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On the cohomology algebra of some classes of geometrically
formal manifolds

J.-F. Grosjean and P.-A. Nagy

Abstract

We investigate harmonic forms of geometrically formal metrics, which are defined as those having
the exterior product of any two harmonic forms still harmonic. We prove that a formal Sasakian
metric can exist only on a real cohomology sphere and that holomorphic forms of a formal Kähler
metric are parallel with respect to the Levi–Civita connection. In the general Riemannian case
a formal metric with maximal second Betti number is shown to be flat. Finally we prove that
a 6-dimensional manifold with b1 �= 1, b2 � 2 and not having the real cohomology algebra of
T

3 × S3 carries a symplectic structure as soon as it admits a formal metric.

1. Introduction

Let (Mn, g) be a compact oriented Riemannian manifold. We denote by ΛpM, 0 � p � n the
space of smooth, real-valued, differential p-forms of M . We have then a differential complex

· · · → ΛpM
d→ Λp+1M → . . .

where d is the exterior derivative. The pth cohomology group of this complex, known as the
pth deRham cohomology group will be denoted by Hp

DR(M). The Riemannian metric g induces
a scalar product at the level of differential forms, and hence one can consider also the operator
d�, the formal adjoint of d. For 0 � p � n we define the space of harmonic p-forms by setting

Hp(M, g) = {α ∈ ΛpM : Δα = 0}.
Here the Laplacian Δ is defined by

Δ = dd� + d�d.

Classical Hodge theory produces an isomorphism

Hp
DR(M) ∼= Hp(M, g) (1.1)

for all 0 � p � n. While H�(M) =
⊕

p�0 Hp
DR(M) is a graded algebra, generally H�(M, g) =⊕

p�0 Hp(M, g) is not an algebra with respect to the wedge product operation for there is no
reason that the isomorphism (1.1) descends to the level of harmonic forms. Our next definition
is related to this fact.

Definition 1.1. ([7]). Let Mn be a compact and oriented manifold.
(i) A Riemannian metric g on M is formal if the exterior product of any two harmonic

(with respect to g) forms remains harmonic,
(ii) The manifold M is geometrically formal if it admits a formal metric.

A closely related notion is that of topological formality (see [2] for instance), which implies
that the rational homotopy type of the manifold is a formal consequence of its cohomology
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ring [11]. From the existence of a formal metric it follows that the underlying manifold is
topologically formal, and this provides obstructions to the existence to such metrics; for instance
they cannot exist on nilmanifolds since those have non-trivial Massey products, a fact which
is in itself an obstruction to formality [2, 13]. On the other hand, simply connected, compact
manifolds of dimension not exceeding 6 are topologically formal [3, 9].
Now the existence of formal metrics is more directly related to the geometry of the ambient
manifold and known obstructions are related to the length of harmonic forms.

Theorem 1.1. ([7]). Let (Mn, g) be compact and oriented such that g is a formal metric.
Then

(i) the inner product of any two harmonic forms is a constant function;
(ii) bp(M) � ( n

p ) for all 1 � p � n;
(iii) if in (ii) equality occurs for p = 1 then g is a flat metric.

Standard examples of formal metrics are provided by compact symmetric spaces for in this
case all harmonic forms must be parallel with respect to the Levi–Civita connection. Kotschik
proved that in dimension 4 every geometrically formal manifold has the real cohomology algebra
of a compact symmetric space. One of the current questions related to the notion of geometric
formality is then to examine up to what extent this is true in general.

In the context of Sasakian geometry, the odd-dimensional analogue of Kähler geometry, we
prove the following.

Theorem 1.2. Let (M2n+1, g) be a compact Sasakian manifold. If g is a formal metric
then M is a real cohomology sphere.

Next we obtain obstructions to the existence of formal Kähler metrics, through the study of
their holomorphic forms. In this context topological formality is no longer restrictive since any
Kähler manifold is known to have this property [2].

Theorem 1.3. Let (M2n, g, J) be a compact Kähler manifold such that the metric g is
formal. Then every harmonic form Ω of real type (p, 0) + (0, p) (hence every holomorphic p-
form) is parallel with respect to the Levi–Civita connection. Moreover, Ω induces in a canonical
way a local splitting of M as the Riemannian product of two compact Kähler manifolds M1

and M2 so that Ω is zero on M1, non-degenerate on M2 which is Ricci flat.

Remark 1.1. (i) Theorem 1.3 was already proved in [8] for p = 2, using arguments relying
heavily on the algebraic structure of the space of harmonic 2-forms. For higher degree forms,
such results are no longer available.

(ii) If in Theorem 1.3 we furthermore assume the metric being locally irreducible and not
symmetric, it follows from Berger’s holonomy classification theorems (see [10]) that the only
cases when we can have a non-vanishing holomorphic form are when Hol(g) = Sp(m)(n = 2m)
or Hol(g) = SU(n).

(iii) From the above it also follows that if M admits a locally irreducible Kähler and formal
metric which is not Ricci flat then the Todd genus satisfies Td(M) = 1.

In the second part of the paper we study general properties of 2-forms which are harmonic
with respect to a formal metric. We observe that any such 2-form diagonalises with constant
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eigenvalues and constant rank eigendistributions. This is extending results from [8] to the
general Riemannian case and can also be used as a starting point to give sufficient conditions,
essentially phrased in terms of Betti numbers lower bounds, for a formal metric to admit a
compatible symplectic form in dimension 6. We prove the following.

Theorem 1.4. Let M6 be geometrically formal. If b1(M) �= 1 and b2(M) � 2 and,
moreover, M has not the real cohomology algebra of T3 × S3 then any formal metric on M
admits a compatible symplectic form.

The above result essentially says that in dimension 6 a geometrically formal manifold M
always carries a symplectic structure compatible with the formal metric with the exception of
the cases when b1(M) = 1 or b1(M) �= 1, b2(M) = 0, 1 or when the real cohomology algebra is
that of T3 × S3. This suggests that symplectic techniques could be used to investigate, under
these conditions, the topology and geometry of these manifolds. In dimension 4, the existence
of symplectic forms on geometrically formal manifolds has been extensively treated in [7].

When b2(M) � 3 Theorem 1.4 follows essentially by algebraic arguments mainly using the
above-mentioned fact on the diagonalisation of harmonic 2-forms of a formal metric. To prove
it when b2(M) = 2 we first show that the absence of a compatible symplectic form forces
the presence of enough harmonic 3-forms (actually b3(M) = 6 in this case). Then we need to
perform a rather delicate local analysis, involving the internal symmetries of the set harmonic
3-forms in order to arrive at b1(M) � 2, a case which can be ruled out algebraically.

In the final part of the paper we are concerned with giving a characterisation of geometrically
formal Riemannian manifold with maximal second Betti number. We prove the following.

Theorem 1.5. Let Mn be geometrically formal with n � 3. If b2(M) is maximal, that is,
b2(M) = ( n

2 ), then any formal metric on M is flat.

This clarifies the equality case in Theorem 1.1, (iii) for degree 2-forms. Note that the assertion
in Theorem 1.5 is straightforward when n is odd for if n = 2k + 1 the formality and the
maximality of b2 imply that b2k(M) is maximal. Hodge duality implies then the maximality
of b1(M) and hence the flatness of the metric (see Section 5 for more details). When n is
even, our point of departure consists in observing that the metric must admit a compatible
almost-Kähler structure and then work out this situation within the same circle of arguments
which have led to the proof of Theorem 1.3.

To conclude, it would be interesting to have results similar to Theorem 1.4 in arbitrary even
dimensions and of course to give necessary but also sufficient conditions for a geometrically
formal metric to admit a compatible symplectic structure. In doing so, the difficulties one
faces are related to understanding, at the algebraic level, the constraints imposed by geometric
formality on forms of degree at least 3.

