On Nearly-Kähler Geometry

PAUL-ANDI NAGY
Institut de Mathématiques, Université de Neuchâtel, rue E. Argand 11, 2007 Neuchâtel, Switzerland. e-mail : paul.nagy@unine.ch

(Received: 28 August 2001; accepted: 21 March 2002)

Abstract

We consider complete nearly-Kähler manifolds with a canonical Hermitian connection. We prove some metric properties of strict nearly-Kähler manifolds and give a sufficient condition for the reducibility of the canonical Hermitian connection. A holonomic condition for a nearly-Kähler manifold to be a twistor space over a quaternionic-Kähler manifold is given. This enables us to give classification results in 10-dimensions.

Mathematics Subject Classifications (2000): 53C12, 53C24, 53C28, 53C29.
Key words: nearly-Kähler manifolds, twistor spaces.

1. Introduction

Nearly-Kähler (briefly NK) geometry is related to the concept of weak holonomy introduced by Gray [7] in 1971. He proved that, among those groups acting transitively on the sphere, there are only three groups, namely
$\mathrm{U}(n)$ in dimension $2 n, \quad G_{2}$ in dimension 7, $\quad \operatorname{Spin}(9)$ in dimension 16,
that can occur as weak holonomy groups and produce geometries other than the classical holonomy approach. NK geometry corresponds to weak holonomy $U(n)$ and was intensively studied in the seventies by Gray [8, 9]. Also note that the class of NK manifolds appears naturally as one of the 16 classes of almost Hermitian manifolds described by the Gray-Hervella classification [10].

Recent interest in the study of such manifolds can be justified by the fact that, in dimension 6, NK manifolds are related to the existence of a Killing spinor (see [11]). Furthermore, NK manifolds provide a natural example of almost-Hermitian manifolds admitting a Hermitian connection with totally skew symmetric torsion. From this point of view, they are of interest in string theory (see [5]).

The aim of this paper is to investigate a number of properties of NK manifolds related to the reducibility of the canonical Hermitian connection. We begin by proving a decomposition result which allows us to restrict our attention to strict NK manifolds (see Section 1). Our first main result is the following:

THEOREM 1.1. Let $\left(M^{2 n}, g, J\right)$ a complete, strict $N K$ manifold. Then the following hold:
(i) If g is not an Einstein metric, then the canonical Hermitian connection has reduced holonomy.
(ii) The metric g has positive Ricci curvature, hence M is compact with a finite fundamental group.
(iii) The scalar curvature of the metric g is a strictly positive constant.

The previous theorem is a synthesis of the results contained in Section 2.
Let us recall now that one main class of examples of NK manifolds is formed by the so-called 3-symmetric spaces [8]. Other examples are provided by total spaces of Riemannian submersions with totally geodesic fibers admitting a compatible Kähler structure. These manifolds admit a canonical NK structure such that the canonical Hermitian connection has reduced holonomy (see Section 3). In particular, twistor spaces over positive quaternion-Kähler manifolds (here positive means of positive scalar curvature) have canonical NK structures, a result already proven in [1]. See also [15] for the case of twistor bundles over 4-manifolds.

In the second part of this paper, we are concerned with the study of the most simple case of reducible NK geometry which is the following:

THEOREM 1.2. Let $\left(M^{2 n}, g, J\right)$ be a complete, simply connected, strict NK manifold. If the holonomy group of the canonical Hermitian connection is contained in $U(1) \times U(n-1)$, then M is a Riemannian product $M_{1} \times M_{2}$, where M_{1} is a strict NK manifold and M_{2} is the twistor space of a positive quaternionic-Kähler manifold endowed with its canonical NK structure.

Theorem 1.2 was already proven in 6-dimensions by a different method in [2]. Our approach consists in showing that the torsion of the canonical Hermitian connection has to be of a special algebraic type with respect to the holonomy decomposition. This will be done in Section 4. Then, using standard arguments, one can show that M carries a complex contact structure and a Kähler-Einstein metric. The conclusion follows from a theorem of LeBrun (see Section 5).

As a corollary of Theorem 1.2 , we obtain a structure result in 10 -dimensions. Note that in 8 -dimensions it has already been shown by Gray [9] that there are no strict NK manifolds.

COROLLARY 1.1. Let $\left(M^{10}, g, J\right)$ be a complete NK manifold. Then either the universal cover of M is a Riemannian product of a Kähler surface with a sixdimensional NK manifold, or M is the twistor space of a positive, eight-dimensional quaternionic-Kähler manifold equipped with a canonical NK structure.

