forms. The first one is introduced by the following

Definition 1.1 Let (Mn, g) be compact and oriented. It is said to satisfy the hypoth-
esis (C L p) for some 1 ≤ p ≤ n − 1 iff every harmonic p-form has pointwisely
constant norm.

Manifolds satisfying hypothesis (C L1) appear to be naturally related to a gen-
eralized systolic inequality. More precisely, for a compact, orientable Riemannian
manifold (N n, g) with non-vanishing first Betti number one defines the stable 1-
systole stsys1(g) in terms of the stable norm (see [2,3] for details). Let sysn−1(g)
be the infimum of the (n − 1)-volumes of all nonseparating hypersurfaces in N .
Then the following systolic inequality, previously established in [7] in the case
when the first Betti number equals 1 holds (see [2]) :

stsys1(g) · sysn−1(g) ≤ γ ′
b1(N ) · vol(g). (1.2)

Here γ ′
b1(N ) is the Bergé-Martinet constant for whose definition we send again the

reader to [3]. The important point for us is that it was shown in [3] that if equality
in (1.2) occurs then (N n, g) satisfies the hypothesis (C L1). Note that the converse
is false, as flat tori always satisfy (C L1) but saturate (1.2) iff they are dual-critical.

Riemannian manifolds (N n, g) saturating (1.2) have strong geometric proper-
ties. It was proved in [3], Thm.1.2, that in this case (N n, g) is the total space of
a Riemannian submersion with minimal fibers to a flat torus, whose projection is
actually the Albanese map. Therefore, in the special case when b1(N ) = n − 1 it
follows that the fibers of the Albanese map must be totally geodesic. Using Chern-
Weil theory and an argument that reproduces in part that in section 6 of [3], we
showed in [14] that the only possible topologies of manifolds N n which admit a
metric satisfying (C L1) and have b1(N ) = n − 1 are those of 2-step nilmanifolds
with 1-dimensional kernel. Equivalently, the above class of manifolds is parame-
trized by couples (T, ω) where T is a flat (n −1)-torus and ω is a non zero, integral
cohomology class on T .

For a compact oriented Riemannian manifold (M, g) we now set

H �
DR(M) =

⊕

p≥0

H p
DR(M) and H�(M, g) =

⊕

p≥0

Hp(M, g)

Whilst H �(M) is a graded algebra, in general H�(M, g) is not an algebra with
respect to the wedge product operation for there is no reason the isomorphism



On length and product of harmonic forms in Kähler geometry 201

(1.1) descends to the level of harmonic forms. Our next definition is related to this
fact.

Definition 1.2 Let (Mn, g) be compact and oriented.

(i) The metric g is p-formal for some 1 ≤ p ≤ n − 1 iff the product of any
harmonic p-forms remains harmonic.

(ii) The metric g is formal iff the product of any two harmonic forms remains
harmonic.

Following [11] we also set

Definition 1.3 Let Mn be compact and oriented. Mn is geometrically formal iff it
admits a formal Riemannian metric.

From a topological viewpoint, geometric formality implies that the rational
homotopy type of the manifold is a formal consequence of the cohomology ring
[16]. Basic examples are compact Riemannian symmetric spaces. In fact, in the
recent [11], it was proved that in dimension 3 and 4 every geometrically formal
manifold has the real cohomology algebra of a compact Riemannian symmetric
space. In higher dimensions, there are very few general facts known about geo-
metrically formal manifolds; for instance formal metrics satisfy hypothesis (C L p)
for all 1 ≤ p ≤ n − 1 [11]. By contrast, the class of (non necessarily invari-
ant) metrics on nilmanifolds studied in [14] satisfy hypothesis (C L p) whenever
1 ≤ p ≤ n − 1 but none of the p-formality hypothesis. Moreover, it is known
that certain classes of homogeneous spaces fail to be geometrically formal for
cohomological reasons [12].

In this note we place ourselves in the context of Kähler manifolds and we inves-
tigate geometric consequences of the constant length hypothesis and of geometric
formality for low degree harmonic forms. Our paper is organized as follows. In
section 2 we prove the following.

Theorem 1.1 Let (M2n, g, J ) be a compact Kähler manifold. Then every har-
monic 1-form of pointwisely constant length is parallel with respect to the Levi-
Civita connection of g. In particular, if g satisfies the hypothesis (C L1) then
(M2n, g, J ) is locally the Riemannian (and biholomorphic) product of a compact,
simply connected Kähler manifold and of a flat torus.

Note that the result of Theorem 1.1 is no longer available if instead of hav-
ing a Kähler structure we require only the presence of an almost Kähler one (see
section 2 for an example). It also follows that a compact Kähler manifold which is
locally irreducible and not flat never saturates the systolic inequality (1.2). More-
over in section 2 we remark that the length of a harmonic 1-form on a compact
hyperbolic manifold cannot be constant; this is actually a consequence of a result in
[10] and holds in fact for compact locally symmetric spaces of negative curvature
[19]. We propose a different, very simple proof.

The rest of the paper is concerned with the study of obstructions to geometric
2-formality. Note however that every compact Kähler is topologically formal by
results in [5]. In section 3, we show that harmonic 2-forms of a 2- formal Kähler
manifold have a global spectral decomposition and constant eigenvalues. This is
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enforcing the opinion, already presented in [11] that geometric formality is weak-
ening the notion of Riemannian holonomy reduction. Based upon this we are able
to prove the following.

Theorem 1.2 Let (M2n, g, J ) be a compact Kähler manifold and assume that the
metric g is 2-formal. Then :

(i) the space H1,1 of J -invariant harmonic forms is spanned by almost Kähler
forms compatible with the metric g.

(ii) the space H2− of J -anti-invariant harmonic two-forms consists only in parallel
forms.