2. Some algebraic facts

Let (V 2n, g, J) be a Hermitian vector space and let Λ�V be its exterior algebra over the reals.
Consider the operator J : ΛpV → ΛpV acting on a p-form α by

(Jα)(v1, . . . , vp) =
p∑

k=1

α(v1, . . . , Jvk, . . . , vp)
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for all v1, . . . , vp in V . The operator J acts as a derivation on Λ� and gives the complex
bi-grading of the exterior algebra in the following sense. Let λp,qV be given as the −(p −
q)2-eigenspace of J 2. Then

ΛsV =
∑

p+q=s

λp,qV

is an orthogonal, direct sum. Note that λp,qV = λq,pV . Of special importance in our discussion
are the spaces λpV = λp,0V ; forms α in λp are such that (X1, . . . , Xp) → α(JX1,X2, . . . , Xp)
is still an alternating form which equals p−1Jα. We shall also use the extension of J to Λ�V
given by

(Jα)(v1, . . . , vp) = α(Jv1, . . . , Jvp)

for all α in ΛpV and v1, . . . , vp in V . Let λpV ⊗1 λqV be the space of tensors Q : λpV → λqV
which satisfy

[(JQ)(X1, . . . , Xp)](Y1, . . . , Yq) = −[J(Q(X1, . . . , Xp))](Y1, . . . , Yq)

(here J as a map of λpV stands in fact for p−1J ). We also define λpV ⊗2 λqV to be the space
of tensors Q : λpV → λqV such that QJ = JQ.

Lemma 2.1. Let a : λpV ⊗ λqV → Λp+qV be the total anti-symmetrisation map. Then

(i) the image of the restriction of a to λpV ⊗1 λqV → Λp+qV is contained in λp,qV ;
(ii) the image of the restriction of a to λpV ⊗2 λqV → Λp+qV is contained in λp+qV .

Proof. We shall provide a direct proof, but only for (i), that of (ii) being similar. Choose
Q in λpV ⊗1 λqV . Then

a(Q) =
∑

I=(i1,...,ip)

e�
i1 ∧ . . . ∧ e�

ip
∧ Q(ei1 , . . . , eip

),

where for v in V we denote by v� the dual, with respect to the metric, 1-form. Then

J (a(Q)) =
∑

I=(i1,...,ip)

J (e�
i1 ∧ . . . ∧ e�

ip
) ∧ Q(ei1 , . . . , eip

)

+
∑

I=(i1,...,ip)

e�
i1 ∧ . . . ∧ e�

ip
∧ JQ(ei1 , . . . , eip

).

For any 1 � r � p we compute∑
I=(i1,...,ip)

e�
i1 ∧ . . . ∧ Je�

ir
∧ . . . ∧ e�

ip
∧ Q(ei1 , . . . , eip

)

= −
∑

I=(i1,...,ip)

e�
i1 ∧ . . . ∧ (Jeir

)� ∧ . . . ∧ e�
ip
∧ Q(ei1 , . . . , eip

)

=
∑

I=(i1,...,ip)

e�
i1 ∧ . . . ∧ e�

ir
∧ . . . ∧ e�

ip
∧ Q(ei1 , . . . , Jeir

, . . . , eip
)

=
∑

I=(i1,...,ip)

e�
i1 ∧ . . . ∧ e�

ip
∧ (JQ)(ei1 , . . . , eip

).



193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

GEOMETRICALLY FORMAL MANIFOLDS Page 5 of 24

On the other side we have JQ(ei1 , . . . , eip
) = qJ[Q(ei1 , . . . , eip

)] = −q(JQ)(ei1 , . . . , eip
) and

putting all these together we arrive easily at

J (a(Q)) = (p − q)
∑

I=(i1,...,ip)

e�
i1 ∧ . . . ∧ e�

ip
∧ (JQ)(ei1 , . . . , eip

).

Applying J once more time while going through the same steps yields J 2a(Q) = −(p − q)2a(Q)
and the proof is completed.

The main technical observation in this section is as given below.

Proposition 2.1. The following hold:
(i) the total alternation map a : λpV ⊗1 λqV → Λp+qV is injective for any p �= q;
(ii) the kernel of a : λpV ⊗ λqV → Λp+qV is contained in λpV ⊗2 λqV .

Proof. (i) If Q belongs to λpV ⊗1 λqV and X is in V we define QX and QX in λp−1V ⊗1 λqV
and λpV ⊗1 λq−1V , respectively, by

QX = Q(X, ·) and QX = X�Q.

It is easy to see that those are well defined. Assume now that a(Q) = 0. Then

0 = X�a(Q) =
∑

i1,...,ip

X�(e�
i1 ∧ . . . ∧ e�

ip
) ∧ Q(ei1 , . . . , eip

)

+ (−1)p
∑

i1,...,ip

e�
i1 ∧ . . . ∧ e�

ip
∧ (X�Q(ei1 , . . . , eip

))

= p
∑

i1,...,ip−1

e�
i1 ∧ . . . ∧ e�

ip−1
∧ Q(X, ei1 , . . . , eip−1)

+ (−1)p
∑

i1,...,ip

e�
i1 ∧ . . . ∧ e�

ip
∧ QX(ei1 , . . . , eip

)

= pa(QX) + (−1)pa(QX).

By the previous Lemma a(QX) is in λp−1,qV while a(QX) belongs to λp,q−1V and hence
both must vanish since elements of distinct spaces as p �= q. Now an induction argument leads
directly to the proof of the claim in (i).

To prove (ii) we first note that λpV ⊗ λqV = (λpV ⊗1 λqV ) ⊕ (λpV ⊗2 λqV ) and the claim
follows from Lemma 2.1.

Let L : Λ�V → Λ�V be the exterior multiplication with the Kähler form ω = g(J ·, ·). Recall
that the space Λ�

0V of primitive forms is defined to be the kernel of L�, the adjoint of L
with respect to the inner product g. We consider the operators Pk : ΛrV × ΛsV → Λr+s−2kV
defined by

Pk(α, β) :=
∑

1�i1,...,ik�2n

(ei1� . . .�eik
�α) ∧ (Jei1� . . .�Jeik

�β)

for all (α, β) in ΛrV × ΛsV , and where {ei, 1 � i � 2n} is some orthonormal basis in V . Clearly,
P0(α, β) = α ∧ β for all (α, β) in ΛrV × ΛsV .

Proposition 2.2. For any α ∈ ΛrV and β ∈ ΛsV , we have
(i) L�Pk(α, β) = Pk(L�α, β) + Pk(α,L�β) + (−1)r−k−1Pk+1(α, β) for all k � 0;
(ii) (L�)p(α ∧ β) = (−1)p(p−1)/2p!〈α, Jβ〉 for any primitive p-forms α and β.
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Proof. (i) Let α ∈ ΛrV and β ∈ ΛsV . Then

L�Pk(α, β) =
1
2

∑
i,i1...ik

Jei�ei�((ei1� . . . eik
�α) ∧ (Jei1� . . . Jeik

�β))

=
1
2

∑
i,i1...ik

Jei�((ei�ei1� . . . eik
�α) ∧ (Jei1� . . . Jeik

�β))

+
1
2
(−1)r−k

∑
i,i1...ik

Jei�((ei1� . . . eik
�α) ∧ (ei�Jei1� . . . Jeik

�β))

= Pk(L�α, β) +
1
2
(−1)r−k−1

∑
i1...ik+1

(ei1� . . . eik+1�α) ∧ (Jei1� . . . Jeik+1�β)

+
1
2
(−1)r−k

∑
i1...ik+1

(Jei1�ei2� . . . eik+1�α) ∧ (ei1�Jei2� . . . Jeik+1�β)

+ Pk(α,L�β)

and the claim in (i) follows.
To prove (ii) we first obtain by induction from (i) that (L�)p(α ∧ β) = (−1)p(p−1)/2Pp(α, β)

whenever α, β belong to Λp
0V . To conclude it is enough to directly use the definition of Pp to

get Pp(α, β) = p!〈α, Jβ〉.

2.1. Formal Sasakian metrics

Part of the algebraic facts developed above can also be used to describe completely the
cohomology algebra of a geometrically formal, Sasakian metric. For an introduction to Sasakian
geometry, the odd-dimensional analogue of Kähler geometry, we refer the reader to [1].

Theorem 2.1. Let (M2n+1, g) be a compact Sasakian manifold. If the metric g is formal
then bp(M) = 0 for all 1 � p � 2n, in other words M is a real cohomology sphere.

Proof. Recall that the tangent bundle of M splits as TM = V ⊕ H an orthogonal direct
sum, where V is spanned by the so-called Reeb vector field, to be denoted by ζ. The contact
distribution H admits a g-compatible complex structure J : H → H which, moreover, satisfies
dθ = ω, where θ is the 1-form dual to ζ and ω = g(J ·, ·). We call a differential p-form horizontal,
and denote the corresponding space by ΛpH if the interior product with ζ vanishes. Now,
let dH : Λ�H → Λ�H be the projection of the usual exterior derivative d onto H. If d�

H is
its formal adjoint with respect to the restriction of g on H, we have (see [12]) on ΛpM =
ΛpH ⊕ [θ ∧ Λp−1H]

d� =
(

d�
H −Lζ

L� −d�
H

)
, (2.1)

where Lζ denotes the Lie derivative. As a last reminder, we mention that the extension of J
to Λ�H defined as in the previous section preserves the space of harmonic forms.

