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Abstract
Let ∇ be a metric connection with totally skew-symmetric torsion T on a
Riemannian manifold. Given a spinor field � and a dilaton function �, the
basic equations in the common sector of type II string theory are

∇� = 0, δ(T) = a · (d� T), T · � = b · d� · � + µ · �

for some auxiliary parameters a, b, µ. We derive some relations between the
length ‖T‖2 of the torsion form, the scalar curvature of ∇, the dilaton function
� and the parameters a, b, µ. We show that for constant dilaton and µ = 0 (the
physically relevant case), there cannot be even local solutions to this system
of equations with vanishing scalar curvature. The main results deal with the
divergence of the Ricci tensor Ric∇ of the connection. In particular, if the
supersymmetry � is non-trivial and if the conditions

(d� T) T = 0, δ∇(dT) · � = 0

hold, then the energy–momentum tensor is divergence free. We show that
the latter condition is satisfied in many examples constructed out of special
geometries. A special case is a = b. Then the divergence of the energy–
momentum tensor vanishes if and only if one condition δ∇(dT) · � = 0 holds.
Strong models (dT = 0) have this property, but there are examples with
δ∇(dT) �= 0 and δ∇(dT) · � = 0.

PACS numbers: 04.65.+e, 11.25.Mj, 11.27.+d

1. Type II B string theory with constant dilaton

The mathematical model discussed in the common sector of type II superstring theory (also
sometimes referred to as type I supergravity) consists of a Riemannian manifold (Mn, g), a
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metric connection ∇ with totally skew-symmetric torsion T and a non-trivial spinor field �.
Putting the full Ricci tensor aside for starters, there are three equations relating these objects:

(∗) ∇� = 0, δ(T) = 0, T · � = µ · �.

The spinor field describes the supersymmetry of the model. The first equation means that
the spinor field � is parallel with respect to the metric connection ∇. The second equation
is a conservation law for the 3-form T. Since ∇ is a metric connection with totally skew-
symmetric torsion, the divergences δ∇(T) = δg(T) of the torsion form coincide (see [2, 8]).
We denote this unique 2-form simply by δ(T). The third equation is an algebraic link between
the torsion form T and the spinor field �. Indeed, the 3-form T acts as an endomorphism in the
spinor bundle and the last equation requires that � is an eigenspinor for this endomorphism.
Generically, µ = 0 in the physical model; but the mathematical analysis becomes more
transparent if we first include this parameter. A priori, µ may be an arbitrary function. Since
T acts on spinors as a symmetric endomorphism, µ has to be real. Moreover, we will see that
only real, constant parameters µ are possible. It is well known (see [8]) that the conservation
law δ(T) = 0 implies that the Ricci tensor Ric∇ of the connection ∇ is symmetric. Denote by
Scal∇ the ∇-scalar curvature and by Scalg the scalar curvature of the Riemannian metric. The
existence of the ∇-parallel spinor field yields the so-called integrability conditions (see [6]),
i.e. relations between µ, T and the curvature tensor of the connection ∇.

Theorem 1.1. Let (Mn, g,∇, T, �,µ) be a solution of (∗) and assume that the spinor field
� is non-trivial. Then the function µ is constant and we have

‖T‖2 = µ2 − Scal∇

2
� 0, Scalg = 3

2
µ2 +

Scal∇

4
.

Moreover, the spinor field � is an eigenspinor of the endomorphism defined by the 4-form dT,

dT · � = −Scal∇

2
· �.

Proof. Let us associate with the 3-form T the following 4-form σT:

σT := 1

2

n∑

k=1

(ek T) ∧ (ek T).

The square T2 of the 3-form T in the Clifford algebra is the sum of a scalar and a 4-form
(see [2]),

T2 − ‖|T‖2 = −2 · σT.

The existence of a ∇-parallel spinor yields the following condition (see [8]):

3 · dT · � + 2 · δ(T) · � − 2 · σT · � + Scal∇ · � = 0.

Finally, there is a formula for the anti-commutator of the ∇-Dirac operator DT and the
endomorphism T (see [8]),

DT ◦ T + T ◦ DT = dT + δ(T) − 2 · σT − 2
n∑

i=1

(ei T) · ∇ei
.

Combining these formulae we obtain, for example,

grad(µ) · � = Scal∇ · � + 2 · (‖T‖2 − µ2) · �

and the result follows immediately. �
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Since µ has to be constant, the equation T · � = µ · � yields

Corollary 1. For all vectors X, one has

(∇XT) · � = 0.