By contrast, recall that simply connected, irreducible compact Hermitian sym-
metric space have second Betti number equal to 1. As an application of Theorems
1.1 and 1.2 we show in section 4 that geometrically formal Kähler manifold having
a maximal Betti number are flat. Further consequences of Theorem 1.2 are investi-
gated under various curvature assumptions in section 4. For example, we prove that
locally irreducible 8-dimensional hyperkähler manifolds cannot be geometrically
formal. In section 5 we study the case of geometrically formal Kähler manifolds of
complex dimension 3. We are able to give the possible values of the second Betti
number in this situation together with more precisions concerning the algebraic
structure of the second cohomology group. We prove :

Theorem 1.3 Let (M6, g, J ) be a geometrically formal Kähler manifold. If the
metric g is locally irreducible then b1(M) = b−

2 (M) = 0. Moreover one has
b2(M) ≤ 3 and H1,1 is spanned by mutually commuting almost Kähler structures.

As a final remark, we mention that finding further, first order obstructions to
geometric formality in the Kähler case relies on understanding the algebraic struc-
ture of the space of harmonic p-forms, p ≥ 3.

2 The length of harmonic 1-forms

This section will be devoted to the investigation of geometric issues of the exis-
tence of a harmonic 1-form of constant length on a compact Kähler manifold. In
particular our discussion will lead to the proof of Theorem 1.1. Before proceeding
we need to recall some basic material related to a particular class of foliations.

Let (M, g) be a Riemannian manifold equipped with a smooth foliation F and
let us denote by V the integrable distribution on M induced by V . We consider the
splitting

T M = V ⊕ H (2.1)

where H is the orthogonal complement of V . From now on we will denote by V, W
vector fields in V and by X, Y, Z etc. vector fields in H . Let ∇ be the Levi-Civita
connection of the metric g. Recall that H is totally geodesic iff ∇X Y belongs to H .
Foliations F satisfying this condition -to be assumed, unless otherwise stated, in
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the rest of our preliminaries- shall be termed transversally totally geodesic. Then
we note that F is a particular kind of Riemannian foliation, meaning that

(LV g)(X, Y ) = 0.

We will present below some basic notions related to this class of foliations, fol-
lowing closely [4,17]. To begin with, let ∇ be the orthogonal projection of ∇ onto
the splitting (2.1). Then it is easy to verify that ∇ defines a metric connection (with
torsion) preserving the distributions V and H .

An important object in our study will be the O’Neill tensor T defined by (see
[17], p. 49)

TE F = (∇EV FV )H + (∇EV FH )V

whenever E, F belong to T M ; here the subscript denotes orthogonal projection
on the subspace. It follows that T vanishes on H × H and H × V , it is symmetric
on V × V (since V is integrable) and furthermore we have < TV X, W >= − <
X, TV W >.

Based on these definitions it is easy to check that the connections ∇ and ∇ are
related to the tensor T by :

∇X Y = ∇X Y ∇X V = ∇X V

∇V W = ∇V W + TV W ∇V X = ∇V X + TV X.

The last notion needed for our purposes is related to the curvature R of the con-
nection ∇ defined by R(E, F) = ∇[E,F] − ∇E∇F + ∇F∇E for all vector fields
E and F of M . Then the transversal Ricci tensor RicH : H → H is given by

< RicH X, Y >=
∑

ei ∈H

R(X, ei , Y, ei )

for an arbitrary local orthonormal basis {ei } of H .
We consider now a compact Kähler manifold (M2n, g, J ) admitting a harmonic
1-form α of pointwisely constant length. Let ζ be the vector field dual to α and
consider the distribution H spanned by ζ and Jζ . Moreover, let V be the orthogonal
complement of H in T M . Our starting point toward the proof of Theorem 1.1 is
the following

Lemma 2.1 The distribution V is integrable and the distribution H is totally geo-
desic. Moreover we have RicH = 0.

Proof If β is a 1-form on M we let J act on β by (Jβ)X = β(J X) for all X
in T M . Since M is compact we know that Jα must be closed. Together with the
closedeness of α this leads to the integrability of V . By construction, we have that
the splitting T M = V ⊕ H is J -invariant and moreover on a compact Kähler
manifold any harmonic 1-form γ is holomorphic, that is

∇J Xγ = J∇Xγ (2.2)

whenever X belongs to T M , where ∇ is the Levi-Civita of the metric g. Therefore
H is a holomorphic distribution and we use results in [20], to conclude that H is
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totally geodesic. Furthermore H is actually transversally flat; this follows easily
from (2.2) and the fact that α has constant length and leads to the last assertion of
our Lemma. 	


But the geometry of the foliations satisfying the conditions in Lemma 2.1 can
be completely ruled out. In fact we shall prove the slightly more general

Proposition 2.1 Let (M2n, g, J ) be a compact Kähler manifold, supporting a foli-
ation with complex leaves which is transversally totally geodesic and with non-
negative transverse Ricci curvature. Then M is locally a Riemannian (and Kähler)
product.

Proof Let V be the distribution tangent to the leaves of the foliation and H its
orthogonal complement. The splitting T M = V ⊕ H is then orthogonal and
J -invariant. Let ∇ be the Levi-Civita connection of the metric g. Because (g, J )
is Kähler the connection ∇ is Hermitian, i.e ∇ J = 0 and also the O’Neill tensor
T of the foliation satisfies [TV , J ] = 0. Since H is a totally geodesic distribution
we have [4] :

< (∇X T )(V, W ), Y >=< (∇Y T )(V, W ), X > .

It follows that (∇ J X T )(J V, W ) = (∇X T )(V, W ). Derivating in the direction of
ei (here {ei } is an arbitrary local orthonormal basis in H ) we get :

(∇�
H ∇H )T = 1

2
J

∑

ei ∈H

R(ei , Jei ).T

where ∇H denotes derivation with respect to ∇, in the direction of H . The tensor
R, the curvature tensor of the connection ∇, acts on T by

(R(X, Y ).T )(V, W ) = R(X, Y )[TV W ] − TR(X,Y )V W − TV R(X, Y )W.