Using results from [16] (see also [13]) we know that the only positive quaternionicKähler manifolds of 8-dimensions are the symmetric spaces $P \mathbb{H}^{2}, \mathbb{G} r_{2}\left(\mathbb{C}^{4}\right), G_{2} /$ $\mathrm{SO}(4)$ with canonical metrics. Hence, their twistor spaces, which are described in [13], equipped with the canonical NK structure, exhaust the list of complete, strict NK manifolds of dimension 10 .

2. Nearly-Kähler Geometry

A NK manifold is an almost-Hermitian manifold $\left(M^{2 n}, g, J\right)$ such that $\left(\nabla_{X} J\right) X=$ 0 for every vector field X on M (here ∇ denotes the Levi-Civita connection associated with the metric g). A NK manifold is called strict if $\nabla_{X} J \neq 0$ for every $X \in T M, X \neq 0$.

Recall that the tensor ∇J has a number of important algebraic properties that can be summarized as follows: the tensors A and B defined for X, Y, Z in $T M$ by

$$
A(X, Y, Z)=\left\langle\left(\nabla_{X} J\right) Y, Z\right\rangle \quad \text { and } \quad B(X, Y, Z)=\left\langle\left(\nabla_{X} J\right) Y, J Z\right\rangle
$$

are skew-symmetric and have type $(0,3)+(3,0)$ as real 3-forms. Denote by Ric the Ricci tensor of the metric g and by Ric* its star version, i.e. the operator defined by

$$
\left\langle\operatorname{Ric}^{\star}(X), Y\right\rangle=\frac{1}{2} \sum_{i=1}^{2 n} R\left(X, J Y, e_{i}, J e_{i}\right)
$$

where R is the curvature tensor of (M, g) and $\left\{e_{1}, \ldots, e_{2 n}\right\}$ a local frame field. The difference of these tensors, to be denoted by r, is given by the formula (see [9])

$$
\langle r X, Y\rangle=\sum_{i=1}^{2 n}\left\langle\left(\nabla_{e_{i}} J\right) X,\left(\nabla_{e_{i}} J\right) Y\right\rangle
$$

Obviously, r is symmetric, positive and commutes with J. Another object of particular importance is the canonical Hermitian connection defined by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\frac{1}{2}\left(\nabla_{X} J\right) J Y
$$

It is easy to see that $\bar{\nabla}$ is the unique Hermitian connection on M with totally skewsymmetric torsion (see, for example, [5]). Note that the torsion of $\bar{\nabla}$ given by $T(X, Y)=\left(\nabla_{X} J\right) J Y$ vanishes iff (M, g, J) is a Kähler manifold.

The tensor r has strong geometric properties. To begin, we have

$$
\begin{equation*}
\bar{\nabla} r=0 . \tag{2.1}
\end{equation*}
$$

In fact, Gray proved in [9] that, for all X, Y, Z in $T M$, we have

$$
\left.2\left\langle\left(\nabla_{X} r\right) Y, Z\right\rangle=\left\langle r\left(\nabla_{X} J\right) Y, J Z\right)\right\rangle+\left\langle r(J Y),\left(\nabla_{X} J\right) Z\right\rangle
$$

But this is nothing else than (2.1)!
PROPOSITION 2.1. Let $\left(M^{2 n}, g, J\right)$ be a complete, simply connected, NK manifold. Then M is a riemannian product $M_{1} \times M_{2}$ where M_{1} is a Kähler manifold and M_{2} a strict $N K$ manifold.

Proof. Set $E_{1}=\operatorname{Ker}(r)$ and let E_{2} be the orthogonal complement of E_{1} in $T M$. By (2.1) both E_{1} and E_{2} are $\bar{\nabla}$-parallel. Since $\nabla_{X} J$ vanishes whenever X is in E_{1}, the distribution E_{1} is in fact ∇-parallel. Now, if X is in $T M$ and Y in E_{2}, we have $\left(\nabla_{X} J\right) Y \in E_{1}^{\perp}=E_{2}$, hence E_{2} is ∇-parallel. It is now easy to conclude by a theorem of de Rham.

Remark 2.1. (i) Proposition 2.1 was already proven in [9] under the assumption that the tensor r is ∇-parallel.
(ii) Proposition 2.1 was first proven by different means in [12], where it was also proved that the Nijenhuis tensor of a NK manifold is $\bar{\nabla}$-parallel. We thank the referee for pointing out this paper.