Let now α be a harmonic form on M . It is a known fact that if 0 � p � n, every harmonic form
α on M is horizontal and invariant by the Reeb vector field. Moreover, α must be primitive,
that is, L�α = 0. Using the formality assumption on g we obtain that α ∧ Jα is still harmonic.
Since this is a horizontal form, invariant under the Reeb vector field it follows from (2.1) that
L�(α ∧ Jα) = 0. We conclude that α vanishes by means of Proposition 2.2, (ii).

The proof of Theorem 1.2 in Section 1 is now complete.
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3. Holomorphic forms with harmonic squares

Let (M2n, g, J) be a compact Kähler manifold and consider a harmonic p-form Ω in λpM ,
that is of type (0, p) + (p, 0). It is a well-known fact, see [5] for instance, that Ω must be
holomorphic, that is

∇JXΩ = ∇X(JΩ) (3.1)

for all X in TM . Together with Ω comes S : Λp−1M → Λ1M defined by S(X1, . . . , Xp−1) =
Ω(X1, . . . , Xp−1, ·). That Ω has real type (0, p) + (p, 0) translates into

(S(JX1, . . . , Xp−1))� = −J(S(X1, . . . , Xp−1))� (3.2)

whenever X1, . . . , Xp−1 belong to TM , and where for any 1-form θ, θ� denotes the associated
vector field with respect to the metric g. Let now Q : Λp−1M → λpM be given by

Q(X1, . . . , Xp−1) = ∇(S(X1,...,Xp−1))�Ω

for all X1, . . . , Xp−1 in TM . The next lemma provides information about the complex type of Q.

Lemma 3.1. The tensor Q belongs to λp−1M ⊗1 λpM .

Proof. Follows immediately from (3.1) and (3.2).

Proposition 3.1. Let Ω in λpM be a harmonic form. If the metric g is formal, then

∇(S(X1,...,Xp−1))�Ω = 0 (3.3)

holds, for all X1, . . . , Xp−1 in TM .

Proof. Let {ei, 1 � i � 2n} be a geodesic frame at a point m in M . If p is even Ω ∧ Ω is
harmonic and we have at m

0 = −d�(Ω ∧ Ω) =
2n∑
i=1

ei�∇ei
(Ω ∧ Ω)

= 2
2n∑
i=1

ei�(∇ei
Ω ∧ Ω) = 2

2n∑
i=1

∇ei
Ω ∧ (ei�Ω)

since Ω is itself co-closed. In other words a(Q) = 0 and we conclude by means of Lemma 3.1
and Proposition 2.1 that Q = 0. If p is odd, the harmonicity of Ω ∧ JΩ gives

0 = −d�(Ω ∧ JΩ) =
2n∑
i=1

ei�(∇ei
Ω ∧ JΩ + Ω ∧∇ei

JΩ)

=
2n∑
i=1

−∇ei
Ω ∧ (ei�JΩ) + (ei�Ω) ∧∇ei

(JΩ),

where we take into account the co-closedness of Ω and JΩ. Now ∇ei
JΩ = ∇Jei

Ω and hence

0 =
2n∑
i=1

−∇ei
Ω ∧ (Jei�Ω) + (ei�Ω) ∧∇Jei

Ω

= −2
2n∑
i=1

∇ei
Ω ∧ (Jei�Ω).



337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Page 8 of 24 J.-F. GROSJEAN AND P.- A. NAGY

This is easily reinterpreted to say that a(JQ) = 0, and then Lemma 3.1 together with
Proposition 2.1 leads to the vanishing of Q and hence to the claimed result.

Remark 3.1. From the proof of the result above we see that it actually holds for harmonic
forms Ω in λpM such that Ω ∧ Ω for p even and Ω ∧ JΩ for p odd are co-closed.

We need now to recall some facts about the algebraic structure of harmonic forms of
type (1, 1).

Proposition 3.2. ([8]). Let (M2n, g, J) be a compact Kähler manifold such that the metric
g is formal. If α = g(F ·, ·) is harmonic in λ1,1M then we have an orthogonal and J-invariant
splitting

TM =
p⊕

i=0

Ei

which is preserved by F and such that F = λiJi on Ei, for all 0 � i � p. Here Ji are almost-
complex structure on Ei and λi are real constants, for 0 � i � p.

Now we would like to conclude from Proposition 3.1 that Ω is actually parallel. This is
eventually seen to be the case if Ω is non-degenerate at every point of the manifold. To rule
out the general case we must study the null distribution of Ω. For each m in M define Vm =
{X ∈ TmM : X�Ω = 0}. Our first concern is to show that m → Vm gives a smooth, constant
rank distribution on M .

Lemma 3.2. Let (M2n, g, J) be a compact Kähler manifold such that the metric g is formal.
If Ω in λpM is harmonic the following hold:

(i) the distribution V is of constant rank;
(ii) both distributions V and H = V⊥ are integrable and H is totally geodesic.

Proof. (i) Let αΩ in λ1,1M be defined by αΩ(X,Y ) = 〈JX�Ω, Y �Ω〉 for all X,Y in
TM . Because g is formal we have that (L�)p−1(Ω ∧ JΩ) is a harmonic two form. On
the other hand, from Proposition 2.2, (i) it follows by induction that (L�)p−1(Ω ∧ JΩ) =
(−1)(p−2)(p−3)/2Pp−1(Ω, JΩ) by also using that Ω is primitive. Now a direct computation using
the definition of Pp−1 shows that

Pp−1(Ω, JΩ)(X,Y ) = (−1)p−1(p − 1)!(〈X�Ω, JY �Ω〉 − 〈Y �Ω, JX�Ω〉)
= 2(−1)p(p − 1)!αΩ(X,Y )

for all X,Y in TM . We conclude that αΩ is a harmonic form of type (1, 1) and hence the
formality of g and Proposition 3.2 ensure that αΩ has constant rank. By a positivity argument,
the nullity of αΩ coincides with that of Ω and the claim is proved.

(ii) The distribution V (hence H) is J-invariant since αΩ lives in λ1,1M . By (i) we obtain
a globally defined splitting TM = V ⊕ H which is therefore orthogonal and J-invariant. From
the definition of V it follows by an orthogonality argument that the distribution H is spanned
by S(X1, . . . , Xp−1) with X1, . . . , Xp−1 in TM and hence

∇XΩ = 0 for all X ∈ H (3.4)

by Proposition 3.1. Taking now a direction, say, V in V gives that ∇XV belongs to V and this
shows the total geodesicity, and hence the integrability of H. The integrability of V is an easy
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consequence of the closedness of Ω. Indeed, taking X1, . . . , Xp−1 in H and V,W in V, we have

0 = dΩ(X1, . . . , Xp−1, V,W ) =
p−1∑
i=1

(−1)i+1(∇Xi
Ω)(X1, . . . , X̂i, . . . , Xp−1, V,W )

− (∇V Ω)(X1, . . . , Xp−1,W ) + (∇W Ω)(X1, . . . , Xp−1, V )
= Ω(X1, . . . , Xp−1, [V,W ]).

Since Ω vanishes on V by the definition of the latter it follows that [V,W ]�Ω = 0 and our
integrability claim follows by using again the definition of V.

To prove the parallelism of Ω, which amounts to having V totally geodesic we need to
establish one more fact. Recall [14] that the transversal Ricci tensor RicH : H → H of the
totally geodesic distribution H is defined by

g(RicHX,Y ) =
∑

i

R(X, ei, Y, ei)

for all X,Y in H and local orthonormal frames {ei} in H. When V integrates to give a
Riemannian submersion, which is always true locally, RicH corresponds to the usual Ricci
tensor of the base manifold.

Lemma 3.3. The transversal Ricci tensor RicH of the distribution H vanishes.