To compute this last term we note that

R(X, Y, V, W ) = R(X, Y, V, W ) =< TW X, TV Y > − < TV X, TW Y >

(see [17]). After a short computation this yields

1

2
J

∑

ei ∈H

(R(ei , Jei ).T )(V, W ) = −(RicH (TV W ) + TSV W + TV SW )

where the symmetric endomorphism S : V → V is given by < SV, W >=∑
ei ∈H < TV ei , TW ei >. Taking the scalar product with T implies by means of

the positivity of the transversal Ricci curvature that < (∇�
H ∇H )T, T >≤ −2|S|2.

The vanishing of T (and hence the ∇-parallelism of the splitting T M = V ⊕ H )
follows now simply by integration over M followed by a positivity argument. 	

Remark 2.1

(i) Proposition 2.1 actually holds when relaxing the hypothesis on the foliation
to transversal integrability. Since the proof is more involved and not directly
related to our present investigations we chose not to present it here.
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(ii) A result similar to Proposition 2.1 was proved in [1], under the assumption
that Ric has constant positive eigenvalues on V and H , by making use of
Sekigawa’s integral formula.

The following example shows that the splitting result in Theorem 1.1 is inti-
mately related to the presence of a Kähler structure and cannot hold in presence of
an almost Kähler, non-Kähler, structure.

Example 2.1 Let (N , g) be a 3-dimensional geometrically formal manifold. Many
non-symmetric examples are known to exist [11], and in particular we must have
b1(N ) = 1. Let α be the harmonic 1-form of N whose length equals 1 and let
M = S

1 × N be endowed with the product metric. It is a simple verification that
ω = dt ∧ α + �α defines a compatible symplectic form giving M the structure of
a compact almost Kähler manifold. But b1(M) = 2 and in general N is a locally
irreducible Riemannian manifold.

Higher dimensional examples, endowed with non-homogeneous Riemannian
metrics can be obtained by taking the product with S

1 of the class of nilmanifolds
studied in [14].

Combining Proposition 2.1 with Lemma 2.1 we are lead directly to the proof
of Theorem 1.1. As a direct consequence we obtain :

Corollary 2.1 Let (M2n, g, J ) be a locally irreducible Kähler manifold with
b1(N ) > 0. Then inequality (1.2) is always strict.

We equally have :

Corollary 2.2 Let (M2n, g, J ) be a compact Kähler manifold. If g is 1-formal
then any harmonic 1-form is parallel for the Levi-Civita connection of g.

Proof Let α be a harmonic 1-form, with dual vector field ζ . Because α and Jα
are co-closed a simple computation shows that the vector field dual to d�(α ∧ Jα)
equals [ζ, Jζ ]. Since g is 1-formal it follows that [ζ, Jζ ] = 0 and since α is holo-
morphic (i.e. it satisfies (2.2)) we arrive at ∇ζ ζ = 0. The closedeness of α implies
that α is of constant length hence the proof is completed by applying Theorem 1.1.

	

The Riemannian submersion technique used above can be also used to disqual-

ify some other locally symmetric spaces from having harmonic 1-forms of constant
length. Also the following proposition happens to provide the answer to an open
question in [3] as well as it provides a serious obstruction to the geometric formality
of compact hyperbolic manifolds. Note that the result below follows in fact directly
from the more general result in [10], asserting the non-existence of Riemannian
submersions from compact hyperbolic manifolds. We give the (different) proof
mainly because of its simplicity.

Proposition 2.2 Let (M2n, g), n ≥ 1 be a compact manifold with constant nega-
tive sectional curvature. Then any harmonic 1-form of constant length vanishes.

Proof Let us suppose that (M, g) admits a non-vanishing harmonic 1-form α of
constant length. Let ζ be the vector field dual to α and assume, for simplicity, that
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ζ is of unit length. We define now H to be the 1-dimensional distribution spanned
by ζ and let V be its orthogonal complement in T M .

Let ∇ be the Levi-Civita connection of the metric g. The compactness of M
imply that α is closed and co-closed. These two equations imply easily (see [3] for
a related discussion) that ∇ζ ζ = 0 (H is totally geodesic) and furthermore that V
is integrable and also minimal. For the minimality of V will be quite important for
us we note that it is equivalent with α being coclosed. In other words, the splitting
T M = V⊕H defines a transversally totally geodesic foliation (hence Riemannian)
on M and we shall use O’Neill’s structure equations for such an object.

Since H is 1-dimensional the O’Neill tensor T can be written as

TV W =< SV, W > ζ

where S : V → V is a symmetric and traceless tensor (because of the integra-
bility and minimality of V). If R denotes the curvature tensor of the Levi-Civita
connection, we recall that the following equation holds (see [17]):

R(ζ, V, ζ, W ) = − < (∇ζ T )(V, W ), ζ > + < TV ζ, TW ζ > (2.3)

whenever V, W belong to V , where < TV ζ, W >= − < ζ, TV W >. Taking into
account that, after a suitable renormalization, we can assume that

−R(X, Y, Z , U ) =< X, U >< Y, Z > − < X, Z >< Y, U >

for all X, Y, Z , U in T M , equation (2.3) can further rewritten as

< V, W >= − < (∇ζ S)V, W > + < SV, SW > (2.4)

for all V, W in V . Starting from T r(S) = 0, an elementary manipulation of (2.4)
yields by induction T r(S2k+1) = 0 and T r(S2k) = n − 1 for all natural k. But the
last relation implies immediately that S2 = 1H and because S is traceless we find
that n − 1 is even, a contradiction. 	

Corollary 2.3 Let (M2n, g) be compact with constant negative sectional curva-
ture. The following hold :

(i) the inequality (1.2) is a strict one.

(ii) if g is a formal metric we must have b1(M) = 0.

We finish this section by pointing out the important fact that both results of Prop-
osition 2.2 and Corollary 2.3 hold in the more general context of compact locally
symmetric spaces of negative (sectional) curvature in virtue of results in [19].