Therefore, we can restrict our attention to the class of strict NK manifolds.
PROPOSITION 2.2. Let $\left(M^{2 n}, g, J\right)$ a strict $N K$ manifold.
(i) Suppose that r has more than one eigenvalue. Then the canonical Hermitian connection has reduced holonomy.
(ii) If the tensor r has exactly one eigenvalue, then M is a positive Einstein manifold. Furthermore, the first Chern class of (M, J) vanishes.

Proof. (i) If $\lambda_{i}>0, i=\overline{1, p}$ are the eigenvalues of r we have a $\bar{\nabla}$-parallel decomposition

$$
\begin{equation*}
T M=\bigoplus_{i=1}^{p} E_{i} \tag{2.2}
\end{equation*}
$$

where E_{i} is the eigenbundle corresponding to the eigenvalue λ_{i}. Hence, each factor is preserved by the holonomy group, which is thus reducible.
(ii) The proof can be found in [9, p. 242] but let us give it for the sake of completeness. We recall the following formula:

$$
\begin{equation*}
\sum_{i, j=1}^{2 n}\left\langle r e_{i}, e_{j}\right\rangle\left(R\left(X, e_{i}, Y, e_{j}\right)-5 R\left(X, e_{i}, J Y, J e_{j}\right)\right)=0 \tag{2.3}
\end{equation*}
$$

(see [9]), where $\left\{e_{i}\right\}_{i=\overline{1,2 n}}$ is a local orthonormal frame field and X, Y are in $T M$. If $r=\lambda 1_{T M}, \lambda>0$ this formula becomes Ric -5 Ric $^{\star}=0$, hence, Ric $=5 \lambda / 4$ as Ric $-\mathrm{Ric}^{\star}=r$. The second assertion follows from the description of the first Chern class of (M, J) given in [9].

The first part of Theorem 1.1 now follows from the previous proposition. We will now compute the Ricci tensor of a NK manifold and show that it is completely determined by the spectral decomposition of the tensor r. This computation will be equally used in Section 5.

LEMMA 2.1. We have, by respect to the decomposition (2.2):
(i) $\operatorname{Ric}(X, Y)=0$ if X and Y are vector fields belonging to E_{i} and E_{j}, respectively, and $i \neq j$.
(ii) If X, Y are vector fields in E_{i} :

$$
\operatorname{Ric}(X, Y)=\frac{\lambda_{i}}{4}\langle X, Y\rangle+\frac{1}{\lambda_{i}} \sum_{s=1}^{p} \lambda_{s}\left\langle r^{s}(X), Y\right\rangle
$$

where the tensors $r^{s}: T M \rightarrow T M, 1 \leq s \leq p$ are defined by $\left\langle r^{s}(X), Y\right\rangle=$ $-\operatorname{Tr}_{E_{s}}\left(\nabla_{X} J\right)\left(\nabla_{Y} J\right)$ whenever X, Y are in $T M$.

Proof. (i) Let us denote by \bar{R} the curvature tensor of the connection $\bar{\nabla}$. We have (see [9, p. 237]):

$$
\begin{align*}
\bar{R}(X, Y, Z, T)= & R(X, Y, Z, T)-\frac{1}{2}\left\langle\left(\nabla_{X} J\right) Y,\left(\nabla_{Z} J\right) T\right\rangle+ \\
& +\frac{1}{4}\left[\left\langle\left(\nabla_{X} J\right) Z,\left(\nabla_{Y} J\right) T\right\rangle-\left\langle\left(\nabla_{X} J\right) T,\left(\nabla_{Y} J\right) Z\right\rangle\right] . \tag{2.4}
\end{align*}
$$

Let $\left\{e_{k}\right\}_{k=\overline{1,2 n}}$ be an orthonormal base of $T M$ which gives orthonormal bases in E_{s} for $1 \leq s \leq p$. We get

$$
\operatorname{Ric}(X, Y)=\sum_{s=1}^{p} \sum_{e_{k} \in E_{s}} R\left(X, e_{k}, Y, e_{k}\right)
$$

If $s \neq j$, we have $\bar{R}\left(X, e_{k}, Y, e_{k}\right)=0$, hence

$$
R\left(X, e_{k}, Y, e_{k}\right)=\frac{1}{4}\left\langle\left(\left(\nabla_{e_{k}} J\right)\right) X,\left(\nabla_{e_{k}} J\right) Y\right\rangle
$$

by (2.4). If $s=j$, then $s \neq i$ and, as before, we get

$$
R\left(X, e_{k}, Y, e_{k}\right)=R\left(Y, e_{k}, X, e_{k}\right)=\frac{1}{4}\left\langle\left(\left(\nabla_{e_{k}} J\right)\right) X,\left(\nabla_{e_{k}} J\right) Y\right\rangle
$$