Proof. For any α in Λ2M and for all ϕ in Λ�M let us define

[α,ϕ] =
2n∑
i=1

ei�α ∧ ei�ϕ,

where {ei, 1 � i � 2n} is some local orthonormal frame in TM . Since H is totally geodesic,
after differentiation of (3.4) in directions coming from H we get [R(X,Y ),Ω] = 0 for all X,Y
in H. Since V �Ω = 0 for V in V it follows that

∑
i R(X,Y )ei ∧ ei�Ω = 0 for all X in H, and

where {ei} is a local orthonormal frame in H, to be fixed in what follows. Therefore, we get

0 =
∑
j,i

ej�(R(X, ej)ei ∧ ei�Ω) = RicHX�Ω −
∑
j,i

R(X, ej)ei ∧ ej�ei�Ω

= RicHX�Ω +
1
2

∑
j,i

R(ej , ei)X ∧ ej�ei�Ω

for all X in H, where for obtaining the second line we used the algebraic Bianchi identity for
R. As consequences of the Kähler condition and of the fact that Ω is in λpM we have that
R(JX, JY ) = R(X,Y ), while JX�JY �Ω = −X�Y �Ω for all X,Y in TM . Hence the last sum
above vanishes and we end up with RicHX�Ω = 0 for all X in TM whence the claim, since Ω
is non-degenerate on H.

At the same time, the situation when RicH vanishes is well described by the following.

Theorem 3.1 ([8]). Let (M2n, g, J) be a compact Kähler manifold equipped with a
Riemannian foliation with complex leaves. If the foliation is transversally totally geodesic with
non-negative transversal Ricci tensor then it has to be totally geodesic, therefore locally a
Riemannian product.
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Proof of Theorem 1.3. Since RicH vanishes, it follows by Theorem 3.1 that V is totally
geodesic, and hence parallel with respect to the Levi–Civita connection ∇. This implies
immediately the parallelism of Ω, by means of (3.4). The local product decomposition of
(M2n, g, J) follows by using the deRham splitting theorem for the ∇-parallel decomposition
TM = V ⊕ H, combined with Lemma 3.3.

4. Harmonic 2-forms

We shall develop in this section the general Riemannian counterpart of Proposition 3.2. From
now on, we shall use the metric to identify a 2-form α with a skew-symmetric endomorphism
A of TM ; explicitly α = g(A·, ·). Moreover, the space A is the space of skew-symmetric
endomorphisms of TM which are associated to an element of H2(M, g). If ϕ belongs to Λ�M
let Lϕ : Λ�M → Λ�M be given as exterior multiplication by ϕ and let L�

ϕ be the adjoint of Lϕ.

Proposition 4.1. Let Mn be geometrically formal and let g be a formal metric on M .
We have :

A2A1A3 + A3A1A2 ∈ A
whenever Ai, 1 � i � 3 belong to A.

Proof. Let α belong to H2(M, g). Since g is formal and L�
α is up to sign equal to 	Lα	

it follows that both Lα and L�
α preserve the space of harmonic forms of (M, g). Therefore, if

αi, 1 � i � 3 belong to H2(M, g) then L�
α1

Lα2α3 is an element of H2(M, g). Let Ai, 1 � i � 3 be
the skew-symmetric endomorphisms associated to the forms αi, 1 � i � 3 and let {ei, 1 � i � n}
be a local orthonormal basis in TM . We shall now compute

L�
α1

Lα2α3 =
1
2

n∑
i,j=1

α1(ei, ej)ej�[ei�(α2 ∧ α3)].

However,

ej�
[
ei�(α2 ∧ α3)

]
= α2(ei, ej)α3 − (ei�α2) ∧ (ej�α3) + (ej�α2) ∧ (ei�α3) + α3(ei, ej)α2.

Further computation yields, after some elementary manipulations

L�
α1

Lα2α3 = 〈α1, α2〉α3 + 〈α1, α3〉α2 + 〈A3A1A2 + A2A1A3·, ·〉.

In what follows we shall say that a symplectic form on M is compatible with the metric g if
its associated skew-symmetric endomorphism defines an almost-complex structure on M .

Proposition 4.2. Let Mn be geometrically formal and let g denote a formal metric on
M . Moreover, let α belong to H2(M, g) with associated endomorphism A in A. Then

(i) the eigenvalues of A2 are constant with eigenbundles of constant rank;
(ii) let μi be (the pairwise distinct) eigenvalues of A2, with μ0 = 0 and let Ei be the

eigenbundles of A2 corresponding to μi. Then for 1 � i � p, Ei is of even dimension
and we have an orthogonal decomposition

α =
p∑

i=1

√−μiωi,
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where ωi, 1 � i � p belong to H2(M, g). Moreover, ωi = g(Ji·, ·) on Ei, for some g-
compatible almost-complex structure Ji on Ei, 1 � i � p;

(iii) if α is non-degenerate then g admits a compatible symplectic form.

Proof. (i) From Proposition 4.1 we get by induction that A2k+1 belongs to A whenever A
is in A. Since A is finite-dimensional, there exists P ∈ R[X] so that P (A2) = 0 and, moreover,
by using the symmetry of A2 the polynomial P can be supposed to have only real and simple
roots μi, 1 � i � p. Let mi be the dimension of the μi-eigenbundle, 1 � i � p. To see that
mi, μi, 0 � i � p are constant over M , we use the fact that A2k+1 belongs to A for any k ∈ N by
Proposition 4.1 and from the fact that elements in A have pointwisely constant scalar products
we deduce that Tr (A2k) = −〈A2k−1, A〉 = ck for some constant ck and for any integer k. It
follows that

∑p
i=1 miμ

k
i = ck for all k in N and hence this Vandermonde system leads to the

constancy of the functions mi, μi, 1 � i � p.
(ii) With the notation λi =

√−μi, the orthogonal projection of α on Ei is given by λiωi,
where ωi = g(Ji·, ·) for some almost-complex structure Ji on Ei, 1 � i � p. Now,

g(A2k+1·, ·) =
p∑

i=1

λ2k+1
i ωi

is harmonic for all natural k and by an argument similar to the one used in the proof of the
Proposition 3.1 of [8] we deduce that ωi belong to H2(M, g).

(iii) By (ii) the form
∑p

i=1 ωi belongs to H2(M, g) and it is g-compatible if α is
non-degenerate.

The technical advantage of Proposition 4.2 is essentially to say that all distributions
appearing as ranges or kernels of harmonic 2-forms are of constant rank over the manifold,
and in this respect they can, as we shall see in the next section, be treated as algebraic objects.

4.1. 6-dimensions

We shall present here a geometric application of the algebraic facts from the previous section.
More precisely, we are going to obtain sufficient conditions for a geometrically formal 6-manifold
to admit a compatible symplectic structure. We need first a number of preliminary results.

Lemma 4.1. Let Mn be geometrically formal and let g be a formal metric on M . Let α
belong to H2(M, g) with kernel V and such that on H = V⊥, α = g(J ·, ·) for some almost-
complex structure J of H. Then for any φ in Hp(M, g) we have that φij belongs to Hp(M, g),
where for any i, j with i + j = p we have denoted by φij the orthogonal projection of φ onto
ΛiV⊗̂ΛjH ⊆ ΛpM . Here ΛiV⊗̂ΛjH is the image of ΛiV ⊗ ΛjH in Λi+jM under the anti-
symmetrisation map.

Proof. We first note that

L�
α(ψ ∧ α) = 1

2 (−1)p(dim H)ψ + (L�
αψ) ∧ α + (−1)pQψ

whenever ψ is a p-form on M , where the operator Q is given by Qψ =
∑

ei∈H(ei�ψ) ∧ ei

for an arbitrary local frame {ei} in H. Hence Q preserves the space of harmonic forms and
on the other hand a standard computation shows that the non-zero eigenvalues of Q on
ΛpM are (−1)p−1j for 1 � j � dim H and i = p − j � dim V with corresponding eigenbundles
ΛiV⊗̂ΛjH. However, formality actually implies that all powers of Q preserve Hp(M, g), and
the claim follows.
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Lemma 4.2. Let M6 be geometrically formal and let g be a formal metric on M . If g
does not admit a compatible symplectic form then every non-zero harmonic 2-form on M has
4-dimensional kernel.

Proof. Let α �= 0 belong to H2(M, g). It cannot be non-degenerate for Proposition 4.2,
(iii) would imply the existence of a g-compatible symplectic form. It remains to see that α
cannot have 2-dimensional kernel. Arguing by contradiction, let us suppose that V = Ker(α)
is 2-dimensional, so that H = V⊥ is of dimension 4. Moreover, from α we get again by using
Proposition 4.2 a harmonic 2-form α′ = g(J ·, ·) on H for some almost-complex structure J on
H. Then α′ + 	(α′ ∧ α′) gives a globally defined symplectic form on M , compatible with g,
and hence the desired contradiction.