3 Algebraic obstructions

In this section we shall examine some elementary algebraic obstructions to the
existence of a 2-formal Kähler metric. We begin by a brief review of some facts of
Kähler geometry, of relevance for our purposes.
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For any compact Kähler manifold (M2n, g, J ) we can consider the decompo-
sition

�2(M) = �1,1(M) ⊕ �2−(M)

where �2−(M) = {α : Jα = −α}. Here J acts on a two form α by (Jα)(X, Y ) =
α(J X, JY ) whenever X, Y belong to T M . The non-standard notation is motivated
by the fact that we are working with real-valued differential forms.

We have a further decomposition

�1,1(M) = �
1,1
0 (M) ⊕ C∞(M).ω

where ω = g(J ·, ·) is the Kähler form of (g, J ) and �
1,1
0 (M) is the sub-bundle of

�1,1(M) consisting of primitive forms. We denote now by Hp, p ≥ 0 the space of
harmonic p-forms with respect to the metric g. The previous decompositions have
analogues at the level of harmonic forms

H2 = H1,1 ⊕ H2− (3.1)

and

H1,1 = H1,1
0 ⊕ R.ω (3.2)

with the obvious notational conventions. Moreover, we will denote by h1,1 the
dimension of H1,1 and by b−

2 that of H2−.
Let S the space of symmetric and J -invariant endomorphisms S of T M having

the property that < S J ·, · > belongs to H1,1. Clearly, S and H1,1 are isomorphic
and its worthwhile to note that all elements of S have constant trace, in virtue of
(3.2). In the same way we define the space A as the space of skew-symmetric,
J -anti-commuting endomorphisms of T M which are associated to an element of
H2−. Note the important fact that J · A ⊆ A.

Another aspect of Kähler geometry, of particular significance for us, is that the
operator L defined as exterior multiplication with the Kähler form preserves the
space of the harmonic forms of the manifold. This is a consequence of the fact that
L commutes with the Laplacian acting on forms (see [6]). Since the Laplacian is
a self-adjoint operator it also follows that L�, the adjoint of L , preserves the space
of harmonic forms.

We now give a first set of elementary algebraic obstructions to the presence of
a 2-formal Kähler metric. If A and B are endomorphisms of some vector bundle
over a manifold we will denote by {A, B} = AB + B A their anti-commutator. The
whole discussion in this section will be based on the lemma below.

Lemma 3.1 Let (M2n, g, J ) be a Kähler manifold such that the metric g is
2-formal. The following hold :

{S, S} ⊆ S. (3.3)

and

{A, A} ⊆ S. (3.4)

We also have

{S, A} ⊆ A. (3.5)
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Proof Let us prove (3.3). Consider α and β in H1,1 with associated symmetrics S1
and S2. We fix {ei , 1 ≤ i ≤ 2n} be a local orthonormal basis and write :

L�(α ∧ β) = 1

2

2n∑

i=1

Jei�(ei�(α ∧ β)).

But

Jei�(ei�(α ∧ β)) = Jei�((ei�α) ∧ β + α ∧ (ei�β))

= (Jei�ei�α) · β − (ei�α) ∧ (Jei�β) + (Jei�α) ∧ (ei�β)

+α · (Jei�ei�β).

Assuming the basis to be Hermitian we get L�(α ∧ β) = L�α · β + α · L�β − γ
where

γ =
2n∑

i=1

(ei�α) ∧ (Jei�β).

Now a short computation shows that γ =< {S1, S2}J ·, · > and since L�(α ∧ β)
belongs to H1,1 whilst L�α, L�β are constants we get that γ is equally in H1,1 and
the proof of (3.3) is finished. The proof of (3.4) and (3.5) are completely analogous
and will be left to the reader. 	

Corollary 3.1 Let (M2n, g, J ) be a compact Kähler manifold with a 2-formal
Riemannian metric. Then :

(i) The length of any harmonic 2-form is constant over M;

(ii) If α in H1,1
0 has vanishing square, then α is necessarily 0.

Proof Indeed, if α belongs to H1,1 or to H2− then we saw that S2 belongs to S and
all elements of S have constant trace. But the trace of S2 equals the squared norm
of α. The other statement is straightforward. 	

Proposition 3.1 Suppose that (M2n, g, J ) is a compact Kähler manifold such that
the metric g is 2-formal. Let α belong to H1,1 and let S in S be the associated
symmetric endomorphism of T M. Then :

(i) The eigenvalues of S are constant with eigenbundles of constant rank.

(ii) If λi , 1 ≤ i ≤ p are (the pairwise distinct)

eigenvalues of S we have an orthogonal and J -invariant decomposition

T M =
p⊕

j=1

Ei

where Ei is the eigenspace of S corresponding to λi . Furthermore, for all 1 ≤ i ≤ p

the distributions Ei and Êi =
p⊕

j=1, j �=i
Ei are integrable.
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Proof (1) From (3.3) we deduce that Sk belongs to S for all k in N. As S is finite
dimensional there exists P in R[X ] such that P(S) = 0. Since S is symmetric,
P can be supposed to have only real roots and again by the symmetry of S
we can moreover assume that all these roots are simple. Let λi , 1 ≤ i ≤ p be
these (pairwise distinct) roots and let mi be the dimension of the corresponding
eigenbundle. To see that mi , 1 ≤ i ≤ p are constant over M we use the fact
that Sk belongs to S for all k in N in order to deduce that T r(Sk) = ck for
some constant ck and for all natural k. In other words

p∑

i=1

miλ
k
i = ck

for all k in N. Solving this Vandermonde system leads to the constancy of the
functions mi , 1 ≤ i ≤ p.

(2) Let ωi be the orthogonal projection of the Kähler form ω on Ei , 1 ≤ i ≤ p.
Then α = ∑p

i=1 λiω
i and moreover, by (3.3) we obtain that

p∑

i=1

λk
i ω

i

belongs to H1,1 for all natural k. We assume now that the eigenvalues of S
are ordered by |λ1| < |λ2| < · · · < |λp|. We divide by |λp|k and make
k → ∞. It follows that ωp belongs to H1,1. By induction the same holds for
ωi , 2 ≤ i ≤ p. If λ1 �= 0, the form ω1 is trivially in H1,1 and if λ1 = 0 the

same is true since ω =
2n∑

i=1
ωi .