It follows that $\operatorname{Ric}(X, Y)=(1 / 4)\langle r X, Y\rangle=0$.
(ii) Using (2.3), we obtain

$$
\sum_{s=1}^{p} \lambda_{s}\left(\sum_{e_{k} \in E_{s}} R\left(X, e_{k}, Y, e_{k}\right)-5 R\left(X, e_{k}, J Y, J e_{k}\right)\right)=0
$$

Reasoning as in the proof of (i), for $s \neq i$ we get that

$$
R\left(X, e_{k}, J Y, J e_{k}\right)=-3 R\left(X, e_{k}, Y, e_{k}\right)=-\frac{3}{4}\left\langle\left(\nabla_{e_{k}} J\right) X,\left(\nabla_{e_{k}} J\right) Y\right\rangle
$$

It follows that

$$
4 \sum_{\substack{s=1 \\ s \neq i}} \lambda_{s}\left\langle r^{s} X, Y\right\rangle+\lambda_{i}\left(\sum_{e_{k} \in E_{s}} R\left(X, e_{k}, Y, e_{k}\right)-5 R\left(X, e_{k}, J Y, J e_{k}\right)\right)=0
$$

and, further,

$$
4 \sum_{\substack{s=1 \\ s \neq i}}\left(\lambda_{s}-\lambda_{i}\right)\left\langle r^{s} X, Y\right\rangle+\lambda_{i}\left\langle\left(\operatorname{Ric}-5 \operatorname{Ric}^{\star}\right) X, Y\right\rangle=0
$$

We conclude by using that Ric - Ric $^{\star}=r$ and $\sum_{s=1}^{p} r^{s}=r$.
Note that by definition, the tensors $r^{s}, 1 \leq s \leq p$ are positive. Setting $\lambda=\min \left\{\lambda_{i}\right.$: $1 \leq i \leq p\}$, Proposition 2.1 obviously implies that Ric $\geq \lambda g$. This, together with Myer's theorem, proves the second assertion of Theorem 1.1.

Another result we will use in the next section is
LEMMA 2.2. The tensors $r^{s}, 1 \leq s \leq p$ are $\bar{\nabla}$-parallel.
The proof is analogous to that of the $\bar{\nabla}$-parallelism of r so it will be left to the reader. Thus, using Lemma 2.1 we obtain the following corollary:

COROLLARY 2.1. The Ricci tensor and the Ricci \star tensor of a compact NK manifold are $\bar{\nabla}$-parallel.

It follows that the scalar curvature and more, the \star-scalar curvature of (M, g, J), are strictly positive constants. The proof of Theorem 1.1 is now finished.

3. Examples of NK Manifolds

Let us consider a Riemannian submersion with totally geodesic fibers

$$
F \hookrightarrow(M, g) \rightarrow N
$$

and let $T M=\mathcal{V} \oplus H$ be the corresponding splitting of $T M$. We will suppose that M admits a complex structure J compatible with g and preserving \mathcal{V} and H such that (M, g, J) is a Kähler manifold. Consider now the Riemannian metric on M defined by

$$
\hat{g}(X, Y)=\frac{1}{2} g(X, Y) \quad \text { if } X, Y \in \mathcal{V}, \quad \hat{g}(X, Y)=g(X, Y) \quad \text { for } X, Y \text { in } H
$$

The metric \hat{g} admits a compatible almost complex structure \hat{J} given by $\hat{J}_{\mid \mathcal{V}}=-J$ and $\hat{J}_{\mid H}=J$. This almost complex structure was introduced in [4] for the case of twistor spaces over 4-manifolds.

PROPOSITION 3.1. The manifold (M, \hat{g}, \hat{J}) is nearly Kähler. The distributions \mathcal{V} and H are parallel with respect to the canonical Hermitian connection of (M, \hat{g}, \hat{J}) which thus has reduced holonomy.

Proof. Let $A: T M \times T M \rightarrow T M$ be the O'Neill tensor of the Riemannian submersion (M, g). As g is Kähler, we must have $A_{X} J=J A_{X}$ for all X in $T M$. Using the relations between the Levi-Civita connections of \hat{g} and g given in [3], after a standard computation, we obtain

$$
\begin{aligned}
& \left(\hat{\nabla}_{X} \hat{J}\right) V=-\left(\hat{\nabla}_{V} \hat{J}\right) X=-A_{X}(J V), \\
& \left(\hat{\nabla}_{V} \hat{J}\right) W=0,\left(\hat{\nabla}_{X} \hat{J}\right) Y=2 A_{X}(J Y),
\end{aligned}
$$

for every X, Y in \mathcal{V} and V, W in H. It is now straightforward to conclude.

