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Introduction.

The following is a special case of the problem to be considered in this paper :

Given a function cb(x) of the real variable x, continuous on a finite interval

(a, b) ; to determine the polynomial p(x) of given degree n, which gives the

closest approximation to the given function cp on the interval (a, b). This

problem becomes definite only when the meaning of the phrase " closest approxi-

mation " has been precisely stated, and the meaning adopted will depend on the

ultimate object in view.

Tchebtchev seems to have been the first to consider this problem.t He

regarded that polynomial as giving the best approximation, which rendered the

maximum of \p(x) — cf>(x)\, &a x varied over (a, b), as small as possible. A

different point of view would lead one to seek a polynomial of the given degree

which rendered as small as possible the expression

C(p-eb)2dx,
•Ja

or the expression

j    \p — eb\dx,

etc. In all of these cases, and in the more general ones to be referred to pres-

ently, the problem consists in the determination of a set of parameters a. of a

function f(x; a0, ax, ■ ■ -, af) of the real variable x, such that the maximum

of |y(x)|, as x varies  over a given  interval, shall  be as small as possible.

♦Presented to the Society April 28, 1906 (under a different title) and September 4, 1906.

Received for publication September 4, 1906.
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This problem Tchebychev himself (loc. cit.) seems to have regarded as the

general type of problem connected with the approximate representation of func-

tions, although he seems to have done little with this general problem beyond

stating it. He confines himself to a detailed discussion of the case where the

function f takes the form p(x) — eb(x), or r(x) — eb(x), where p(x) is as

before a polynomial of given degree, and where r(x) is a rational function of

which the degrees of the numerator and denominator are prescribed. The

parameters ai referred to above are then, of course, the coefficients of the various

powers of x. The fact that the degrees of the polynomials are prescribed,

i. e. the number of arbitrary parameters, is essential to this type of problem.

Certain generalizations of the problems treated by Tchebychev at once

suggest themselves. On the one hand, the functions p(x) or r(x) might be

replaced by any function of a given class Ë of functions g(x; a0, ax, ■ • -, an).

On the other hand, the form of the function f to be considered might be made

more general. In the case actually discussed by Tchebychev, f was simply

g — cf>, where cj> was a given continuous function. Both generalizations are

included, if we identify f with a function Ug, where Ug denotes the result of

operating on g with some functional operation U. If then there exists a set

of parameters a¿ which renders the maximum of | Ug\, as x varies over a

certain given finite interval, as small as possible, we will call the resulting func-

tion g a function of approximation in the class © with reference to U.

The fundamental theoretical problems that now present themselves are as

follows: 1) Given an operation <!7and a class 6, does a function of approxi-

mation in © with reference to Uexist? 2) What are necessary and sufficient

conditions that a function in © be a function of approximation in © with

reference to U1

Tchebychev has given answers to these problems (loc. cit.) for the special

cases already attributed to him, where Ug has the form g — cp, and where g is

either a polynomial or a rational fractional function of a specified kind. His

methods, which lack the degree of rigor required at this day, have recently been

revised by Kirchberger,* and still more recently Borel| has given elegant

proofs of those theorems of Tchebychev which relate to polynomials of

approximation.

It is the object of the present paper to give a two-fold generalization of

Tchebychev's theorems ; the latter will be found as special cases of our theory

(§5, a). The method followed is largely that of Borel. In § 1 we state the

general problem with the necessary precision and prove the existence of a solu-

tion under very general conditions.    In §§ 2, 3, 4, restricting ourselves to the

* Kirchbkegek,  Über Tchebychefsche Annäherungsmethoden,  Dissertation, Göttingen, 1902;

in abstract, Mathematische Annalen, vol. 57 (1903), pp. 509-540.