Corollary 2. Assume that there exists a spinor field � �= 0 satisfying equations (∗). If µ = 0
and Scal∇ = 0, the torsion form T has to vanish.

Proof. The inequality Scal∇ � 2µ2 holds whenever there exists a spinor field � �= 0
satisfying the equations; hence Scal∇ = 2µ2 implies T = 0. �

Remark 1.1. This generalizes the observation (see [1]) that the existence of a non-trivial
solution of ∇� = 0, Ric∇ = 0, T · � = 0 implies T = 0 on compact manifolds. It underlines
the strength of the algebraic identities in theorem 1.1. Note that no assumption on the full
Ricci tensor is needed, only the vanishing of its trace!

Remark 1.2. In the common sector of type II string theories, the ‘Bianchi identity’ dT = 0
is usually additionally required. It does not affect the mathematical structure of equations (∗);
hence we do not include it in our discussion.

The last equation in type II string theory deals with the Ricci tensor Ric∇ of the connection.
Usually one requires for constant dilaton that the Ricci tensor has to vanish (see [11]). The
result above, however, indicates that this condition may be too strong. Understanding this
tensor as an energy–momentum tensor, it seems to be more convenient to impose a weaker
condition, namely

div(Ric∇) = 0.

A subtle point is, however, the fact that there are a priori two different divergence operators.
The first operator divg is defined by the Levi-Civita connection of the Riemannian metric,
while the second operator div∇ is defined by the connection ∇. It turns out that this difference
does not play a role in the formulation of the field equation under discussion. Moreover, under
the assumption that a ∇-parallel spinor exists, we can reformulate the condition div(Ric∇) = 0
in such a way that only the spinor � and the torsion form T are involved. The next lemma,
although simple to prove, is crucial.

Lemma 1.1. If ∇ is a metric connection with totally skew-symmetric torsion and S a
symmetric 2-tensor, then

divg(S) = div∇(S).

Proof. The difference

divg(S)(X) − div∇(S)(X) = −1

2

n∑

i,j=1

S(ei, ej )T(ei, X, ej ) = 0

vanishes, since S is symmetric and T is skew-symmetric. �

Theorem 1.2. Let (Mn, g,∇, T, �,µ) be a solution of (∗),

∇� = 0, δ(T) = 0, T · � = µ · �

and assume that the spinor field � is non-trivial. Then the Riemannian and the ∇-divergence
of the Ricci tensor Ric∇ coincide, divg(Ric∇) = div∇(Ric∇). Moreover, div(Ric∇) vanishes if
and only if δ∇(dT) · � = 0 holds.
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Proof. The assumption δ(T) = 0 implies that the Ricci tensor Ric∇ is symmetric (see [8]).
Therefore, the vectors divg(Ric∇) = div∇(Ric∇) coincide by lemma 1.1. Any ∇-parallel
spinor satisfies the condition (see [8])

(X dT + 2∇XT) · � − 2 Ric∇(X) · � = 0.

Since we already know that (∇XT) · � = 0, the condition simplifies,

(X dT) · � − 2 Ric∇(X) · � = 0.

First we differentiate this equation with respect to ∇ and compute the trace,
n∑

k=1

∇ek
(ek dT) · � − 2

n∑

k=1

∇ek
(Ric∇(ek)) · � = 0.

The latter equation is equivalent to

2 divg(Ric∇) · � = 2 div∇(Ric∇) · � = δ∇(dT) · �. �

Tuples (Mn, g,∇, T, �,µ) with a ∇-parallel torsion form, ∇T = 0, are particularly
interesting. This condition implies automatically the conservation law δ(T) = 0. Nearly
Kähler manifolds, Sasakian manifolds or nearly parallel G2-manifolds in dimension n = 7,
all equipped with their unique characteristic connection, are examples of metric connections
with this property (see [8]). In dimension n = 6 we constructed several Hermitian manifolds
of that type [4]. Moreover, the canonical connection of any naturally reductive space satisfies
∇T = 0 (see [1]). The assumption ∇T = 0 implies that the length ‖T‖2 is constant. If,
moreover, there exists a spinor field � such that ∇� = 0, T · � = µ · �, then by theorem 1.1
the scalar curvatures Scalg and Scal∇ are constant. On the other hand, we use the formula

0 = d∇T =
n∑

k=1

ek ∧ ∇ek
T =

n∑

k=1

ek ∧ ∇g
ek

T + �(T, T) = dT + �(T, T),

where �(T, T) is a quadratic expression in T. Then we conclude that

∇(dT) = 0 and δ∇(dT) = 0,

i.e., we can apply theorem 1.2.