COROLLARY 3.1. The twistor space of a positive quaternionic-Kähler manifold of dimension $4 k$ admits a canonical NK structure with reducible holonomy, contained in $\mathrm{U}(1) \times \mathrm{U}(2 k)$.

Proof. We have only to recall [17] that such a twistor space is the total space of a Riemannian submersion with totally geodesic fibers of dimension 2 and that it admits a compatible Kähler structure.

4. Reducible NK Manifolds

In this section, we consider strict NK manifolds $\left(M^{2 n}, g, J\right)$ such that the holonomy of the canonical Hermitian connection is contained in $\mathrm{U}(1) \times \mathrm{U}(n-1)$. This leads to a $\bar{\nabla}$-parallel decomposition of $T M$, orthogonal with respect to g and stable by $J, T M=L \oplus E$ with L of rank two. Note that the torsion of $\bar{\nabla}$ vanishes on L and $T(L, E) \subseteq E$.

LEMMA 4.1. We have
(i) $\bar{R}(X, Y, V, J V)=-2\left\langle\left(\nabla_{V} J\right)^{2} X, J Y\right\rangle$ for every vector fields X, Y on E and V on L.
(ii) $\bar{R}(X, V, V, J V)=0$ if X belongs to E and V to L.

Proof. (i) Using (2.4) we get

$$
\bar{R}(X, Y, V, J V)=R(X, Y, V, J V)-\frac{1}{2}\left\langle\left(\nabla_{V} J\right)^{2} X, J Y\right\rangle .
$$

Now the first Bianchi identity gives

$$
R(X, Y, V, J V)=-R(Y, V, X, J V)+R(X, V, Y, J V)
$$

As E is $\bar{\nabla}$-parallel, we must have $\bar{R}(Y, V, X, J V)=0$ so we find by (2.4) that

$$
R(Y, V, X, J V)=\frac{3}{4}\left\langle\left(\nabla_{V} J\right)^{2} X, J Y\right\rangle
$$

In the same way we have

$$
R(X, V, Y, J V)=-\frac{3}{4}\left\langle\left(\nabla_{V} J\right)^{2} X, J Y\right\rangle
$$

and the result easily follows.
(ii) Using (2.4) twice we get

$$
\bar{R}(X, V, V, J V)=R(X, V, V, J V)=R(V, J V, X, V)=\bar{R}(V, J V, X, V)
$$

and we conclude by the fact that E is $\bar{\nabla}$-parallel.
Let us denote by Ω the curvature form of the line bundle L. Then we have

$$
\bar{R}(X, Y) V=\Omega(X, Y) J V
$$

for X, Y in $T M$ and V in L. We denote by ω^{L} the restriction of the Kähler form ω to L. Let F be the endomorphism of $T M$ defined by

$$
\langle F X, Y\rangle=-\frac{1}{2} \operatorname{Tr}_{L}\left(\nabla_{X} J\right)\left(\nabla_{Y} J\right)
$$

whenever X, Y are in $T M$.
Remark 4.1. If V is a local vector field on L of norm 1 we have $F=-\left(\nabla_{V} J\right)^{2}$. Hence, F is symmetric and positive, with $[F, J]=0$. By Lemma $2.2, F$ is $\bar{\nabla}$ parallel and it easily follows that $\nabla_{V} F=0$ for every vector field V in L.

If q^{E} is the 2-form on E defined by $q^{E}(X, Y)=\langle F X, J Y\rangle$ for X, Y in E, by Lemma 4.1 we obtain that $\Omega=f \omega^{L}+2 q^{E}$, where f is a smooth function on M.

LEMMA 4.2. We have:
(i) $\mathrm{d} \omega^{L}(X, V, J V)=\mathrm{d} q^{E}(X, V, J V)=0$ if V is in L and X in E.
(ii) $\mathrm{d} \omega^{L}(V, X, Y)=-\left\langle\left(\nabla_{V} J\right) X, Y\right\rangle, \mathrm{d} q^{E}(V, X, Y)=-2\left\langle F\left(\nabla_{V} J\right) X, Y\right\rangle$, where V, X, Y are vector fields belonging to L resp. E.