t Borkl, Leçons sur les fonctions de variables réelles, etc., 1905, pp. 82-88.
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case in which the parameters enter linearly into the functions g and to the

case where we have Ug = g — cb, we prove again the existence of a solution,

derive necessary and sufficient conditions which a solution must satisfy, and

prove that the solution is unique. The results of these sections are summarized

in Theorems 4 and 5. Theorem 4 will be found to express a characteristic prop-

erty of a general class of " functions of approximation," which seems to have

been recognized hitherto only for the case of polynomials and rational functions

of approximation. After considering in § 5 certain special cases of the theory

developed in the preceding sections, we extend the theory further in § 7 to

include the case in which Ug has the form Vg — cb, where Vis any one-valued,

distributive operation. This makes possible the application of the theory to the

approximate representation of functions restricted only to satisfy certain func-

tional equations of a general form ; some of these are referred to in § 8, where we

obtain as an illustration a theorem concerning the polynomial of approximation

of given degree for a linear differential equation with constant coefficients. In

§ 6 we show how the problem may be formulated analytically.

I.  The problem in general.

§ 1.   The general existence theorem.

~Letf=f(x) =f(x; a0, ax, a2, ■ • -, af) he a function of the real variable x

and 71 + 1 parameters ai, subject to the following conditions A :

Al) f(x; a0, ax, a2, ■•■, af) shall be defined as a one-valued and continuous

function of its arguments for every x of a finite interval (a, b) and for all real

finite values of the parameters ar*

A2) For every positive number Af there shall exist an If, such that if the

relation

I/i«; a0' °i> a2> •••' OI = M

he satisfied for all values of x on ( a, 6 ), then the parameters ai all satisfy the

relations

\a-i\ = N (»=0,1,2,- •.,»).

Now suppose the parameters a. to be undetermined but fixed. As x varies

over (a, b), \f\ will attain its maximum value m at least once. This max-

imum m(a0, ax, a2, • ■ -, af) by Al) is a continuous function of the ar Hence

as the o. vary over all real finite values, m certainly has a lower bound p which

is either positive or zero.    Our problem is to ascertain whether there exists a

* Throughout this paper the word interval will always imply that the endpoints are included.

This condition ^41) could, moreover, for the purposes of this section be stated more generally by

defining/( x ) merely on a set of points E on (a, b ), with the restriction that E be perfect.
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finite set of parameters a. for which this lower bound is actually attained, i. e.,

such that we have

If such a set exists, we will call it a minimizing set of parameters for f.

The problem of determining such a set of parameters would seem to arise in con-

nection with most, if not all, problems of approximation by means of functions

with a given number of arbitrary parameters.

The question concerning the existence of a minimizing set of parameters can

be answered in the affirmative. For, if we choose any particular set of param-

eters, say a'0, a[, a'2, • • •, a'n, and denote m(a'0, a[, a'2, - ■ ■, a'f) by M, we

know that p is at most equal to M. We can then without loss of generality

confine ourselves to functions f such that we have throughout ( a, b )

l/l = M.
But condition A2) requires, then, that there exist a number Arsuch that all the

parameters of f satisfy the relations

(1) Vh\=N (« = 0,1,2, •••,,!).

Hence the parameters may be restricted to the finite closed domain defined by

the relations (1), and in this domain the function m(a0, ax, a2, ■ • -, an) attains

its lower bound p for at least one set of values aQ, ax, a2, • • •, an. Hence

we have

Theorem 1. There exists at least one minimizing set of parameters for

any function satisfying conditions A .

As an immediate corollary of this theorem, we obtain an existence theorem

for the very general class of approximation problems referred to in the Intro-

duction. Suppose there is given a class of functions, g(x; b0, bx, b2, • ■ -, bn),

with the arbitrary parameters b., such that a function g is fully determined as

soon as the values of the parameters bi are fixed. Then as we have seen, the

problem of determining, on a finite interval, that function g which will give the

best approximation to a given function (or to a function satisfying a given func-

tional equation) leads to the determination of a minimizing set of parameters

for a function Ug, where Ug denotes the function obtained from g by some

functional operation U. If then we identify the function Ug with the function

/"just considered, Theorem 1 gives the desired information concerning the exist-

ence of a solution. The parameters 6; of g will in general be the parameters

a. of f= Ug. However, it should be noted that in performing the operation

Usome of the parameters o. may disappear, and new arbitrary parameters may

be introduced. The parameters bi which actually appear in Ug we will call the

effective parameters of g with reference to U. Obviously in applying the con-

ditions A to Ug the effective parameters &., together with whatever new param-
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eters may have been introduced, play the rôle of «^s. Any function g, the

effective parameters of which have the values belonging to a minimizing set for

Ug, we call a function g of approximation with reference to U. We have,

then,

Theorem 2. There exists a function g of approximation with reference to

the operation U,providedf= Ug satisfies conditions A.