Corollary 1.3. Let (Mn, g,∇, T, �,µ) be a tuple satisfying

∇� = 0, ∇(T) = 0, T · � = µ · �

and assume that the spinor field � is non-trivial. Then the scalar curvatures are constant and
the divergence of the Ricci tensor vanishes, div(Ric∇) = 0.

1.1. Five-dimensional examples

Let (M5, g, η, ξ, ϕ) be a five-dimensional quasi-Sasakian manifold. Its Nijenhuis tensor N
vanishes and the fundamental form F is a closed 2-form,

N = 0, dF = 0.

There exists a unique connection ∇ preserving the contact structure with totally skew-
symmetric torsion, the characteristic connection of (M5, g, η, ξ, ϕ). Its torsion form is given
by (see [8, 9])

T = η ∧ dη.
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If the differential dT = dη ∧ dη is proportional to F ∧ F with a constant factor, the
characteristic connection ∇ (see [4 , 7]) of the 5-manifold solves the equation

δ∇(dT) = 0.

Indeed, ∇ preserves the contact structure and we conclude that under this assumption the
‘volume form’ F ∧ F of the four-dimensional bundle consisting of all vectors in T M5

orthogonal to ξ is ∇-parallel. In particular, δ∇(dT) = 0 holds. In general, a quasi-Sasakian
5-manifold does not have to admit any ∇-parallel spinor field. However, such examples are
known and have been thoroughly investigated. Let us first consider the case of a Sasakian
manifold, dη = 2F. There are Sasakian 5-manifolds admitting a ∇-parallel spinor � such that
the following equations are satisfied (see [8]):

∇� = 0, δ(T) = 0, T · � = ±4�, divg(Ric∇) = 0.

The geometric data in these examples are

‖T‖2 = 8, Scal∇ = 16, Scalg = 28.

Moreover, there is a (locally) unique Sasakian 5-manifold admitting a ∇-parallel spinor field
� such that T · � = 0 holds (see [9]). It is the five-dimensional Heisenberg group equipped
with its canonical Sasakian structure. In this case we have

∇� = 0, δ(T) = 0, T · � = 0, divg(Ric∇) = 0

and the geometric data are

‖T‖2 = 8, Scal∇ = −16, Scalg = −4.

In the paper [9], we constructed a family M5(a, b, c, d) depending on four real numbers
a, b, c, d of quasi-Sasakian manifolds with ∇-parallel spinor field �. In this case we have

∇� = 0, δ(T) = 0, T · � = ±
√

(a − d)2 + 4b2 + 4c2 · �, divg(Ric∇) = 0

and the geometric data are

‖T‖2 = a2 + 2b2 + 2c2 + d2, Scal∇ = 4(b2 + c2 − ad).

1.2. Six-dimensional examples

Let (M6, g, J) be a six-dimensional nearly Kähler manifold. It admits a unique connection ∇
with totally skew-symmetric torsion preserving the nearly Kähler structure (see [4, 8]), which
was first investigated by Gray [12]. Moreover, there are two ∇-parallel spinor fields �±, and
there exists a positive number a such that

∇�± = 0, δ(T) = 0, T · �± = ±2
√

2a�±, divg(Ric∇) = 0.

The geometric data are

‖T‖2 = 2a, Scal∇ = 12a, Scalg = 15a.

The Ricci tensors Ricg and Ric∇ are proportional to the metric,

Ricg = 5
2a Id, Ric∇ = 2a Id.

There is another interesting example. The paper [4] contains the construction of a Hermitian
6-manifold (M6, g, J) of type W3 such that its characteristic connection ∇ has a three-
dimensional, complex irreducible holonomy representation Hol(∇) ⊂ U(3) ⊂ SO(6). There
exist two ∇-parallel spinor fields �± and we have

∇�± = 0, δ(T) = 0, T · �± = 0, divg(Ric∇) = 0.

The Ricci tensors are again proportional to the metric,

Ric∇ = − 1
3‖T‖2 Id, Scal∇ = −2‖T‖2, Scalg = − 1

2‖T‖2.



2574 I Agricola et al

1.3. Seven-dimensional examples

Let (M7, g, ω3) be a seven-dimensional nearly parallel G2-manifold. The equation dω3 =
−a(∗ω3), a = constant �= 0, characterizes this class of G2-manifolds. The torsion form of
the characteristic connection is given by the formula (see [8])

T = −a

6
ω3.