Proof. The proof of (i) is straightforward. We leave it to the reader and concentrate on (ii). We have

$$
\mathrm{d} \omega^{L}(V, X, Y)=\nabla_{V} \omega^{L}(X, Y)-\nabla_{X} \omega^{L}(V, Y)+\nabla_{Y} \omega^{L}(V, X)
$$

The fact that ω^{L} vanishes as soon as we take a direction in E gives us

$$
\nabla_{V} \omega^{L}(X, Y)=0, \quad \nabla_{X} \omega^{L}(V, Y)=-\omega^{L}\left(V, \nabla_{X} Y\right)
$$

and

$$
\nabla_{Y} \omega^{L}(V, X)=-\omega^{L}\left(V, \nabla_{Y} X\right)
$$

The claimed formula for $\mathrm{d} \omega^{L}(V, X, Y)$ follows using the fact that $\bar{\nabla}_{X} Y$ and $\bar{\nabla}_{Y} X$ belong to E. Next, we have

$$
\mathrm{d} q^{E}(V, X, Y)=\left(\nabla_{V} q^{E}\right)(X, Y)-\left(\nabla_{X} q^{E}\right)(V, Y)+\left(\nabla_{Y} q^{E}\right)(V, X)
$$

The vanishing of q^{E} on $L \times E$ implies that

$$
\left(\nabla_{V} q^{E}\right)(X, Y)=\left\langle\left(\nabla_{V} F\right) X, J Y\right\rangle+\left\langle F X,\left(\nabla_{V} J\right) Y\right\rangle=\left\langle F X,\left(\nabla_{V} J\right) Y\right\rangle
$$

(see Remark 4.1) and

$$
\left(\nabla_{X} q^{E}\right)(V, Y)=\frac{1}{2}\left\langle F\left(\nabla_{V} J\right) X, Y\right\rangle, \quad\left(\nabla_{Y} q^{E}\right)(V, X)=\frac{1}{2}\left\langle F\left(\nabla_{V} J\right) Y, X\right\rangle
$$

We conclude by using the fact that F commutes with $\nabla_{V} J$.
Let ω^{E} be the restriction of the form ω to E. Let us define the subbundle E_{1} of E by setting $E_{1}=\operatorname{Ker}(F)$, and let E_{2} be his orthogonal complement in E. Note that the $\bar{\nabla}$-parallelism of F implies that the distributions E_{1} and E_{2} are $\bar{\nabla}$-parallel. We can now have a complete description of the curvature form of our line bundle L as follows.

PROPOSITION 4.1. (i) There exists a constant $k>0$ such that $F_{\mid E_{2}}=(k / 4) 1_{E_{2}}$. Moreover, the curvature form of the line bundle L is $(k / 2)\left(-2 \omega^{L}+\omega^{E_{2}}\right)$.
(ii) We have that $\left(\nabla_{X} J\right) Y$ belongs to L whenever X, Y are in E_{2}, that $\left(\nabla_{X} J\right) Y=$ 0 if X is in E_{1} and Y in E_{2} and that $\left.\nabla_{X} J\right) Y$ belongs to E_{1} if X, Y belong to E_{1}.

Proof. (i) As Ω is closed, we get $f \mathrm{~d} \omega^{L}+\mathrm{d} f \wedge \omega^{L}=-2 \mathrm{~d} q^{E}$. If X, resp. V, are vector fields in E, resp. L, it follows by Lemma 4.2(i) that $X . f=0$, hence $\mathrm{d} f_{\mid E}=0$. This implies $[X, Y] . f=0$ whenever X, Y are vector fields in E and, further, that $\left(\nabla_{X} J\right) Y . f=0$ (here we used that E is $\bar{\nabla}$-parallel and

$$
\left.\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X=[X, Y]+\left(\nabla_{X} J\right) J Y\right)
$$

But the map $u: E \times E \rightarrow L$ defined at $(v, w) \in E \times E$ as the orthogonal projection of $\left(\nabla_{v} J\right) w$ on L is surjective (otherwise it should be identically zero, and this is a contradiction with the fact that M is strict). Hence, $\mathrm{d} f$ vanishes on L and thus $\mathrm{d} f=0$, that is f is constant, equal to c.

Let now X, Y, resp. V, be vector fields in E resp. L. As $\mathrm{d} \Omega(V, X, Y)=0(\Omega$ is closed form) we get from Lemma 4.2(ii):

$$
-c\left\langle\left(\nabla_{V} J\right) X, Y\right\rangle-4\left\langle F\left(\nabla_{V} J\right) X, Y\right\rangle=0
$$

We deduce that $\left(\nabla_{V} J\right)(4 F+c)=0$ and, further, $F(4 F+c)=0$ on E. As the restriction of F to E_{2} is injective it follows that $F=(-c / 4)$ id on E_{2}. We set $k=-c$.
(ii) Let X, Y, Z be vector fields on E. As we obviously have $\mathrm{d} \omega^{L}(X, Y, Z)=0$, it follows by (i) that $\mathrm{d} \omega^{E_{2}}(X, Y, Z)=0$. If X, Y, Z are in E_{2}, a straightforward computation gives

$$
\left(\nabla_{X} \omega^{E_{2}}\right)(Y, Z)=-\left\langle\left(\nabla_{X} J\right) Y, Z\right\rangle
$$

from which we deduce that $\mathrm{d} \omega^{E_{2}}(X, Y, Z)=-\left\langle\left(\nabla_{X} J\right) Y, Z\right\rangle$, hence the first affirmation follows. The two others are proved in a similar way.