Therefore ωi , 1 ≤ i ≤ p are all closed. Fix 1 ≤ i ≤ p and consider the
decomposition T M = Ei ⊕ Êi . Let X, Y be in Ei and V in Êi . A straightforward
computation yields to (∇Xωi )(Y, V ) = − < ∇X Y, J V >, (∇Y ωi )(X, V ) = − <
∇Y X, J V > and (∇V ωi )(X, Y ) = 0. Now the closedeness of ωi ensures the inte-
grability of Ei . That of Êi is proved in a similar way, by computing (dωi )(V, W, X)

with W in Êi . 	

As an immediate consequence of Proposition 3.1 we obtain :

Corollary 3.2 Let (M2n, g, J ) be a compact Kähler manifold such that g is
2-formal. Then any element of H1,1 can be uniquely written as a linear combi-
nation of g-compatible symplectic forms.

Proof Proposition 3.1 actually says that any 2-form α in H1,1 can be written
as α = ∑p

j=1 λiω
i where ωi denotes the projection of the Kähler form ω on

Ei , 1 ≤ i ≤ p. Moreover the forms ωi belong to H1,1 for all 1 ≤ i ≤ p. Now, for
1 ≤ k ≤ p we define an almost complex structure Jk on T M by setting

Jk = J on Êk, and Jk = −J on Ek .
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An easy consequence of the integrability of both Ek and Êk is that (g, Jk) are almost
Kähler structures (i.e. the corresponding Kähler forms 
k = g(Jk ·, ·) are closed)
commuting with J , for any 1 ≤ k ≤ p. Note that Jk is integrable, i.e. (g, Jk) is
a Kähler structure iff Ek is parallel with respect to the Levi-Civita connection. To
finish the proof of the Corollary it suffices to note that

ωk = 1

2
ω − 1

2

k

for all 1 ≤ k ≤ p. 	

Therefore the proof of part (i) of Theorem 1.2 is now complete.

4 More on Hodge numbers

The aim of this section is to provide some information about the Hodge numbers
of a geometrically formal Kähler manifold. We begin with the following simple
observation.

Proposition 4.1 Let (M2n, g, J ) be a compact Kähler manifold such that the met-
ric g is formal. Then h0,n(M) ≤ 1 and equality holds iff g is a Ricci flat metric.

Proof Because any harmonic form is of constant length the Hodge numbers of
(M2n, g, J ) are bounded by the dimensions of their corresponding vector bun-
dles hence h0,n(M) ≤ 1. If equality holds, it follows that the canonical bundle of
(M2n, g, J ) is trivialized by a harmonic (0, n)-form of constant length and this
leads in the standard way to the vanishing of the Ricci tensor. 	

We investigate now the structure of J -anti-invariant harmonic 2-forms.

Proposition 4.2 Let (M2n, g, J ) be a compact Kähler manifold such that the met-
ric g is 2-formal. Then :

(i) Any non-zero element of H2− induces in a canonical way a local splitting of M
as the Riemannian product of a compact Kähler manifold M1 and a compact
hyperkähler manifold M2.

(ii) H2− consists only in parallel forms.

Proof (i) Let α be in H2− be non-zero and let A in A be its associated endomor-
phism. Then A2 belongs to S by (3.4) and using proposition 3.1 we obtain a
J -invariant and orthogonal decomposition

T M =
p⊕

i=1

Ei

where Ei are eigenspaces of A2 for the (constant) eigenvalues µi ≤ 0, 1 ≤
i ≤ p. Now using again (3.4) we get that A2k belongs to S and further, by (3.5)
that A2k+1 is in A for all k in N. Let Ai , 1 ≤ i ≤ p be the orthogonal projections
of A on Ei . An argument similar to the proof of Proposition 3.1, (i) shows that
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Ai are in A for all 1 ≤ i ≤ p. Equivalently, the forms αi , associated to Ai are
in H2− for all 1 ≤ i ≤ p and therefore have to be closed. We will show now that
one can reduces to the case when A has no kernel. Indeed, let us assume that A
has non-empty kernel, that is A2 has a zero eigenvalue, say µ1. Set V = E1 and
H = Ê1. Then the endomorphism F = ∑p

i=2
1√−µi

Ai , an element of A, vanishes
on V and defines an almost complex structure I on H , compatible with g and such
that I J + J I = 0. Since the 2-form form associated to F is closed we get :

< (∇U1 F)U2, U3 > − < (∇U2 F)U1, U3 > + < (∇U3 F)U1, U2 >= 0 (4.1)

for all U j , 1 ≤ j ≤ 3 in T M . Let ∇ be the metric connection leaving V and H
parallel. Then ∇X Y = ∇X Y + AX Y for all X, Y in H where the O’Neill-type ten-
sor A : H × H → V is the obstruction to the distribution H to be totally geodesic.
Taking U1 = X, U2 = Y and U3 = V in (4.1) with X, Y in H and V in V we get :

< AX I Y − AY (I X), V > + < (∇V I )X, Y >= 0. (4.2)

Since the connection∇ is metric and I 2 =−1 on H it follows that 〈(∇V I )I X, I Y 〉=
−〈(∇V I )X, Y 〉. Therefore, changing X in I X and Y in I Y in (4.2) and summing
the result with (4.2) we obtain AX I Y − AY (I X) − AI X (Y ) + AI Y X = 0. But A
is symmetric as H is integrable (see Proposition 3.1, (ii)) hence

AX (I Y ) = AY (I X) (4.3)

for all X, Y in H . As (g, J ) is Kähler and, by construction both V and H are
J -invariant, we are lead to AX (JY ) = J AX Y for all X, Y in H . Taking this into
account and replacing Y by JY in (4.3) yields after a standard manipulation the
vanishing of A.