In what follows the distribution spanned by an orthonormal system of vector fields
{X1, . . . , Xq} on M shall be denoted by (X1, . . . , Xq).

Proposition 4.3. Let M6 be geometrically formal with b1(M) = 0 and b2(M) � 2. If g
is a formal metric on M which does not admit a compatible symplectic form we must have
b2(M) = 2, b3(M) = 6.

Proof. Let α �= 0 belong to H2(M, g). By Lemma 4.2 the distribution V = Ker(α) must
be 4-dimensional, so after constant rescaling α can be written as α = g(J ·, ·), where J is an
almost-complex structure on the plane distribution H = V⊥. We now note there are no non-zero
harmonic 2-forms contained in Λ2V, for by Lemma 4.2 any such form must have 4-dimensional
kernel and hence must vanish. It follows then from Lemma 4.1 that H2(M, g) is contained in
(Λ1V⊗̂Λ1H) ⊕ Rα. Further on, because b2(M) � 2, there must be a non-zero β in Λ1V⊗̂Λ1H,
and again by Lemma 4.2 this has 4-dimensional kernel to be denoted by V ′. By rescaling if
necessary we may also assume that β is of unit length.

Let now F1 and F2 be the orthogonal projections of H ′ = (V ′)⊥ onto V and H, respectively.
The projection F1 is not the zero space because otherwise we would have H ′ ⊆ H, hence β in
Λ2H, an absurdity. We cannot have F2 = {0} either: it would imply that H ′ ⊆ V and hence
β ∈ Λ2V, which again is impossible. Therefore, both of F1 and F2 have rank at least 1 and
given that H ′ = F1 ⊕ F2 and H ′ has rank 2, their respective ranks must actually equal 1. Since
the manifold is oriented, every real line bundle over M is trivial and this leads to the existence
of a globally defined orthonormal frame {ζ, e2} on H ′, spanning F1 and F2. Since β belongs to
Λ2H ′, it follows that

β = e2 ∧ ζ.

Now the orthogonal complement of (e2) in H is 1-dimensional, and hence trivial as a real line
bundle. Therefore it is spanned by some a unit vector field, say e1, and since α belongs to Λ2H
we get

α = e1 ∧ e2.

choose now a non-zero harmonic 3-form T on M . By Lemma 4.1 the components T 11 in Λ3V and
T 12 = θ ∧ α in Λ1V⊗̂Λ2H of T are harmonic. However, 	LαT 11 and L�

αT 12 = θ are harmonic
1-forms and since b1(M) = 0 these 1-forms are vanishing fact which implies the nullity of T 11

and T 12. Hence T can be written as

T = ω1 ∧ e1 + ω2 ∧ e2
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with ωk, k = 1, 2 in Λ2V. Again, LφT and L�
φT vanish for any harmonic 2-form φ because

b1(M) = 0, and hence from LβT = 0 and L�
βT = 0 we get that

ζ ∧ ω1 = 0, ζ�ω2 = 0.

It follows easily that harmonic 3-forms on M are contained in a rank 6 sub-bundle of Λ3M ,
thus using that scalar products of harmonic 3-forms are (pointwisely) constant we obtain that
b3(M) � 6. Since M has nowhere vanishing vector fields, it has vanishing Euler characteristic,
and from b1(M) = 0, b2(M) � 2 we get

b3(M) = 2(1 + b2(M)) � 6

showing that actually b2(M) = 2 and b3(M) = 6.

Theorem 4.1. Let M6 be geometrically formal with b1(M) �= 1 and b2(M) � 2. If g is a
formal metric on M which does not admit a compatible symplectic form then either:

(i) M has the real cohomology algebra of T3 × S3, or
(ii) b1(M) = 0, b2(M) = 2, b3(M) = 6.

Proof. In view of the Proposition above it suffices to treat the cases when b1(M) �= 0. Again,
we do a case by case discussion. Let V be the distribution spanned by the harmonic 1-forms
and let ζk, 1 � k � b1(M) be a frame of harmonic 1-forms in V. As an immediate consequence
of Lemma 4.1 and of the fact that H = V⊥ does not contain, by definition, harmonic 1-forms
it follows that harmonic 2-forms are contained in Λ2V ⊕ Λ2H.

If b1(M) = 2, H is of rank 4 and since b2(M) � 2 there must be a non-zero harmonic 2-
form contained in Λ2H. In view of Lemma 4.2 it has rank 4 kernel and therefore vanishes, a
contradiction.

Suppose now that b1(M) = 3 so that H is of rank 3. If α is a non-zero harmonic 2-
form contained in Λ2H, then ζ1�ζ2�ζ3�(	α) is a non-zero harmonic form in Λ1H which
is a contradiction. Therefore H2(M, g) ⊆ Λ2V and similarly, by using Lemma 4.1 we get
H3(M, g) ⊆ Λ3V ⊕ Λ3H. It is now straightforward that M has the cohomology algebra of
T3 × S3.

If b1(M) = 4, then ζ1 ∧ ζ2 + ζ3 ∧ ζ4 + 	(ζ1 ∧ ζ2 ∧ ζ3 ∧ ζ4) is a compatible symplectic form, a
contradiction.

Now we cannot have b1(M) = 5 (see [7]) and when b1(M) = 6 there exists an orthonormal
frame of harmonic 1-forms and hence a compatible symplectic structure, a contradiction. This
completes the proof of the Theorem.

The proof of Theorem 1.4, when b2(M) � 3 follows now immediately from the above.

Remark 4.1. The proof of Proposition 4.3 can also be adapted to show that if g is a formal
metric on M6 which does not admit a compatible symplectic structure then b3(M) � 6 when
b1(M) = 0, b2(M) = 1.

4.2. The case when b1 = 0, b2 = 2, b3 = 6

We shall examine now the case when the geometrically formal manifold M6 has a formal metric
g which does not admit a compatible symplectic form and, moreover, b1(M) = 0, b2(M) =
2, b3(M) = 6. We have seen that harmonic 2-forms must be of the form e12 = e1 ∧ e2, e2 ∧ ζ
for some orthonormal system e1, e2, ζ in TM . Let us denote by E the rank 3 distribution
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orthogonal to e1, e2, ζ. It inherits a transversal volume form, that is, a nowhere vanishing 3-
form νE in Λ3E given by νE = 	(e12 ∧ ζ). We shall write 	E : Λ�E → Λ�E for the Hodge star
operator obtained when E is equipped with the restriction of the metric g and orientation
given by νE .

Lemma 4.3. The following hold:

de1 = A ∧ e1 + B ∧ e2 + λe12,

de2 = qζ ∧ e1 − A ∧ e2 + μe12,

dζ = A ∧ ζ − μe1 ∧ ζ + e2 ∧ D,

where A,B,D are 1-forms on E ⊕ (ζ) and λ, q, μ are functions on M .

Proof. Because e12 is closed we get de1 ∧ e2 = de2 ∧ e1 and it follows that none of de1, de2

can have components in Λ2(e1, e2)⊥. Therefore one can write

de1 =A ∧ e1 + B ∧ e2 + λe12,

de2 =C ∧ e1 + D′ ∧ e2 + μe12

for some one-forms A,B,C,D′ in Λ1(e1, e2)⊥ and some smooth functions λ, μ on M . Now the
remaining information contained in de1 ∧ e2 = de2 ∧ e1 is that D′ = −A. Since e2 ∧ ζ is equally
closed we have de2 ∧ ζ = dζ ∧ e2 and hence de2 ∧ ζ ∧ e2 = 0 leading to C ∧ ζ = 0. Thus we may
write C = qζ for some smooth function q on M . Moreover, by an argument already used for e12,
dζ has no component in Λ2(e2, ζ)⊥ and hence after a small computation we can fully rewrite
the closedness of e2 ∧ ζ as

dζ = A ∧ ζ − μe1 ∧ ζ + e2 ∧ D + νe12

for some one form D on E ⊕ (ζ) and a smooth function ν on M . Now the harmonicity of e12

tells us that
0 = d�e12 = d�e1 · e2 − [e1, e2] − d�e2 · e2

in other words the distribution (e1, e2) is integrable. Henceforth, ν = dζ(e1, e2) = −〈ζ, [e1, e2]〉
vanishes and our Lemma is proved.