Hence, we obtain the following decomposition result:

COROLLARY 4.1. If M is simply connected, it is a Riemannian product $M_{1} \times M_{2}$ where M_{1} is a strict $N K$ manifold and M_{2} is a strict NK manifold whose tangent bundle admits a parallel (with respect to the Hermitian connection) line bundle such that the corresponding tensor F has no kernel.

Proof. We have a $\bar{\nabla}$-parallel decomposition $T M=E_{1} \oplus\left(L \oplus E_{2}\right)$ that is in fact $\bar{\nabla}$-parallel by the algebraic properties of Proposition 4.1(ii). Hence, we may apply the de Rham decomposition theorem as M is simply connected.

Hence, from now on we will make the assumption that our NK manifold M satisfies $F_{\mid E}=(k / 4) 1_{E}$. For proving Theorem 1.2, all we need to see is that such a NK manifold is in fact a twistor space.

COROLLARY 4.2. (i) The tensor r has exactly two eigenvalues: $(k(n-1)) / 2$, resp. k, with eigenbundles L resp. E.
(ii) The Ricci tensor of (M, g) has exactly two eigenvalues: $(k(n+7)) / 8$ and $(k(n+2)) / 4$ with eigenbundles L, resp. E.

Proof. (i) The fact that $r_{\mid L}=(k(n-1)) / 2$ easily follows by the fact that F is constant on E. If x is in E, let v in L be unitary, and $\left\{e_{i}\right\}_{1 \leq i \leq 2(n-1)}$ be an orthogonal basis of E. Then we have

$$
\langle r x, x\rangle=2\left\|\left(\nabla_{v} J\right) x\right\|^{2}+\sum_{i=1}^{2(n-1)}\left\|\left(\nabla_{e_{i}} J\right) x\right\|^{2}
$$

As $\left(\nabla_{e_{i}} J\right) x$ belongs to L, the last sum equals $2\left\|\left(\nabla_{v} J\right) x\right\|^{2}$ and we use $F_{\mid E}=k / 4$.
(ii) Follows from Lemma 2.1 and (i).

5. The Twistor Structure

Let us define a new Riemannian metric on M, called \bar{g}, as follows:

$$
\begin{aligned}
& \bar{g}(X, Y)=g(X, Y) \quad \text { if } X, Y \in E, \\
& \bar{g}(X, Y)=2 g(X, Y) \quad \text { for } X, Y \text { in } L
\end{aligned}
$$

The reversing almost complex structure defined by $\bar{J}_{\mid L}=-J$ and $\bar{J}_{\mid E}=J$ is in fact integrable, the proof being identical to that given in six dimensions in [2]. The Kähler form of (M, \bar{g}, \bar{J}) is exactly $-2 \omega^{L}+\omega^{E}$ and, hence, it is closed by Proposition 4.1(i). Thus, (M, \bar{g}, \bar{J}) is a Kähler manifold.

LEMMA 5.1. (M, \bar{g}) is an Einstein manifold, with Einstein constant $(n+1 / 4) k$.
Proof. This is a computation very similar to that of [3, p. 232], where the Ricci tensor of the canonical variation of a Riemannian submersion is computed. Let $\widetilde{\nabla}$
be the Levi-Civita connection of the metric \bar{g}. If V, resp. X, Y, are vector fields in L, resp. E, we have

$$
\tilde{\nabla}_{V} X=\bar{\nabla}_{V} X, \quad \widetilde{\nabla}_{X} V=\bar{\nabla}_{X} V-\left(\nabla_{X} J\right) J V
$$

and

$$
\widetilde{\nabla}_{X} Y=\nabla_{X} Y
$$

Moreover, $\widetilde{\nabla}_{V} W=\nabla_{V} W$ whenever V, W are in L. This follows from the definition of the Levi-Civita connection and by the fact that the $\bar{\nabla}$-parallelism of L and E allows us to identify the projections on L, resp. E, of brackets of the type [$V, X]$ and $[X, Y]$.