II. Functions of approximation for given functions.

§ 2. Another form of the existence theorem.

We now assign to the function y of the preceding section a more explicit but

still very general form.    We suppose given a set of n + 1 functions,

*0'  *1'   *2'   ' ' ' '   *n '

of the real variable x. The function s{ we call the elementary function of

rank i.    By means of some or all of these functions s. we form a new function,

Sk = a0s0 + axsx+ ■ ■■ + aksk,

which we call an »S'-function of rank k, if s4 is the elementary function of high-

est rank occurring in Sk. By allowing the parameters a. to assume all real

finite values we obtain the class of »S-functions of rank not higher than k, which

we will denote by <&k.   It is clear that <S, is contained in <&k, if I is less than k.

We suppose, further, that there is given a function cb of x. The function

y = Sn — cb is to play the rôle of the function f of the preceding section. The

functions s. and ef> ave subject to the following conditions B:

BI) The functions s. and cb are one-valued and continuous at every point of

(a,b).

B2) If one parameter a. is different from zero, the function Sk does not

vanish at more than k points of (a, b).

BB) For no set of parameters a. does the function y = Sn— ef> vanish at

every point of (a, b).

Condition B2) requires a word of explanation. It implies that each point xx

of (a, b) at which Sk vanishes can be enclosed within a finite interval through-

out which ( except at xx ) Sk is different from zero. There are then two cases to

consider. If Sk changes sign as x passes through x,, we call xx a simple zero of

Sk ; if Sk does not change sign as x passes through as,, we call «, a double zero.

In applying condition B2) every double zero must be counted twice.*

We restate the discussion in terms of the new symbols as follows. As x

varies over (a, b), the function \y\ = \Sn — ej> |, continuous on (a, b), attains

its maximum value m at least once ; m = m(a0, ax, u2, ■ ■ ■, an) is a continuous

* If a or b is a zero of &, it counts as simple.
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function of the parameters a.. For we may vary the a. by a sufficiently small

amount to insure that throughout (a, b); where we have

(1) y = a0s0 + axsx + a2s2 +■■■ + ansn - <p,

y, and hence m, will change by less than e.   We seek to determine a function y

S, = <*0S0 + «1*.  + «2«2 +   • • • + «„«„,

such that m(a0, ax, a2, • • -, an) shall be equal to the lower bound p of m ; in

other words, we seek a minimizing set of parameters for y. If such a minimiz-

ing set exists, we call £n a function of approximation in <£n for cb.

We have thought it desirable to state these conditions B independently of

conditions A, in order that the remainder of the discussion might gain in unity.

It is not difficult to show now, however, that conditions B imply A, and hence

establish the existence of a solution to our problem. This we shall do by show-

ing that for all functions (1) satisfying a relation \y\ = M (M being finite

and greater than p), each of the parameters satisfies a relation

Kl^,
where the If. are finite numbers.

We note first that a function

S„(x) = '£,aj.s.(x)
¡m11

may be determined and is indeed uniquely determined by its values ch at ti + 1

distinct points £A (h = 0, 1, • • -, n) on (a, b), i. e., by the equations

n

cA = X,a.s,.(£J (*=0,1, ••-,«).

For the determinant

K(£JI (i, *=o,i, ••.,»),

does not vanish; otherwise a function Sn, not identically zero, would exist

which vanishes at the n + 1 points f A, in contradiction to B2).    Denoting by

^:)(x) = ±d;hJ(x)

that function in <Bn which has at the fA the values c'f given by the equations

c<f=0 (i + h),

c'f=l,

we can express any function Sn having any values c/t at l-h by the formula*

S„(x) = ¿ctSf(x) = ¿ ¿«,«£>«,(«)■
t=ü 1=0   j'=0

*This is a generalization of Lagranqe's formula of interpolation.