Corollary 4.1. (i) The distribution E is integrable.
(ii) The distributions (e1, e2) and (e2, ζ) are integrable as well.

Proof. (i) By inspecting the structure equations in the lemma above, we see that either of
dζ, de1, de2 vanish on Λ2E and the claim follows.

(ii) Follows by arguments similar to the last part of the proof of the Lemma 4.3.

We shall now bring into consideration the fact that b3(M) = 6. Let

T1, T2, T3, 	T1, 	T2, 	T3 (4.1)

be an (pointwisely) orthonormal basis in H3(M, g). From the proof of Proposition 4.3 we
must have

Tk = (e1 ∧ ζ) ∧ αk + e2 ∧ 	Eβk,

where αk, βk belong to Λ1E for all 1 � k � 3. The next Lemma recasts the orthogonality of
the system (4.1) into a simpler algebraic form.
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Lemma 4.4. For 1 � k � 3 we define γk = αk + iβk in Λ1(E, C). We have

	Eγ1 = kγ2 ∧ γ3,

	Eγ2 = −kγ1 ∧ γ3,

	Eγ3 = kγ1 ∧ γ2

for some smooth function k : M → C such that |k| = 1 and kγ1 ∧ γ2 ∧ γ3 = νE .

Proof. The Hodge star operator of the forms Tk, 1 � k � 3 reads

	Tk = −(e1 ∧ ζ) ∧ βk + e2 ∧ 	Eαk

and the orthonormality of (4.1) is equivalent with the following

|αk|2 + |βk|2 = 1,

〈αi, αj〉 + 〈βi, βj〉 = 0, i �= j,

〈αi, βj〉 = 〈αj , βi〉.
It is easy to see that {γi, 1 � i � 3} gives a basis of Λ1(E, C) (not orthonormal though) and
then {γi ∧ γj : 1 � i �= j � 3} is a basis in Λ2(E, C). Of course, by using complex conjugation
we obtain another set of basis in the above-mentioned spaces. We now compute

	Eγj ∧ γj = (	Eαj + i 	E βj) ∧ (αj − i 	E βj)
= (	Eαj ∧ αj + 	Eβj) + i(	Eβj ∧ αj − 	Eαj ∧ βj)
= νE .

Similarly, we also find that 	Eγj ∧ γp = 0 for p �= j and the result follows. That |k| = 1 follows
routineously by taking norms.

The triple of 1-forms (γ1, γ2, γ3) has also an internal symmetry, of particular relevance for
what follows. Write

γ =

⎛
⎝γ1

γ2

γ3

⎞
⎠

and then notice the transition formula γ = Pγ for some P = (Pij , 1 � i, j � 3) : M → M3(C).
This is possible because both γ and γ leave basis in Λ1(E, C). It follows immediately that
PP = I3 holds and, moreover, from the definition of P we see that it is symmetric, that is,
P = PT. To exploit the closedness the frame (4.1) we need the following.

Lemma 4.5. If α belongs to Λ�E we have

dα = dEα + ζ ∧ LE
ζ α + e1 ∧ (LE

e1
α + ζ ∧ R�α) + e2 ∧ LE

e2
α,

where dE denotes the orthogonal projection of d onto Λ�E and for any vector field X in E,LE
X

is the orthogonal projection of the Lie derivative LXα onto Λ�E. Moreover, the vector field R
in E is given by the projection on E of [e1, ζ].

Proof. Follows eventually by expanding d along the decomposition

Λ�M = Λ�E ⊗ Λ�(e1, e2, ζ),

while making use of the integrability of the distributions listed in Corollary 4.1.
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Let us denote by Â, B̂, D̂ the components on E of the 1-forms A,B,D, so that A = Â +
xζ,B = B̂ + yζ,D = D̂ + zζ for some smooth functions x, y, z on M .

Lemma 4.6. The harmonicity of the forms Tk, 1 � k � 3 is equivalent with the following
system of equations:

(i) dEγk = −2Â ∧ γk − iq 	E γk;
(ii) dE(	Eγk) = Â ∧ 	Eγk;
(iii) LE

ζ (	Eγk) − x 	E γk − iB̂ ∧ γk = 0;

(iv) LE
e1

(	Eγk) + μ 	E γk − iD̂ ∧ γk = 0;

(v) LE
e2

γk + (z − λ)γk − iR� 	E γk = 0
for 1 � k � 3.

Proof. For any 1 � k � 3 the closedness of the forms Tk is equivalent with

0 = dTk = d(e1 ∧ ζ) ∧ αk + e1 ∧ ζ ∧ dαk

+ de2 ∧ [	Eβk] − e2 ∧ d[	Eβk].

Using now Lemma 4.5 we obtain further

0 = d(e1 ∧ ζ) ∧ αk + de2 ∧ 	Eβk

+ e1 ∧ ζ ∧ [
dEαk + e2 ∧ LE

e2
αk

]
− e2 ∧ dE(	Eβk) − e2 ∧ ζ ∧ LE

ζ (	Eβk) + e12 ∧ LE
e1

(	Eβk)

− e12 ∧ ζ ∧ (R� 	E βk).

However, accordingly to Lemma 4.3 we eventually get

d(e1 ∧ ζ) = 2Â ∧ e1 ∧ ζ + B̂ ∧ e2 ∧ ζ − D̂ ∧ e12 + (λ − z)e12 ∧ ζ.

Hence after identifying the components of e1 ∧ ζ, e2 ∧ ζ, e12, e12 ∧ ζ, e2 we find the system of
equations

2Â ∧ αk − q 	E βk + dEαk = 0,

B̂ ∧ αk + x 	E βk − LE
ζ (	Eβk) = 0,

− D̂ ∧ αk + μ 	E βk + LE
e1

(	Eβk) = 0,

(λ − z)αk − LE
e2

αk − R� 	E βk = 0,

Â ∧ 	Eβk = dE(	Eβk).

However, the forms 	Tk, 1 � k � 3 are closed as well, in other words the system above has the
symmetry (αk, βk) → (βk,−αk). It is now straightforward to rephrase these by means of the
complex-valued forms γk, 1 � k � 3.

We are now in position to examine the geometric consequences imposed by our initial
situation.

Lemma 4.7. The following hold:

(i) Â = 0;
(ii) dEk = 0.
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Proof. We will prove both claims at the same time. Using Lemma 4.6, (i) we compute

dE(γ2 ∧ γ3) = −4Â ∧ γ2 ∧ γ3 − iq(	Eγ2 ∧ γ3 − 	Eγ3 ∧ γ2)

= −4Â ∧ γ2 ∧ γ3

by using standard properties of the Hodge star operator. However from (ii) of the same Lemma,
actualised by Lemma 4.4 one infers that

dE(kγ2 ∧ γ3) = kÂ ∧ γ2 ∧ γ3.

It follows that (5Â − k−1dEk) ∧ γ2 ∧ γ3 = 0 and repeating the procedure for the other two
equations in Lemma 4.6, (i) we arrive easily to 5Â − k−1dEk = 0. However, Â is real-valued
while k−1dEk belongs to Λ1(E, iR) since |k| = 1 and the proof of the Lemma follows.

We examine the rest of the equations in Lemma 4.6. For a triple

α =

⎛
⎝α1

α2

α3

⎞
⎠

of one forms in Λ1(E, C) we consider the triple of 2-forms in Λ2(E, C) given by

α × α =

⎛
⎝α2 ∧ α3

α3 ∧ α1

α1 ∧ α2

⎞
⎠ .

Note that in the new notation Lemma 4.4 now reads

	Eγ = kγ × γ (4.2)

and after taking the conjugate we also get

	Eγ = k−1γ × γ (4.3)

since k = k−1. For any α =
∑3

k=1 αkγk in Λ1(E, C) we consider the matrix

rα =

⎛
⎝ 0 α3 −α2

−α3 0 α1

α2 −α1 0

⎞
⎠

Note that rT
α = −rα and we shall let rα operate on triple of forms in Λk(E, C), k = 1, 2 by

matrix multiplication. Moreover, a straightforward computation shows that

α ∧ γ =

⎛
⎝α ∧ γ1

α ∧ γ2

α ∧ γ3

⎞
⎠ = rα(γ × γ).

These observations now allow us to bring the remaining equations into final form.

Lemma 4.8. The following hold:
(i) LE

ζ (	Eγ) − x 	E γ − ikrB̂(	Eγ) = 0;

(ii) LE
e1

(	Eγ) + μ 	E γ − ikrD̂(	Eγ) = 0;

(iii) LE
e2

γ + (z − λ)γ + ikrηγ = 0
where the 1-form η in Λ1E is given as η = g(R, ·).