There always exists a ∇-parallel spinor field � and we have

∇� = 0, δ(T) = 0, T · � = 7
6a�, divg(Ric∇) = 0.

The Ricci tensors are again proportional to the metric (see [3, 8]),

Ricg = 3
8a2 Id, Scalg = 21

8 a2, Scal∇ = 7
3a2, ‖T‖2 = 7

36a2.

If the nearly parallel G2-structure is induced by an underlying 3-Sasakian structure, we can
construct a two-parameter family of torsion forms T satisfying ∇T = 0 and admitting parallel
spinors (see [2]). Corollary 1.3 applies to this family, too.

Let us next consider cocalibrated G2-manifolds such that the scalar product (dω3, ∗ω3) is
constant. G2-manifolds of that type are characterized by the conditions (see [5])

d ∗ ω3 = 0, (dω3, ∗ω3) = const.

The torsion form T of its characteristic connection is given by the formula (see [8])

T = −∗dω3 + 1
6 (dω3, ∗ω3) · ω3.

There exists a ∇-parallel spinor field �, and for any considered G2-manifold we have

∇� = 0, δ(T) = 0, T · � = − 1
6 (dω3, ∗ω3)�.

The geometric data are given by (see [3, 10])

Scalg = − 1
2‖T‖2 + 1

18 (dω3, ∗ω3)2, Scal∇ = −2‖T‖2 + 1
18 (dω3, ∗ω3)2.

The Ricci tensor Ric∇ of the characteristic connection is in general not divergence free, but
both possible divergences coincide, divg(Ric∇) = div∇(Ric∇). This vector is computable
using the spinor field � and the torsion form T only. On the other hand, a 3-form π3 vanishes
on the special parallel spinor � (π3 · � = 0) if and only if the 3-form satisfies the following
two algebraic equations (see [8]):

π3 ∧ ω3 = 0, π3 ∧ (∗ω3) = 0.

This algebraic observation yields the following result.

Corollary 1.4. Let (M7, g, ω3) be a cocalibrated G2-manifold such that the scalar product
(dω3, ∗ω3) is constant. Then the divergence of the Ricci tensor Ric∇ vanishes if and only if

δ∇(dT) ∧ ω3 = 0, δ∇(dT) ∧ (∗ω3) = 0.

Example 1.1. There exist G2-structures of pure type W3 in the Fernandez/Gray classification
(see [5]) on the product of R

1 by the six-dimensional Heisenberg group and on the product of R
1

by the three-dimensional complex solvable Lie group. The torsion form of its characteristic
connection has been investigated in the paper [8]. Using these formulae, one computes
directly that these examples satisfy the conditions δ∇(dT) ∧ ω3 = 0, δ∇(dT) ∧ (∗ω3) = 0, but
δ∇(dT) �= 0.
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2. Type II B string theory with a dilaton function

In the first part of the paper, we discussed the Ricci tensor in the model of type II B string
theory. In fact, the model is much more flexible; it contains an additional function �. In the
second part of the paper, we study the corresponding results in this more general situation. We
use basically the same arguments (although computationally more involved) as in the proofs
of theorems 1.1 and 1.2; hence we shall not repeat them all. Again, the integrability conditions
following from ∇� = 0 as derived in [8, 10] are the key ingredient.

The equations now read

(∗∗) ∇� = 0, δ(T) = a · (d� T), T · � = b · d� · � + µ · �.

Usually the constant a has a precise value, namely a = ±2. In order to understand the role
of the parameters in the equations, we slightly generalized them and allow for two arbitrary
parameters a, b.

Theorem 2.1. Let (Mn, g,∇, T, �,�,µ, a) be a tuple satisfying (∗∗) and assume that the
spinor field � is non-trivial. Then

(b − a) · δ(T) · � = 0, dT · � = −Scal∇

2
· � − b

2
�(�) · �,

‖T‖2 = µ2 − Scal∇

2
+ b2‖d�‖2 − 3b

2
�(�),

and the Riemannian scalar curvature is given by the formula

Scalg = 3

2
µ2 +

3b2

2
‖d�‖2 +

Scal∇

4
− 9b

4
�(�).

In particular, if b �= a, we obtain δ(T) · � = 0. In this case, the endomorphism T2 acts on the
spinor by scalar multiplication,

T2� = (b2‖d�‖2 + µ2) · �.