Let \widetilde{R} be the curvature tensor of $\widetilde{\nabla}$. Using the above formulas, after a standard computation, we get

$$
\begin{aligned}
\widetilde{R}(V, X, V, X) & =\langle F X, X\rangle\|V\|^{2}=\frac{k}{4}\|V\|^{2}\|X\|^{2} \\
\widetilde{R}(X, Y, X, Y) & =\bar{R}(X, Y, X, Y)-\frac{1}{2}\left\|\left(\nabla_{X} J\right) Y\right\|^{2} \\
& =R(X, Y, X, Y)-\frac{3}{4}\left\|\left(\nabla_{X} J\right) Y\right\|^{2}
\end{aligned}
$$

by (2.4). The result now follows by Corollary 4.2.

Thus, (M, \bar{g}, \bar{J}) is a Kähler-Einstein manifold which is also Fano. Moreover, the distribution E defines a complex contact structure on the complex manifold (M, \bar{J}) as it is \bar{J}-holomorphic and the map $(X, Y) \in E \times E \rightarrow\left(\nabla_{X} J\right) Y$ which gives the Frobenius obstruction is everywhere nondegenerate. By a result of LeBrun (see [14]), (M, \bar{g}) is the twistor space of a positive quaternionic-Kähler manifold. Moreover, from the construction of the metric \bar{g} we deduce that (M, g) is the twistor space of a positive quaternionic-Kähler manifold endowed with its canonical NK structure. This proves Theorem 1.2.

Remark 5.1. If M is of dimension 6, it has constant type and Proposition 4.1 is automatically satisfied. Corollary 4.2 follows from the fact that every six-dimensional NK manifold is Einstein [9]. Thus, all we need to prove Theorem 1.1 in this case is Lemma 5.1.

Let us now prove Corollary 1.1. It is well known (see [9]) that in 10-dimensions the eigenvalues of r are $4\left(\alpha^{2}+\beta^{2}\right)$ with multiplicity $2,4 \alpha^{2}$ and $4 \beta^{2}$ each of multiplicity 4, where $\alpha \geq \beta \geq 0$. If $\beta=0$ then it follows by [9] that the universal cover of M is a Riemannian product as stated. If $\beta>0$ then M is strict and let L be the line bundle given by the eigenspaces of r corresponding to the eigenvalue $4\left(\alpha^{2}+\right.$ β^{2}). Again by computations from [9] we see that the tensor F is injective and the previous discussion applies.

References

1. Alexandrov, B., Grantcharov, G. and Ivanov, S.: Curvature properties of twistor spaces of quaternionic Kähler manifolds, J. Geom. 62 (1998), 1-12.
2. Belgun, F. and Moroianu, A.: Nearly Kähler 6-manifolds with reduced holonomy, Ann. Global Anal. Geom. 19 (2001), 307-319.
3. Besse, A.: Einstein Manifolds, Springer, New York, 1987.
4. Eels, J. and Salamon, S.: Constructions twistorielles des applications harmoniques, C. R. Acad. Sci. Paris 296 (1983), 685-687.
5. Friedrich, Th. and Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory, Math. DG/0102142, 2001.
6. Gray, A.: Nearly Kähler manifolds, J. Differential Geom. 4 (1970), 283-309.
7. Gray, A.: Weak holonomy groups, Math. Z. 125 (1971), 290-300.
8. Gray, A.: Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369.
9. Gray, A.: The structure of nearly Kähler manifolds, Math. Ann. 223 (1976), 233-248.
10. Gray, A. and Hervella, L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.
11. Grunewald, R.: Six-Dimensional Riemannian manifolds with real Killing spinors, Ann. Global Anal. Geom. 8 (1990), 43-59.
12. Kirichenko, V. F.: K-spaces of maximal rank, Mat. Zametki 22(4) (1977), 465-476.
13. LeBrun, C. and Salamon, S.: Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math. 118 (1994), 109-132.
14. LeBrun, C.: Fano manifolds, contact structures and quaternionic geometry, Internat. J. Math. 6 (1995), 419-437.
15. Muskarov, O.: Structures presque Hermitiennes sur les espaces twistoriels et leurs types, C. R. Sci. Paris Ser. I Math. 305 (1987), 365-398.
16. Poon, Y. S. and Salamon S.: Eight-dimensional quaternion Kähler manifolds with positive scalar curvature, J. Differential Geom. 33 (1990), 363-378.
17. Salamon, S.: Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171.
18. Swann, A.: Weakening holonomy, Preprint ESI No. 816, 2000.