Proof. We shall prove only (i) the other two claims being entirely analogous. Indeed, writing
(iii) of Lemma 4.6 in matrix form we have

LE
ζ (	Eγ) − x 	E γ − iB̂ ∧ γ = 0.
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However, B̂ ∧ γ = rB̂(γ × γ) = krB̂(	Eγ) by (4.3) and we are done.

Proposition 4.4. The following hold:

(i) Le1P = Le2P = LζP = 0;
(ii) PrB̂P + k2rB̂ = 0;
(iii) PrD̂P + k2rD̂ = 0;
(iv) PrηP + k2rη = 0.

Proof. Taking the conjugate in (i) of Lemma 4.8 we get

LE
ζ (	Eγ) − x 	E γ + ik−1rB̂(	Eγ) = 0. (4.4)

Now 	Eγ = 	E(Pγ) = P (	Eγ) and hence (i) of Lemma 4.8 gives

(LE
ζ P ) 	E γ + PLE

ζ (	Eγ) + xP (	Eγ) + ikrB̂(	Eγ) = 0.

Substituting here the expression of LE
ζ (	Eγ) as given by (4.4) we obtain further

(LE
ζ P ) 	E γ + P

[
x 	E γ − ik−1rB̂(	Eγ)

]
− (xP + ikrB̂) 	E γ = 0

whence

(LE
ζ P − ik−1PrB̂P − ikrB̂) 	E γ = 0,

where we have used once more that γ = Pγ. Given that 	Eγ gives a basis in Λ2(E, C) we
infer that

LE
ζ P − ik−1PrB̂P − ikrB̂ = 0.

However, P is symmetric and rB̂ is skew-symmetric therefore PrB̂P is skew-symmetric as well,
and hence identifying the symmetric and skew-symmetric part in the equation above we arrive
at LE

ζ P = 0 and PrB̂P + k2rB̂ = 0. The other two claims in (i) and assertions in (iii) and
(iv) are proved by applying a completely similar procedure to the equations in (ii) and (iii) of
Lemma 4.8.

Corollary 4.2. We must have B̂ = D̂ = η = 0.

Proof. We first work out the equation in (ii) of Lemma 4.4. It implies that

(PrB̂P ) 	E γ + k2rB̂(	Eγ) = 0.

Now rB̂(	Eγ) = k−1rB̂(γ × γ) = k−1B̂ ∧ γ. On the other hand we have

(PrB̂P ) 	E γ = (PrB̂) 	E (Pγ)
= PrB̂ 	E γ = kPrB̂(γ × γ)

= kP (B̂ ∧ γ)

= kB̂ ∧ Pγ = kB̂ ∧ γ

since B̂ is real-valued. Altogether (k + k−1k2)B̂ ∧ γ = 0 whence the vanishing of B̂ since |k| =
1. The vanishing of D̂ follows from (iii) of Lemma 4.4 and the varnishing of η follows from (iv)
of Lemma 4.4, respectively, by using the same argument.

We now continue the study of the distribution (e1, e2, ζ).
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Lemma 4.9. The following hold:
(i) d�e1 = −μ;
(ii) d�e2 = λ = −z;
(iii) d�ζ = x.

Proof. First of all we update Lemma 4.3 to

de1 =xζ ∧ e1 + yζ ∧ e2 + λe12,

de2 =qζ ∧ e1 − xζ ∧ e2 + μe12,

dζ = − μe1 ∧ ζ + ze2 ∧ ζ.

(4.5)

by using that Â = B̂ = D̂ = 0.
(i) Since e12 is harmonic we have

0 = d�(e12) = d�e1 · e2 − [e1, e2] − d�e2 · e1.

Hence d�e1 = 〈[e1, e2], e2〉 = −de2(e1, e2) = −μ and d�e2 = −〈[e1, e2], e1〉 = de1(e1, e2) = λ.
This proves (i) and the first-half of (ii) to prove the rest it is enough to repeat the argument
above starting from d�(e2 ∧ ζ) = 0.

Theorem 4.2. A geometrically formal manifold M6 with b1(M) = 0, b2(M) = 2, b3(M) =
6 and formal metric g must admit a g-compatible symplectic structure.

Proof. Suppose that there is no g-compatible symplectic structure on M . Then our whole
previous discussion applies and based upon it we will obtain a contradiction. We proceed first
towards updating the expressions of the Lie derivatives of γ, 	Eγ as given by Lemma 4.8.
Since k2 = det(P ) and P has no Lie derivatives in the direction of (e1, e2, ζ) it follows that
Le1k = Le2k = Lζk = 0. Therefore, (i) of Lemma 4.8 gives

LE
ζ (γ × γ) − xγ × γ = 0.

Note that actually LE
ζ γ = Lζγ since η (hence R) vanishes. A short computation using only

that γ gives a basis in Λ1(E, C) leads to

Lζγ − x

2
γ = 0.

It follows that Lζ(γ1 ∧ γ2 ∧ γ3) = (3x/2)γ1 ∧ γ2 ∧ γ3 whence LζνE = (3x/2)νE . However,
Lζ(e12 ∧ ζ) = 0 as well, because e12, e12 ∧ ζ are closed (the latter after a computation based
on (4.5)) and we get that the volume form νM = e12 ∧ ζ ∧ νE satisfies LζνM = (3x/2)νM .
However,

LζνM = d(ζ�νM ) = −d�ζ · νM = −xνM

by Lemma 4.9, (iii) and it follows that we must have x = 0. When working out, in the same
spirit, the equation contained in (ii) of Lemma 4.8 we obtain that μ = 0. Now (iii) of Lemma
4.8 ensures, as before, that Le2νE + 3(z − λ)νE = 0. At the same time

Le2(e
12 ∧ ζ) = −d(e1 ∧ ζ) = (−λ + z)e12 ∧ ζ

after making use of (4.5). It follows that Le2νM = −2(z − λ)νM = 4λνM as z = −λ by
Lemma 4.9, (ii). However, once again from Le2νM = −d�e2 · νM = −λ · νM we obtain that
λ = 0.

Inspecting now the structure equations in (4.5) we see that dζ = 0 and again from Lemma 4.9
d�ζ = 0, in other words ζ is a harmonic, nowhere vanishing 1-form on M which contradicts
that b1(M) = 0.
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The proof of the Theorem 4.1 in Section 1 is now complete.

5. Formal metrics with maximal b2

We study in this section geometrically formal manifolds Mn having maximal second Betti
number, that is,

b2(M) =
(

n
2

)
.

To prove Theorem 1.5, we split our discussion into two cases according to the parity of n.

Proposition 5.1. Let Mn be geometrically formal and let g be a formal metric on M .
The following hold:

(i) if bp(M) and bq(M) are maximal for p + q � n then bp+q(M) is also maximal;
(ii) if bp(M) and bq(M) are maximal for 0 � p � q � n and then so is bq−p(M);
(iii) if bp(M) is maximal for some 1 � p � n − 1 and (p, n) = 1 then g is a flat metric.

Proof. (i) If {αi}, {βj} are L2-orthonormal basis in Hp(M, g) and Hq(M, g), respectively,
then at each point of M we obtain orthonormal basis in ΛpM and ΛqM , respectively. It follows
that Λp+qM is spanned by forms of the type αi ∧ βj which are harmonic because the metric
g is formal. Since scalar products between harmonic forms are constant after Gramm-Schmidt
orthonormalisation we obtain a basis in Hp+q(M, g).

(ii) By Hodge duality bn−p(M) is maximal and hence by (i) so is bn−p+q(M) = bq−p(M)
whence the claim.

(iii) If bp(M) is maximal then for any integers q and k, 1 � k � n such that pq ≡ k(mod n),
bk(M) is also maximal by using (i). Since (p, n) = 1, we arrive by means of (ii) at b1(M)
maximal, and it follows that g is flat by Theorem 1.1, (iii).

Hence, when n is odd and b2(M) is maximal, b1(M) is maximal too and the metric g is flat.
Therefore, we need only to consider the case when n is even.

5.1. Reduction to the symplectic case

As an immediate consequence of Proposition 4.2 we have the following.

Proposition 5.2. Let Mn be a geometrically formal manifold with formal metric g such
that b2(M) is maximal and n is even. Then g admits a compatible almost-Kähler structure,
that is, an almost-complex structure J , which is compatible with g and such that the 2-form
g(J ·, ·) is closed.