1907] INVOLVING   A   GIVEN   NUMBER   OF  ARBITRARY   PARAMETERS 337

Now any function Sn satisfying the relation

\Sn(x)-ep(x)\^M
satisfies the relation

\Su(x)\SM+\,

where \ is the maximum of \cp(x)\ on (a, b).   But,by the formula just given,

every function Sn can be written in the form

*.(«)-±Ä.<|,) *?>(«),
1=0

±a.sj(x) = ±sJ(x)±Snai)df.
i=0 ¿=0 1=0

1=0

\af = (M+X)±\af\=IfJ
1=0

\Sn(x)-eb(x)\=M.

or

Hence we have

and so

provided

This gives the desired condition.    Hence we-have the following result :

Theorem 3. There exists a function of approximation in <Sn for cb, pro-

vided conditions B are satisfied.

§3.-4. necessary condition for a function of approximation in © .

We have just shown (Theorem 3) that there exists at least one function of

approximation in <Ba for cp under conditions B. Let this function be £n > and

as before denote Yl„ by y. Then ¡y\ attains its maximum p in at least one

point of ( a, b ). Let x be any point for which y = p and x" any point for

which y = — p. The sets [x'] and [x"], consisting of all points x and x"

respectively, are evidently closed since y is continuous on (a, b). Further,

we may determine a number 28 such that the oscillation of y in any interval of

length = 28 will be less than a positive e, less than p. The distance of any

point x from the nearest x" will then be greater than 25. Hence it is possible

to divide the interval (a, b) into a finite number of adjoining subintervals,

Lx, L2, L3, •••, Lf,

such that no 7 contains points of both the sets [a;'] and [x"], and such that

one of two consecutive intervals 7 will contain points of [ x ] and the other

will contain points of [as"].    Moreover, the points f,, Ç., £3, ■ ••, %     which
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divide (a, b) into the intervals 7 must be chosen distinct from any of the

points x or x", and this evidently is always possible.

The above discussion will apply to any function in ©n, and it should be noted

that the number p of intervals Lq is fixed for a given Sn. But we can now

prove the following condition :

A necessary condition that a given function "$2 in © be a function of

approximation in <Bnfor cf> is that the number of intervals L   exceed n + 1.

We shall show that under the hypothesis p = n + 1 we can so construct a

function S in © that the maximum of I S — éI on (a, b) is less than p.

Let

TP-1 = C0S0 + C1S1 +  C2*2 +  • • • + V-lVl

be a function in ©p_, which vanishes at each of the points Ç{ (i m* 1,2, • • -, p — 1).

That such a function exists is shown by an argument similar to the one given on

p. 336, which makes it clear that only the ratios c0:cx : ■ • ■ : c _x are determined

by the conditions thus far imposed on T_x.    We may then write

Tp_x = VT'p_x,

where T' , is fully and uniquely determined, but where n is any arbitrary

constant.*

Now, since T_x vanishes at p — 1 different points on (a, 6) and since by

B2) it vanishes nowhere else, it follows that T x, being continuous, changes

sign as x passes from one interval 7 into the next, and only then. We then

determine the sign of n so that T , is positive within every interval 7 con-

taining a point x and negative within every interval 7  containing a point x".

Make every x the center of an interval 7 of length 8 and every x" the center

of an interval J of length 8, and let If be the set of points on ( a, 6 ) not

included in any 7 or J. Then the upper bound p of | X)„ — eb | on K is cer-

tainly less than p. Now choose |tj| so small that | T x\ = \n\ \ T'p_x\ is less

than the smaller of the numbers p — e and p — p at every point of (a, 6).

In any interval 7 we now have

V- - « < £„ - <P = V-
and

0 < T_x < p - e,

since no 7 contains a point £. •    Whence throughout any I the relation

0<Zn-T_x-<b<p

is satisfied, and similarly in any interval J

0>Zn-T_x-cb>-p.

* If p = 1, simply take 7i_i equal to v.
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Finally, at every point of K we have

|E.-*|S/»'        and        \Tp_x\<p-p',
and therefore

IE.-*U-*I.<m.