The differential d� of the dilaton � is a 1-form. Its differentials ∇gd�,∇d� with
respect to the Levi-Civita connection ∇g and with respect to the connection ∇, respectively,
are bilinear forms. Since the Levi-Civita connection is torsion free, ∇gd� is symmetric,
∇gd�(X, Y ) = ∇gd�(Y,X). By lemma 1.1, one has

divg(∇gd�) = div∇(∇gd�).

The difference between the two bilinear forms is given by the torsion,

∇d� = ∇gd� − 1
2 · (d� T).

Now we generalize theorem 1.2.

Theorem 2.2. Let (Mn, g,∇, T, �,�, a, b, µ) be a tuple satisfying (∗∗). Then we have

2 divg(Ric∇ − b · ∇gd�) · � = δ∇(dT) · � + (a − b) · δ∇(d� T) · �

2 div∇(Ric∇ − b · ∇gd�) · � = δ∇(dT) · � − b · δ∇(d� T) · �,

2 divg(Ric∇ − b · ∇d�) · � = δ∇(dT) · � + (a − b) · δ∇(d� T) · �,

2 div∇(Ric∇ − b · ∇d�) · � = δ∇(dT) · �.

In particular, the differences are given by (λ ∈ R is an arbitrary parameter)

2(divg − div∇)(Ric∇ − λ · ∇gd�) = a · δ∇(d� T) = δ∇δ(T),

2(divg − div∇)(Ric∇ − b · ∇d�) = (a − b) · δ∇(d� T).
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Proof. 2 Ric∇ − 2λ∇gd� + δ(T) is a symmetric tensor. Hence, lemma 1.1 yields

2(divg − div∇)(Ric∇ − λ · ∇gd�) = δ∇δ(T) − δgδg(T) = δ∇δ(T).

2 Ric∇ + δ(T) − 2b∇d� − b(d� T) is symmetric, too. Consequently,

2(divg − div∇)(Ric∇ − b · ∇d�) = δ∇δ(T) − bδ∇(d� T) − δgδg(T) + bδg(d� T )

= (a − b) · δ∇(d� T).

Here we used once again the equation δ(T) = a · (d� T). The equation T ·� = b · d� ·� +
µ · � yields

(∇XT) · � = b · (∇Xd�) · �.

Next we differentiate the integrability condition
(
X dT + 2∇XT

) · � − 2 Ric∇(X) · � = 0

and proceed as in the proof of theorem 1.2. The result is a similar one,

2 div∇(Ric∇ − b · ∇d�) · � = δ∇(dT) · �.

Finally, we have

2 div∇(Ric∇ − b · ∇gd�) · � = 2 div∇(Ric∇ − b · ∇d�) · � + 2b div∇(∇d� − ∇gd�) · �

= δ∇(dT) · � − b · δ∇(d� T) · �.

The remaining formulae now follow directly from what has already been shown. �

Using the equation δ(T) = a · (d� T), the formula δgδ(T) = δgδg(T) = 0 as well as the
formulae comparing δg and δ∇ on differential forms (see [2]), we compute that the 1-form
δ∇δ(T) is proportional to the 1-form (d� T) T. Consequently, we obtain a necessary and
sufficient algebraic condition under which the different divergences coincide.

Corollary 2.1. If, in addition, (d� T) T = 0 holds, then the following divergences
coincide:

divg(Ric∇ − λ · ∇gd�) = div∇(Ric∇ − λ · ∇gd�) for any λ ∈ R,

divg(Ric∇ − b · ∇d�) = div∇(Ric∇ − b · ∇d�).

Corollary 2.2. If (d� T) T = 0 and δ∇(dT) ·� = 0 hold, then all the divergences vanish.

The previous discussion shows that the case of a = b is a special one. Normalizing the
constants, we assume that a = b = −2. Then equations (∗∗) read

∇� = 0, δ(T) = −2 · (d� T), T · � = −2 · d� · � + µ · �.

In this case, the condition δ(T) ·� = 0 is not an integrability condition and the correct formula
for T2 · � is different,

T2 · � = (4‖d�‖2 + µ2) · � − 2 · δ(T) · �.

The divergence of the energy–momentum tensor is given by

2 divg(Ric∇ + 2 · ∇gd�) · � = δ∇(dT) · �.

In strong models (dT = 0) the divergence of the energy–momentum tensor vanishes, but there
are models with δ∇(dT) �= 0 and δ∇(dT) · � = 0. The last example in section 1.3 is one of
them.
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