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Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing T))M — R" via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — 1(v,v).
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Generalizes constant sectional curvature condition,
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Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

= Ag

for some constant A € R.

'77

*...the greatest blunder of my life
— A. Einstein, to G. Gamow

“Mathematicians are like Frenchmen:

tell them something, they translate it into their
own language, and, before you know it, it’s
something entirely different.”

— J.W. von Goethe
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Einstein if it has constant Ricci curvature — i.e.

r= Ag

for some constant A € R.



Definition. A Riemannian metric is said to be
Einstein if it has constant Ricci curvature — i.e.

r= Ag

for some constant A € R.

Proposition. Ifn > 3, a Riemannian n-manifold
(M™, g) is Finstein iff the trace-free part of its
Ricci tensor vanishes:

r=r——g=0.
n
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Here s denotes the scalar curvature

_J _pig .

Meaning? Metric distance balls

B:(p) = {q € M | 3 path from p to q of length < &}

have metric volume

volg(Be(p)) 22

Cpel =1-s 6(n+2)

+0(eh

where ¢, = 7/2/(n/2)!
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Question (Yamabe). Does every smooth com-
pact 1-connected n-manaifold admit an Einstein

metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincaré¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Variational Approach

If M smooth compact n-manifold, n > 3,
Gy = { smooth metrics g on M}

then Einstein metrics = critical points of normal-
ized Finstein-Hilbert action functional

SQMHR

g V<2n>/n/ Sgdlig
M

where V' = Vol(M, ¢) inserted to make scale-invariant.



Basic difficulty:



Basic difficulty:

S(g) = V<2_n>/n/ Sgditg
M

not bounded above or below.



Basic difficulty:

S(g) = V<2_n>/n/ Sgditg
M

not bounded above or below.

Yamabe:
Consider any conformal class

v=1lg0] ={fgo | u: M — R"},



Basic difficulty:

S(g) = V<2_n>/n/ Sgditg
M

not bounded above or below.

Yamabe:
Consider any conformal class

v=1lg0] ={fgo | u: M — R"},

Then restriction S| is bounded below.
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Yamabe:

2
Set p = 5.

Conformal rescaling:

g = uP~2¢ then has dy = uPdy

and 1ts scalar curvature satisfies

suPt=[(p+2)A+ sl u
where A = —V - V. Hence

_ iy (3u2 + (p + 2)’VU‘2) du
[y updy]*F

Difficulty: L% — LP bounded, but not compact.

S(9)
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Yamabe (1950s)
Trudinger (1960s)
Aubin (1970s)
Schoen (1980s)

3 metric g € v which mimimizes S|,
Has s = constant.

Unique up to scale when s < 0.
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gEY n-2
Sy dig) ™
If g has s of fixed sign, agrees with sign of Y[g].

Aubin:
Y, <857, Jround)



Sg d

g€ o2
(s diig)
If g has s of fixed sign, agrees with sign of Y[g].

Aubin:
Y, <857, Jround)

Schoen:
= only for round sphere.
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Yamabe’s Dream

Too good to be true! But ...



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

V(M) =supY,
Y



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

Sq d
V(M) =supY - = sup inf Jr 59 /ﬁQ.

! T IS (fM dﬂg)T



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

Sq d
V(M) =supY - = sup inf Jur 59 'Iig_z.

! T IS (fM dﬂg)T

H. Yamabe, O. Kobayashi, R. Schoen.



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

Sq d
V(M) =supY - = sup inf Jur 59 'Iig_z.

! T IS (fM dﬂg)T

H. Yamabe, O. Kobayashi, R. Schoen.

V(M) >0 <= M admits g with s > 0.



Definition. The Yamabe invariant of the smooth
compact n-manifold M 1s given by

Sq d
V(M) =supY - = sup inf Jur 59 /ig_z.

! T IS (fM dﬂg)T

H. Yamabe, O. Kobayashi, R. Schoen.

V(M) >0 <= M admits g with s > 0.

Problem. Compute actual value of Y(M) for
concrete, interesting manifolds.
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Problem. Which manifolds admit supreme Ein-
stein metrics?

Problem. Think of your favorite examples of
FEinstein metrics. Are are any of them supreme?
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Theorem (Schoen-Yau/Gromov-Lawson). Flat met-
rics on T (indeed, on T™) are supreme Einstein
metrics.

Theorem (Perelman/Anderson). K = —1 met-
ric on any hyperbolic 3-manaifold s a supreme
Einstein metric.

S3 /T open, except when I' = Zo.
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4-manifolds:

Theorem (LeBrun). The Fubini-Study metric on
CIPy 1s a supreme Einstein metric.

Theorem (Lichnerowicz). The Calabi- Yau met-
rcs on K3 are supreme Einstein metrics.

Theorem (LeBrun). Kdahler-Einstein metrics with
A < 0 are supreme Einstein metrics.

[n particular, complex-hyperbolic metric on CHy /T’
1s supreme HKinstein.

Open question for hyperbolic 4-manifolds HA /T
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Theorem (Petean). Let M™ be a simply con-
nected n-manifold, n > 5. Then Y(M) > 0.

Inspiration:

Theorem (Gromov/Lawson). Let M™ be a sim-
ply connected n-manifold, n > 5. If M s not

spin, then M carries a metric g with s > 0.
That 1s,

wQ(TM) #+ () — y(M) > (.
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Theorem. Let M be a compact simply connected
n-manifold, n > 3. If n # 4, Y(M) > 0.

Theorem. There exist infinitely many compact
simply connected 4-manifolds with Y (M) < 0.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

This is intimately tied to the fact that V(M) de-
pends strongly on the smooth structure in dimen-
sion four.