Proof. We first claim that there exists a harmonic 2-form α which is non-degenerate, that
is, αk �= 0, n = 2k at some point x of M . Indeed if ϕk = 0 on M for any ϕ in H2(M, g) then after
polarisation we find ϕ1 ∧ . . . ∧ ϕk = 0 whenever ϕi, 1 � i � k belong to H2(M, g). Since frames
in H2(M, g) give frames in the Λ2M it is easy to obtain a contradiction and the existence of α
as above follows. The claim is now proved by using (iii) in Proposition 4.2.

5.2. Proof of flatness

We consider hereafter a compact almost-Kähler manifold (Mn, g, J) (n = 2k) such that g is
a formal metric and, moreover, b2(M) = ( n

2 ). Let ω = g(J ·, ·) be the so-called Kähler form of
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the almost-Kähler structure. We first remark that the bi-type splitting of Λ2M is preserved at
the level of harmonic forms (note, by contrast with the Kähler case that this needs no longer
be true in the case of an arbitrary almost-Kähler manifold).

Lemma 5.1. Any harmonic 2-form splits as α = α1 + α2, where the harmonic α1, α2 are
in λ1,1M and λ2M , respectively.

Proof. Choose α in Λ2M , which splits as α = α1 + α2 with α1 in λ1,1M and α2 in λ2M .
Because of formality we can assume without loss of generality that α is primitive. Again the
formality tells us that L�

α(ω ∧ ω) is harmonic and from the proof of Proposition 4.1 it follows
that it is actually proportional to α1 − α2. This eventually proves the Lemma.

Therefore, if b2(M) is maximal, both λ1,1M and λ2M are spanned by harmonic forms. We
need now to see which geometric properties a harmonic 2-form in λ2M must have. To do so,
recall that the first-canonical Hermitian connection ∇ of the almost-Kähler (g, J) is given by

∇X = ∇X + ηX

for all X in TM . Here ∇ is the Levi–Civita connection of g and ηX = (1/2)(∇XJ)J for all X
in TM gives the intrinsic torsion of the U(n)-structure induced by (g, J). The connection ∇ is
metric and Hermitian, that is, it preserves both the metric and the almost-complex structure.
The almost-Kähler condition, that is, dω = 0, when formulated in terms of the intrinsic torsion
tensor η reads

〈ηXY,Z〉 + 〈ηY Z,X〉 + 〈ηZX,Y 〉 = 0 (5.1)

for all X,Y,Z in TM . The latter also implies that (g, J) is quasi-Kähler:

ηJX = ηXJ (5.2)

for all X in TM . Moreover, we have

ηXJ = −JηX (5.3)

in other words η belongs to λ1M ⊗1 λ2M . The relations (5.1), (5.2), and (5.3) will be used
implicitly in subsequent computations.

Lemma 5.2. Let (M2k, g, J) be an almost-Kähler manifold and let α = g(F ·, ·) be harmonic
in λ2M . Then

(∇JXF )JY + (∇XF )Y = −2ηFXY (5.4)

for all X,Y in TM .

Proof. From dα = 0 we have that a(∇α) = 0. However, ∇Xα = ∇Xα + 〈[F, ηX ]·, ·〉 for all
X in TM and, moreover, a simple computation based on (5.1) shows that

a((X,Y,Z) → 〈[F, ηX ]Y,Z〉) = a((X,Y,Z) → 〈ηFXY,Z〉).
Therefore a(∇α + ηF ·) = 0 and since the tensor under alternation belongs to λ1M ⊗ λ2M we
use Proposition 2.1, (ii) to conclude that it is actually in λ1M ⊗2 λ2M and the proof of the
claim follows by using the relations (5.2) and (5.3).
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If Q is an endomorphism of M , let us define the tensor Q • η by

(Q • η)(X,Y,Z) = σX,Y,Z〈ηQXY,Z〉
for all X,Y,Z in TM , where σ stands for the cyclic sum. Note that this is different from the
usual action of End(TM).

Lemma 5.3. Let (M2k, g, J) be an almost-Kähler manifold and let α = g(F ·, ·) be harmonic
in λ2M with harmonic square. Then

F 2 • η = 0. (5.5)

Proof. That d�(α ∧ α) = 0 translates after a calculation which parallels that in the proof
of Proposition 3.1 into

σX,Y,Z〈(∇FXF )Y,Z〉 = 0

for all X,Y,Z in TM . Rewritten by means of the canonical Hermitian connection and using
(5.1) it yields

〈(∇FXF )Y,Z〉 + 〈(∇FY F )Z,X〉 + 〈(∇FZF )X,Y 〉
+ 〈ηXFY, FZ〉 + 〈ηY FZ,FX〉 + 〈ηZFX,FY 〉 = 0.

(5.6)

We shall exploit now the algebraic symmetries of the above. Changing (Y,Z) in (JY, JZ) and
subtracting from the original equation implies

2〈(∇FXF )Y,Z〉 − 2〈ηXFZ,FY 〉
+ 〈(∇FY F )Z + (∇JFY F )JZ,X〉 − 〈(∇FZF )Y + (∇JFZF )JY,X〉 = 0

or further, after using the relation (5.4)

〈(∇FXF )Y,Z〉 − 〈ηXFZ,FY 〉 − 〈ηF 2Y Z,X〉 + 〈X, ηF 2ZY 〉 = 0. (5.7)

Now taking the cyclic sum and using (5.6) we get the desired result.

Remark 5.1. On an almost-Kähler manifold (M2k, g, J) a harmonic form α in λ2M with
harmonic exterior powers needs not to be parallel with respect to to the Levi–Civita connection
of the metric g. This happens for instance when α = g(I·, ·) for a g-compatible almost-complex
structure I with IJ + JI = 0, which actually induces a complex-symplectic structure on M .
Examples in this direction, which are not hyper-Kähler, can be constructed on certain classes
of nilmanifolds [4].

From the Lemma above we find by J-polarisation that

[F,G] • η = 0

for all F,G dual to harmonic forms in λ2M . It is well known that the splitting so(2k) = u(k) ⊕
m, where m consists in elements of so(2k) anti-commuting with J , is such that [m,m] = u(k) for
k � 2. Therefore, if g is a formal metric on M2k and b2(M) is maximal, we get that F • η = 0
for all F dual to forms in λ1,1M provided that dim M � 6.

Lemma 5.4. If dim M � 6, the intrinsic torsion tensor η must vanish identically.

Proof. It is enough to prove the statement at an arbitrary point m of M . Choose an
arbitrary unit vector V in TmM and let F be the skew-symmetric, J-invariant endomorphism
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of TM which is J on E = 〈{V, JV }〉 and vanishes on H = E⊥. That F • η = 0 says

〈ηFXY,Z〉 + 〈ηFY Z,X〉 + 〈ηFZX,Y 〉 = 0

for all X,Y,Z in TM . It follows that 〈ηV X,Y 〉 = 0 for all X,Y in H, and hence ηV X is
in E for any X ∈ H. Moreover, since dim M � 6, there exists a unit vector U ∈ TM so that
(V, JV, U, JU,X, JX) is an orthogonal system. Let us consider the skew-symmetric, J-invariant
endomorphism G of TM defined by GV = U , GJV = JU , GU = −V , GJU = −JV and G
vanishes on E′⊥, where E′ = 〈{V, JV, U, JU}〉. Then

〈ηGUX,V 〉 + 〈ηGXV,U〉 + 〈ηGV U,X〉 = 0.

This implies that 〈ηV X,V 〉 = −〈ηUX,U〉. Changing V in JV and using the J-anti-invariance
of η we get 〈ηV X,V 〉 = 0. Then

ηV X = 0

for all X ∈ H and ηV X = 〈X,V 〉ηV V + 〈X,JV 〉ηV JV for all X ∈ TM . However from (5.2) it
follows that ηV V = ηV JV = 0 and ηV X = 0 for all X ∈ TM .

In other words (g, J) is a Kähler structure and the flatness of the metric follows now from
[8]. To complete the proof of Theorem 1.5, it remains to treat the case when n = 4. In this
situation, we notice that the bundles Λ±M of (anti) self-dual forms are trivialised by almost-
Kähler structure satisfying the quaternionic identities and using the well-known Hitchin lemma
[6] we obtain that Λ±M both contain a hyper-Kähler structure and this leads routineously to
the flatness of the metric.
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