Hence the function Sn= X,„ — ^L-i> which is in ©n under the hypothesis

p =i ri + 1, is such that at every point of (a, b) the relation

\Sn-cb\<p

holds, which is the desired result.

§ 4.  The sufficiency of the condition and the uniqueness of the solution.

Conversely, let £n be any function in ©n for which the necessary condition

of § 3 is satisfied.    There exist then at least n + 2 points

xi *-. x2 •< x3 < ■ • • ■< xn+2

on (a, b) at which we have

\Tm(xK)-eb(xA\ = r>- («-1, »,.••,»+»),
and

T,n(XK) - cb(Xt) =  -  [Tn(XK+1)-cb(Xlc+1)']        («=1,2, ...,» + l).

Now suppose there were another function

r»=aó*o+a;si + ••• + <s„

in ©n, such that on (a, b) the maximum value of | J2'n ~ 4>\ were less than, or

even merely equal to, p.    Then the function

(z„ - ¿)-(£,;-<*>) = £n-z;

would be alternately positive (or zero) and negative (or zero) at the points xK.

But this would require the continuous function £ — E'a to have on (a, 6) at

least Ti+1 simple zeros (or their equivalent, if double zeros occur), which by

B2) is impossible, unless all the parameters of

En- En = («o - aÓK + (<*i - «ÍK + • •■ + K - <K

vanish. But this requires £ and ]jT' to be identical. Hence we reach, in con-

nection with the result of § 3, the following conclusions :

Theorem 4. A necessary and sufficient condition that a function £n in

©n be a function of approximation in © for eb is that the number of inter-

vals Lq exceed n + 1.
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Theorem 5. There exists one and only one function of approximation in

©M for a function cb.*

§ 5.  Special cases of the general theory.

a) The theorems of Tchebychev on approximation by polynomials and

rational functions.

If in the preceding theory we place s. = x*, that is, if we identify the class

<Bn with the class of polynomials of degree not higher than n, we are led at

once to the results of Tchebychev already referred to in the Introduction.

Theorems 4 and 5 then give :

There exists one and only one polynomial of approximation of degree n

for any function ef> on any given finite interval throughout which ef> is con-

tinuous ; and a necessary and sufficient condition that a given polynomial of

degree n be a polynomial of approximation of that degree is that the number

of intervals 7  exceed n + 1.

A similar result was proved originally by Tchebychev f for the case of a

rational function Bn(x), in which the denominator D(x) is fixed and the

numerator is of prescribed degree ». We need here only to place »; = x'/L(x)

to obtain his theorem, which is analogous to the one just given. Conditions

B will be satisfied provided no root of D(x) = 0 lies on (a, b).

b) Approximation by finite trigonometric series.

If we place si = cos ix, our functions Sn assume the form

Cn = a0 + ax cos x + a2 cos 2x + ■ ■ ■ + au cos nx .

Such a function satisfies the condition B2) concerning the number of zeros, pro-

vided the length of the interval (a,b) does not exceed ir. For every function Cn

can be expressed as a polynomial in cos x of degree not higher than n. If cb also

satisfies BB), Theorems 4 and 5 will apply to the approximate representation of

a given continuous function by means of functions of the form Cn. Other types

of trigonometric series having similar properties are as easily obtainable.

c) Other special types of functions having similar properties might be dis-

cussed, but it hardly seems worth while to go any further into details. Series

of Legendre polynomials and series of hyperbolic functions are perhaps the

simplest that suggest themselves, for which the crucial condition B2) can be

readily satisfied. The possible application of Theorems 4 and 5 appears to be

wide, in view of the general character of the available classes ©n.

* Since the above was written, a special case of this theorem, concerning the representation of

functions by finite trigonometric series, has been announced by M. Maurice Fréchet, Sur l'ap-

proximation des fonctions par des suites Irigonométriques limitées, Comptes Rendus de l'Aca-

démie des Sciences de Paris, vol. 144, no. 3 (January 21, 1907), p. 124. Cf. also §56)

above.

fLoc. cit.
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§6. Analytic formulation of the problem.