We showed that H is a totally geodesic distribution hence the foliation induced
by V is a Riemannian one. Now, on any integral manifold of H , with respect to
the induced metric, the triple I, J, K = I J induces a family of almost complex
structures satisfying the quaternionic identities and with closed associated Kähler
forms. Then a well known Lemma due to Hitchin [8] implies that the metric is
hyperkähler and hence Ricci flat. It follows that the transversal Ricci curvature
RicH of the Riemannian foliation induced by V vanishes and using Proposition 2.1
we obtain that V is also totally geodesic, hence the desired splitting.

(ii) It suffices to work on the compact, Ricci flat manifold M2 where A has no
kernel. Then any of the commuting almost Kähler structures induced by A2

have to be Kähler by a theorem of Sekigawa [18]. This means that the spaces
Ei are all parallel and on each of them A is a multiple of a Kähler structure
(anti-commuting with J ). This implies immediately the parallelism of α. 	


In particular Theorem 1.2 is now completely proved. It can be used to refine, in
the Kähler case, the Betti number estimates bp(N ) ≤ bp(T n) known to hold (see
[12]) for an arbitrary geometrically formal manifold (N n, h).

Corollary 4.1 Let (M2n, g, J ) be Kähler such the metric g is formal. If (M2n, g)

is locally irreducible then b1(M) = 0 and b2p+1(M) ≤ C2p+1
2n −2n for all p ≥ 1.
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Proof This is an immediate consequence of Theorem 1.1 and of the Lefschetz
decomposition (see [6]) of the harmonic forms of a Kähler manifold . 	


The previous Corollary can also be reformulated to say that if a geometrically
formal Kähler manifold has a maximal Betti number of odd degree then the metric
is a flat one. More generally we have :

Corollary 4.2 Let (M2n, g, J ) be Kähler such that the metric g is formal. If there
exists 1 ≤ p ≤ 2n − 1 such that bp(M) = bp(T

2n) then g is flat metric.

Proof By Corollary 4.1 it suffices to study the case p = 2q and by Hodge duality
we may also suppose that p ≤ n. Using the fact that harmonic forms of g are
of constant length and the Lefschetz decomposition of a Kähler manifold, we are
lead to b2(M) = b2(T

n) and further to b−
2 (M) = b−

2 (Tn). But in the case of the
torus it is an algebraic fact that {A, A} = S hence in view of the parallelism of
J -anti-invariant harmonic 2-forms H1,1 equally consists of parallel forms. We have
therefore a framing of �2(M) by parallel two-forms and this implies in a standard
way the desired result. 	


The rest of the section will be consecrated to explore a number of consequences
of Theorem 1.2 under various curvature assumptions. First of all we have :

Corollary 4.3 Suppose that (M2n, g, J ) is a compact quotient of the complex
hyperbolic space, endowed with its canonical Kähler metric. If g is a formal met-
ric then b1(M) = 0 and b2(M) = 1.

Proof Since (M2n, g, J ) is locally irreducible, it follows that b1(M) = 0 by The-
orem 1.1 and also that b−

2 (M) = 0 by Proposition 4.2. Now using Corollary 3.2
and the fact (see [13]) that on (M2n, g, J ) every orthogonal, J -commuting, almost
Kähler structure has to be Kähler and therefore a multiple of J we are lead to
h1,1 = 1. 	


We investigate now the incidence of having constant scalar curvature on
2-formal Kähler metrics.

Theorem 4.1 Let (M2n, g, J ) be a compact Kähler manifold. Assume that the
metric g is 2-formal and locally irreducible. Then :

(i) if the scalar curvature of g is constant then the eigenvalues of Ric are constant
(together with their multiplicities) over M.

(ii) If the scalar curvature is constant and Ricg ≥ 0 then h1,1 = 1. Moreover,
under these assumptions g is an Einstein metric.

Proof (i) If the scalar curvature is constant, the Ricci form is harmonic and the
result follows by Proposition 3.1, (i).

(ii) In this case the Ricci tensor has only constant and non-negative eigenvalues, by
(i). Using Proposition 3.1, (ii) we can always rescale, by an argument similar to
Lemma 2.2, page 774, in [1], the metric along the eigenbundles of Ric in order
to get a Kähler metric with 2 constant and non-negative eigenvalues. Then the
splitting result of [1] asserts that every g-compatible almost Kähler structure,
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commuting with J is in fact Kähler. Therefore, by local irreducibility, h1,1 = 1
leading further, by (i) to the fact that g is Einstein. 	


An immediate consequence of Proposition 4.2 and Theorem 4.1, (ii) is the
following.

Theorem 4.2 Let (M2n, g, J ) be a compact Kähler manifold such that g is
2-formal and locally irreducible. Then either

(i) b−
2 (M) = 0

or
(ii) b−

2 (M) = 2 and (M, g) is a hyperkähler manifold. Moreover, in this case we
must have h1,1 = 1 and thus b2(M) = 3.

Thus, a naturally arising question is to decide whether a hyperkähler met-
ric can be geometrically formal. This seems quite unlikely from the perspective
that known examples of compact hyperkähler manifolds (see [9] for an account)
have second Betti number greater than 3. However, we were unable to prove that
hyperkähler metrics cannot be geometrically formal, except in lows dimensions,
as the following shows :

Proposition 4.3 They are no geometrically formal and locally irreducible
hyperkähler manifolds in dimensions 4 and 8.

Proof In dimension 4 this was proven in [11]. To prove the statement in dimension
8 we need to recall some facts about the topology of hyperkähler manifolds. Thus,
let Z4m be a hyperKähler manifold. It was proven in [15] that the Betti numbers
of Z satisfy the following remarkable relation

3P ′′(−1) = m(12m − 5)P(−1) (4.4)

where P(t) = ∑4m
k=0 bk(Z)tk is the Poincaré polynomial.

Suppose now that (M8, g, I, J, K ) is a hyperkähler manifold such that the met-
ric g is formal. Then b1(M) = 0 and b2(M) = 3 hence after an easy computation
(4.4) becomes

b3(M) + b4(M) = 76.

