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Abstract. We discuss and examine Weierstrass’ main contributions to approximation
theory.

§1. Weierstrass

This is a story about Karl Wilhelm Theodor Weierstrass (Weierstraß), what he contributed
to approximation theory (and why), and some of the consequences thereof. We start this
story by relating a little about the man and his life.

Karl Wilhelm Theodor Weierstrass was born on October 31, 1815 at Ostenfelde near
Münster into a liberal (in the political sense) Catholic family. He was the eldest of four
children, none of whom married. Weierstrass was a very successful gymnasium student
and was subsequently sent by his father to the University of Bonn to study commerce and
law. His father seems to have had in mind a government post for his son. However neither
commerce nor law was to his liking, and he “wasted” four years there, not graduating.
Beer and fencing seem to have been fairly high on his priority list at the time. The
young Weierstrass returned home, and after a period of “rest”, was sent to the Academy
at Münster where he obtained a teacher’s certificate. At the Academy he fortuitously
came under the tutelage and personal guidance of C. Gudermann who was professor of
mathematics at Münster and whose basic mathematical love and interest was the subject
of elliptic functions and power series. This interest he was successful in conveying to
Weierstrass. In 1841 Weierstrass received his teacher’s certificate, and then spent the next
13 years as a teacher (for 6 years he was a teacher in a pregymnasium in the town of
Deutsch-Krone (West Prussia), then for another 7 years in a gymnasium in Braunsberg
(East Prussia)). During this period he continued learning mathematics, mainly by studying
the work of Abel. He also published some mathematical papers. However these appeared
in school journals and were quite naturally not discovered at that time by any who could
understand or appreciate them. (Weierstrass’ collected works contain 7 papers from before
1854, the first of which On the development of modular functions (49 pp.) was written in
1840.)

In 1854 Weierstrass published the paper On the theory of Abelian functions in Crelle’s

Journal für die Reine und Angewandte Mathematik (the first mathematical research jour-
nal, founded in 1826, and now referred to without Crelle’s name in the formal title). It
created a sensation within the mathematical community. Here was a 39 year old school
teacher whom no one within the mathematical community had heard of. And he had writ-
ten a masterpiece, not only in its depth, but also in its mastery of an area. Recognition was
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immediate. He was given a doctorate by the University of Königsberg, promoted by the
Ministry of Education (of Prussia), and given a year’s leave with pay. Eventually a tempo-
rary professorship was arranged for him at Berlin’s Royal Polytechnic School (forerunner
of the Berlin Technische Universität). Shortly thereafter he moved to the University of
Berlin as an Associate Professor and was made a member of the Berlin Academy. From
1864 he was Professor of Mathematics at the University of Berlin.

There is a well-known much reproduced photograph of Weierstrass (see for example
MacTutor [2000]) and in it he looks both old and tired. This is probably an unfair assess-
ment. Weierstrass came to professional mathematics rather late in life. (In fact Weierstrass
is probably the counterexample, par excellence, to the much overrated truism that math-
ematicians lose much of their creativity by the time they reach 40.) He was also never a
healthy man from about his mid-40’s. Nonetheless Weierstrass was not only very much ad-
mired and respected, but also liked. He was known as a popular, genial and approachable
lecturer (a rarity at the time). In fact he was considered as one of the very best teachers
of advanced students. As a consequence, but not least because he was undoubtedly one of
the leading analysts of the nineteenth century, he had many formal and informal students
(three of whom, Mittag–Leffler, Runge and Lerch, appear later in these pages).

Weierstrass did not publish much, and was in addition slow to publish. Nevertheless
his collected works (Mathematische Werke) contain 7 volumes of well over 2500 pages.
However much of this Mathematische Werke is taken up with a great deal of previously
unpublished lecture notes and similarly unpublished talks. Due to the nature of the ma-
terial Weierstrass himself initially supervised the preparation of these volumes, and two
volumes in fact appeared before his death in 1897. For further details on the life of Weier-
strass see, for example, MacTutor [2000], Bell [1936], Boyer, Merzbach [1989], Biermann
[1976] and references therein.

The areas of mathematics in which Weierstrass worked and contributed include elliptic
functions, Abelian functions, the calculus of variations, the theory of analytic functions,
the theory of periodic functions, bilinear and quadratic forms, differential equations and
real variable function theory. Calculus students know Weierstrass’ name because of the
Bolzano–Weierstrass theorem, the two theorems of Weierstrass that state that every con-
tinuous real-valued function on a closed finite interval is bounded and attains its maximum
and minimum, and the Weierstrass M-test for convergence of infinite series of functions.
(What the students generally do not know is that Weierstrass also formulated the precise
(ε, δ) definition of continuity at a point.)

It has been said that two main themes stand out in Weierstrass’ work. The first
is called the arithmetization of analysis. This was a program to separate the calculus
from geometry and to provide it with a proper solid analytic foundation. Providing a
logical basis for the real numbers, for functions and for calculus was a necessary stage
in the development of analysis. Weierstrass was one of the leaders of this movement in
his lectures and in his papers. He not only brought a new standard of rigour to his own
mathematics, but attempted to do the same to much of mathematical analysis.