Conditions B are sufficient to give an analytic formulation to the problem of

determining the function of approximation in ©n for a given continuous func-

tion cb, in case the functions S and cb possess derivatives as to x which

are one-valued and continuous everywhere except at a finite number of points

Tj, t2, • • -, ta on (a, 6), with the property that for every t. there exists an ei

such that

^(x-Ti)^.dx[Sii(x)-eb(x)] = 0.

For Theorem 4 implies the existence of n + 2 points

xx, x2, ■ ■ •, xn+2

on (a, b) for which we have

\T.,ÂXi)-<t>(Xi)\=r<- (¿ = 1,2, ■■■,n + 2).

Since at these points Sn — cb is either a maximum or a minimum, we have

also

¿^ [£„-</>] =0    whenx = xI,

except possibly when one of the points xi coincides with a, t,, t2, • • -, ta, or 6.

If then we place

g(x) = (x - a)(x - rxyi(x - t2)*2 .. .(x - tk)'*(x - b),

a function of approximation in ©n would have to satisfy the following system

of equations :

(Sn-cb)2-p2 = Q,        g(x)^(Sn-cb) = 0,     (*=*»; «=1,2, ■.•,»+«).

These 2n + 4 equations contain just 2n + 4 unknowns, namely, the n + 1

parameters a., the n + 2 quantities x¿, and the quantity p. Among the sets of

parameters satisfying this system must occur the set a. giving the function of

approximation.

III.  Functions of approximation for functional equations.

§ 7. Extension of the theory.

The results obtained in the previous paragraphs may be extended readily to

the problem of finding functions of approximation for a certain general class of

functional equations. If we have given a functional equation U(y) = 0 and a

class of functions g(x; a0, «,, • ■ -, af), we define a function of approximation

for U(y) = 0 in the given class to be a function g which renders the max-

imum of | U(g) | on (a, b) as small as possible.
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Theorems 4 and 5 may be extended to include this type of problem under

the following conditions :

We suppose given a set of m + 1 elementary functions,

¿0' *j» *2>  ' ' "' ¿.n'

and form, in a way precisely analogous to the one previously used (§ 2), the

various classes %k of functions Tk of rank not higher than k,

Tk = %h+ai^ +-Mi«, (* = 0, 1,2, •■-,»»).

We suppose given further a function cb(x), and a functional operation V

which is effective in a single-valued distributive* way on the functions of %m,

the resulting values V(Tm) being themselves functions of one variable. Our

treatment in §§ 2, 3, 4 applies to the case now under consideration in which, in

view of the distributive character of V, the function U(g) has the form

V(Tm)-cp = a0V(t0) + axV(tx) + ... + amV(tm)-eb.

But this function has the same form as the one already considered in §§ 2, 3, 4,

if we identify V(tf) with si, and V(Th) with Sh. If then we restate conditions

B with the substitutions just indicated, and call the new conditions C, we may

extend Theorems 4 and 5 to the new type of problem. Before doing so, how-

ever, the following remarks should be made regarding the details of the contem-

plated extension.

If any of the V(tf) (i = 0, 1, •••, m) are zero identically on (a,b), the cor-

responding parameters ai are non-effective (cf. § 1). Only the effective param-

eters of a Tk play any essential part in the discussion, and hence in stating

condition C2) (corresponding to B2)) the number k must evidently be replaced

by ek — 1, where ek is the number of effective parameters of Tk with respect to V.

If in any function Tk we place equal to zero all the non-effective parameters

with respect to V, we call the resulting function reduced with respect to V. A

reduced function contains just ek terms and all the parameters occurring in it

are effective. In extending our theory we must be careful to specify that the

functions Tk with which we operate are to be reduced functions, whenever this

is necessary ; as, for instance, in the determination of the functions T(f satisfy-

ing the relations V(Tki)(%.)) = ! or 0, according as we have i=j or i +-j

in the extended existence theorem (cf. p. 336).