To obtain a contradiction we will produce estimates of the Betti numbers b3 and
b4. We denote by ωI , ωJ , ωK the corresponding Kähler forms. Since b1(M) = 0,
any harmonic 3-form lives in the orthogonal complement of {α ∧ ωI + β ∧ ωJ +
γ ∧ ωK : α, β, γ ∈ �1(M)}. Since any harmonic 3-form has constant length we
get b3(M) ≤ C3

8 − 3 · 8 = 32. Let us denote by �2
o(M) the subbundle of �2(M)

consisting of forms orthogonal to ωI , ωJ , ωK . This bundle do not contain any har-
monic form (since the second cohomology group is generated by the hyperkähler
forms) and therefore any harmonic 4-form must be orthogonal to E , the subbundle
of �4(M) generated by {ωI ∧ α + β ∧ ωJ + γ ∧ ωK : α, β, γ ∈ �2

o(M)}. Now,
a simple computation shows that ωI ∧ α and ωJ ∧ β have to be orthogonal for all
β in �2

o(M) and α in �
1,1
K (M) ∩ �2

o(M). Therefore the rank of E is greater than
(C2

8 −3)+15 = 40 and this implies, again by the fact that harmonic 4-forms are of
constant length, that b4(M) ≤ C4

8 −40 = 30. We found that b3(M)+b4(M) ≤ 62,
an obvious impossibility. 	
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5 6-dimensions

We consider in this section a 6-dimensional Kähler manifold (M6, g, J ) such that
the metric g is formal and locally irreducible. Our aim is to give the possible val-
ues for the second Betti number and also to explore the algebraic structure of the
second cohomology group. This will also lead to the proof of Theorem 1.3. We
first prove:

Lemma 5.1 Let (M6, g, J ) be a geometrically formal, Kähler manifold. If g is
locally irreducible then :

(i) b1(M) = b−
2 (M) = 0.

(ii) we have either T d(M) = 1 or T d(M) = 0. If the last case occurs then g is
Ricci flat and b2(M) = 1.

Proof (i) Direct consequence of Theorem 1.1 and Proposition 4.2, (i).

(ii) As h0,2(M) = 0 the use of Riemann-Roch tells us that T d(M) = 1 − h0,3.
Using Proposition 4.1 we get that either h0,3(M) = 0 (and hence T d(M) = 1)
or h0,3(M) = 1 (thus T d(M) = 0) and g is Ricci flat. But if g is Ricci flat
one uses Theorem 4.1, (ii) to get that b2(M) = 1 and the proof is finished. 	


We shall now study commutation rules inside H1,1. Our methods will be mainly
topological and shall rely on the following :

Proposition 5.1 Let (M6, g, J ) be a compact Kähler manifold. Suppose that we
have an orthogonal and J -invariant decomposition T M = V ⊕ H where V is of
real rank 2. If I1 and I1 are almost complex structures on H which are compatible
with g and such that {I1, I2} = 0 and [Ik, J ] = 0, k = 1, 2 then χ(M) is divisible
by 12.

Proof We have 24T d(M, J ) = c1(M, J )c2(M, J ). Or c1(M, J ) = c1(V)+c1(H)
and c2(M, J ) = c2(H) + c1(V)c1(H) where the bundles V and H are endowed
with the complex structure induced by J . Then :

24T d(M, J ) = c1(V)c2(H) + c1(H)c2(H) + c2
1(V)c1(H) + c1(V)c2

1(H).

(5.1)

Consider now the almost complex structure J0 which equals −J on V and J on
H . Taking into account that J0 is inducing the orientation opposite to that induced
by J we get as before :

−24T d(M, J0) = −c1(V)c2(H) + c1(H)c2(H) + c2
1(V)c1(H) − c1(V)c2

1(H).

Subtracting we obtain :

12(T d(M, J ) + T d(M, J0)) = c1(V)(c2(H) + c2
1(H)).

Consider now the orthogonal involution σ = J I1 of H . It can be used to obtain an
orthogonal and J -invariant decomposition H = H+ ⊕ H− where H± are the ±1-
eigenspaces of σ . Since {σ, I2} = 0 we have that H− = I2 H+ hence I2 induces
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a complex isomorphism between H+ and H−. It follows that c1(H+) = c1(H−)
and therefore c1(H) = 2c1(H+) and c2(H) = c2

1(H+). We deduce that c2
1(H) =

4c2(H) and further :

12(T d(M, J ) + T d(M, J0)) = 5c1(V)c2(H).

Nowχ(M)=c3(M, J )=c1(V)c2(H) and this leads to 12(T d(M, J )+T d(M, J0))
= 5χ(M), finishing the proof of the proposition. 	


In order to prove Theorem 1.3 we need a number of preliminary results.

Lemma 5.2 Let (M6, g, J ) be a geometrically formal Kähler manifold and let σ
in S be an involution. Then :

(i) We have S = Cσ ⊕ Aσ where we defined Cσ = {S ∈ S : [S, σ ] = 0} and
Aσ = {S ∈ S : {S, σ } = 0}.

(ii) the dimension of Aσ is less or equal to 1.

Proof (i) Let S be in S and decompose S = S1 + S2 where S1 and S2 are com-
muting resp. anti-commuting with σ . To prove the result it is enough to see
that S1 belongs to S. But using (3.3) we obtain that Sσ +σ S is in S and again
by (3.3), {σ, Sσ + σ S} = 2(S + σ Sσ) = 4S1 belongs to S and the proof is
finished.

(ii) Assume that g is not Ricci flat because otherwise b2(M) = 1 (see Lemma 5.1,
(ii)) and there is nothing to prove. Let T M = V ⊕ H be the orthogonal and
J -invariant decomposition of T M in the −1 and 1-eigenspaces of σ , and let us
assume that V has real rank 2. Suppose that Aσ is non-empty and let S be a non-
vanishing element of Aσ . Then S(V) ⊆ H and hence S defines an J -invariant
isomorphism from V to its image H1. If S′ in Aσ is orthogonal to S then it
defines a J -invariant isomorphism from V to H2 ,the orthogonal complement
of H1 in H . In other words we have a decomposition T M = V ⊕ H1 ⊕ H2 in
J -isomorphic bundles. Let us denote by h the first Chern class of V . Of course,
c1(H1) = c1(H2) = h. From (5.1) we deduce easily that 24T d(M, J ) = 9h3

and moreover χ(M) = c3(M) = h3. But using Lemma 5.1, (ii) we infer that
T d(M) = 1 and this leads to 24 = 9χ(M) and since this equation has no
integer solution we obtained a contradiction with the existence of S′, hence
finishing the proof of the lemma.