* A functional operation A is said to be distributive, if we have A(a + ß) = A(a) + A(ß)

and A ( ca ) = cA ( a ), for every constant value c and for every two functions a, ß in the realm

of definition of A. Cf. Pincherle, Funktionaloperationen und -gleichungen, Encyklopädie

der Mathematischen Wissenschaften, vol. 2 A 11 (1906), p. 767. In our case we have

the notion of an operation which is one-valued and distributive with reference to a class of func-

tions, nothing being specified concerning its behavior or existence for functions not in the class.
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The treatment of this more general case, which evidently reduces to the one

first considered when V is the identical operation (i. e., V(Tm)= Tm), is

throughout essentially identical with the treatment already given in detail for

the simpler case.    The conditions G may now be stated thus :

C 1) The functions V(tf) (i = 0, 1, 2, • • -, m ) and cb are one valued and

continuous at every point of (a, b).

C 2) If one effective parameter a. is different from zero, the function V( Tk)

does not vanish at more than ek — 1 points on (a, b).

C 3) For no set of parameters a. does the function y = V( Tm ) — </> vanish at

every point of (a, b).

A function Tm which renders as small as possible the maximum of | V(Tm)—ep [

on (a, 6) we call a function of approximation in Xm with reference to Vand cb.

The extended theorems then are as follows :

Theorem 6. A necessary and sufficient condition that a function Tm in %m

be a function of approximation in Xmwith reference to V and cb is that the

number of intervals M exceed the number of effective parameters in Tm.

Here the intervals Af ave constructed with reference to the function V( Tm ) — cb,

just as the intervals 7  were constructed with reference to the function Sm — ep.

Theorem 7. The effective parameters of a function of approximation in %m

with reference to Vand cf> are uniquely determined; i. e., there exists one and

only one reduced function of approximation in %m with reference to V and ep.

One or two further details concerning the proof of Theorem 6 require men-

tion. If as in the previous treatment we denote by f,, f , • • -, £ , the points

which divide (a, b) into the p intervals M, it is necessary to construct a func-

tion Tt which vanishes at the p — 1 points Ç. and nowhere else on (a, b) (cf. p.

338). This is clearly possible, provided there exists a number et=p. That such

a number does exist is readily seen from the fact that the sequence of numbers

e¡ ( i = 0, 1, ■ • -, m) contains each of the integers from 1 to em at least once ;

for we evidently have ei+x = ei or e<+, = et. + 1 according as aj+x is not or is

an effective parameter. The proof, following exactly the lines previously laid

down, then leads to the determination of a function Tx satisfying the relation

| V( Tm) — V( Tt) — ej)\ < p. But since I^is distributive, this implies the rela-

tion \V(Tm— Tt) — ep\ </x, and Tm — Tt under the hypothesis p = em is a

function in Xm, which serves to establish the necessity of the condition under

consideration. The latter remark applies also to the proof of the sufficiency of

the condition. To go through all the details of the proofs of the last theorems

appears superfluous.

It is readily seen also that the analytic formulation of the problem given in

§ 6 may be extended at once to the present case.
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8. Application of the extended theorems.

In seeking functional equations to which Theorems 6 and 7 apply, we should

notice that a particular form of equation is prescribed, viz., V(y) — eb = 0, where

y is the unknown function of x and where V must be distributive. Beyond this

it is only necessary that conditions C be satisfied. The variety of distributive

operations is very large. As examples of interest we may mention those which

give rise to linear differential equations with constant or variable coefficients,

linear difference equations, linear integral equations, etc.

As a special case, we may consider the following :

Let
d" y        d"-ly

(1) co^ + ciaV^-f'-' + c^-<^a;) = 0

be a linear differential equation with constant coefficients ci, ( c„ + 0 ), and let

the class % be the class of polynomials of degree m. It is clear that condi-

tions C will be satisfied, provided <£(x) is not identical on (a,b) with any

polynomial of degree equal to (or lower than) rn. We have then, from Theorems

6 and 7,

Theorem 8. There exists one and only one polynomial of approximation of

degree m for any linear differential equation (1) under the conditions specified,

and a necessary and sufficient condition that a given polynomial of degree m

be a polynomial of approximation of this degree is that the number of intervals

M exceed m + 1.

Princeton University,
September, 1906.