Remark 5.1 From the above proof, we see that Lemma 5.2 continues to hold for
2-formal metrics provided that the Todd genus T d(M, J ) is not divisible by 3.

Now we need another auxiliary result in order to get some precisions concern-
ing the structure of harmonic 3-forms in some special cases. By contrast with the
previous remark, from now on we will use the formality hypothesis in a crucial
way.

Lemma 5.3 (i) Let (M6, g) be geometrically formal and let α be a harmonic
2-form. If Lα is the exterior multiplication with α then its adjoint, to be
denoted by L�

α preserves the space of harmonic forms.
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(ii) Let (M6, g, J ) be an almost Kähler manifold, which is also geometrically for-
mal. The for all primitive α in H3 we have that Jα is also harmonic. Here
J acts on a 3-form β by (Jβ)(X, Y, Z) = β(J X, JY, J Z) whenever X, Y, Z
are in T M.

Proof (i) Using the definition of the Hodge star operator we see that L�
α is up to

a sign equal to the composition �Lα� and the result follows by the formality
hypothesis.

(ii) It suffices to note, using for instance the definition of the Hodge-star operator,
that �α = Jα and the result follows. 	


Our last preparatory result consists in giving a bound on the third Betti number
in case that, for some involution σ of S the space Aσ is non-empty.

Lemma 5.4 Let (M6, g, J ) be a geometrically formal Kähler manifold and let σ
in S be an involution. If Aσ is 1-dimensional then :

(i) b3(M) ≤ 6

(ii) 12|χ(M).

Proof (i) Let T M = V ⊕ H be the spectral decomposition of σ into ±-
eigenbundles and suppose furthermore that the real rank of V equals 2.
It is easy to verify that we are then in the situation of Proposition 5.1,
i.e. we have almost complex structures I1, I2 on H which are mutually
anti-commuting and commuting with J . Let us consider now α a harmonic
3-form. If ω1 is the orthogonal projection of ω on V we have that L�

ω1
α = 0

hence we can decompose α = α1 +α2 where α1 belongs to �1(V)⊗�2(H)
and α2 is in �3(H). Then Jα = Jα1 + Jα2 belongs to H3 and also
J1α = J1α1 + J1α2 = −Jα1 + Jα2 belongs to H3 where J1 is the al-
most Kähler structure on M acting as −J on V and as J on H . It follows
that Jα2 is in H and thus α2 = −J (Jα2) is a harmonic 3-form. If ω2 is the
orthogonal projection of ω on H then L�

ω2
α2 = 0 meaning that α2 vanishes.

We showed that any harmonic 3-form α belongs to �1(V) ⊗ �2(H) and in
order to prove the lemma, we have to take into account the hypothesis that Aσ is
1-dimensional. Look at α as a vector bundle morphism α : �2(H) → V . Since
L�

ω2
α = L�

ωI1
α = L�

ωI2
α = 0 we find that α is in fact defined from �2−(H)⊕ E to

V where E is the orthogonal complement of the span of ωI1, ωI2 in �
1,1
0 (H). But

all harmonic 3-forms are of constant length hence the third Betti number cannot
exceed 6, the rank of the vector bundle (�2−(H) ⊕ E) ⊗ V .

(ii) follows immediately from Proposition 5.1. 	

We are now in position to give the

Proof of Theorem 1.3. By Lemma 5.1 and Corollary 3.2 we only need to prove
the bound on b2(M). We can suppose that b2(M) ≥ 2, otherwise there is nothing
to prove. It follows that S contains a non-trivial involution σ of T M whose ±1-
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eigenspaces will be denoted by V and H . Moreover we can suppose that V has real
rank 2. Let us suppose now that dimR Aσ = 1 and let S in Aσ be non-zero. Then we
have T M = V ⊕ H1 ⊕ H2 with H1 = S(V) and H2 the orthogonal complement of
H1 in H . Let now S1 be in Cσ . Then SS1 + S1S is in Aσ and then SS1 + S1S = λS
where λ is a real constant. It follows by some simple algebraic considerations that
S1 preserves Hi , i = 1, 2 and since the latter are 2-dimensional we obtain that
Cσ has dimension 3 hence b2(M) = 4 by Lemma 5.2, (i). By Lemma 5.4, (i) and
the fact that (M6, g, J ) is Kähler, the only possibilities for b3(M) are 0, 2, 4, 6.
Therefore, the possible values of χ(M) = 2 + 2b2(M) − b3(M) = 10 − b3(M)
are 10, 8, 6, 4 a fact which in contradiction with the fact that χ(M) is divisible by
12 (cf. Lemma 5.4, (ii)).

We showed that for any involution in S the space Aσ vanishes and this implies
that any two elements of S must commute. At a given point of M , the elements of
H1,1 form a commutative subalgebra of u(3) and this implies finally b2(M) ≤ 3.

	

Remark 5.2 (i) In view of the Theorem 1.3 it seems quite likely that a case by

case discussion could give the real cohomology type of a geometrically formal,
6-dimensional Kähler manifold provided that one founds a method to analyze
obstructions to geometric formality at the level of the third cohomology group.
For the time being all the informations about the third Betti number we have
are the estimates b3(M) ≤ 10 if b2(M) = 2 and b3(M) ≤ 8 if b3(M) = 3;
these follow easily from the first part of the proof of lemma 5.4.

(ii) If M is Kähler and geometrically formal of dimension divisible by 4, the com-
mutativity result of Theorem 1.3 may not hold since, a priori, (g, J ) could
admit a compatible, complex symplectic structure, which is also J -invariant.
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