The second theme which is everpresent in Weierstrass’ work is that of power series
(and function series). Weierstrass is said to have stated that his own work in analysis was
“nothing but power series”, see Bell [1936, p. 462].
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It is in this context that we should consider Weierstrass’ contributions to approxi-
mation theory. In this paper we mainly consider two of Weierstrass’ results. The first,
Weierstrass [1872], is Weierstrass’ example of a continuous nowhere differentiable function.
It is a generally accepted fact that this was known and lectured upon by Weierstrass in
1861. Using function series (in this case cosines) Weierstrass constructs a function that is
continuous but not in the least smooth. The second result, which appears in Weierstrass
[1885] is in a sense its converse. Every continuous function on IR is a limit not only of
infinitely differentiable or even analytic functions, but in fact of polynomials. Furthermore,
this limit is uniform if we restrict the approximation to any finite interval. Thus the set
of continuous functions contains very, very non-smooth functions, but they can each be
approximated arbitrarily well by the ultimate in smooth functions. It is these two papers,
and these two facts, which very much lie at the heart of approximation theory.

§2. Continuous Nowhere Differentiable Functions

I turn away with fear and horror from the lamentable plague of continuous functions which

do not have derivatives ... Hermite in a letter to Stieltjes dated 20 May, 1893 (see
Baillaud, Bourget [1905]).

The history of the proof of the existence of a continuous nowhere differentiable function
is neither plain nor clear. Bolzano seems to have been the first to have constructed a
function which is continuous but nowhere differentiable. Who was Bolzano? Bernard
Placidus Johann Nepomuk Bolzano (1781–1848) was born in Prague (his father was from
Italy). He was a priest and a scholar, and taught for some years at the University of Prague.
However he was subsequently prohibited from teaching (and even placed for a while under
house arrest) for expressing views that were not in the least acceptable to the authorities.
His mathematical work went almost unnoticed and he never received the recognition he
deserved until well after his death. Of course since some of it was unpublished this was
not totally unwarranted. Bolzano was a contemporary of Cauchy, both chronologically
and mathematically. He gave similar definitions of limits, derivatives, continuity, and
convergence (see Grabiner [1981]). He also made significant contributions to logic and set
theory (see Bolzano [1950]). Bolzano invented, sometime in the 1830’s, it seems, a process
for the construction of a continuous but not differentiable function. In fact, Bolzano only
claimed non-existence of the derivative at a dense set of points (and such functions are very
easily constructed). Nonetheless the derivative exists nowhere. This example of Bolzano
was reported on by J. Masek in the early 1920’s and Bolzano’s manuscript containing this
example was finally printed in 1930, see Kowalewski [1923].

It seems to be an accepted fact (see for example Boyer, Merzbach [1989], and MacTutor
[2000]) that Weierstrass gave an example of a continuous nowhere differentiable function
in classroom lectures in 1861 (at the very latest). In Volume 2 of his Mathematische Werke
(published in 1895) there appears the paper Weierstrass [1872] wherein Weierstrass proves
that the function

f(x) =

∞∑

n=0

bn cos(anxπ)
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is continuous, but it is nowhere differentiable, if b ∈ (0, 1), a is an odd integer, and
ab > 1+(3π/2). Two facts should be stated regarding this paper. First, the paper is not a
reprint of a previously published paper, but a record of a talk given to the Berlin Academy
of Sciences on July 18, 1872, and it is unclear as to when exactly this “paper” was first
formally written. (It finally appeared in the above Volume 2 which was published under
Weierstrass’ editorial supervision.) Second, in this paper Weierstrass himself specifically
states that Riemann was the first to definitely assert (already in 1861 at the latest) that
the infinite series ∞∑

n=1

sin(n2x)

n2
,

which is manifestly continuous, is not differentiable. Unfortunately it is far from evident
that Riemann asserted or proved this fact. (See Ullrich [1997] and Butzer, Stark [1986b]
for a fascinating discussion of this whole question. Other sources are the many references
therein, especially Neuenschwander [1978].) Work of Hardy [1916] and Gerver [1970a,
1970b] eventually established the fact that this function is nondifferentiable at all but
rational multiples of π where the rational number, in reduced form, is p/q with both p and
q odd integers. At such points the derivative is −1/2. Again priority is here an issue, see
Butzer, Stark [1986b, footnote on p. 57], and Ullrich [1997, p. 246].

It is worth mentioning that there is a much simpler example of a continuous nowhere
differentiable function. This example of Takagi [1903] (see Yamaguti, Hata, Kigami [1997,
p. 11]) is given by

f(x) =

∞∑

n=0

ψ(2nx)

2n

where ψ(x) = dist(x, ZZ). This example and variants thereof have often been rediscovered.
When 2 is replaced by 10, this is generally referenced to van der Waerden [1930] (see
also Hildebrandt [1933] and de Rham [1957] where in “simplifying” van der Waerden’s
example they rediscovered the Takagi example). The proof of the nondifferentiability of
this function is considered sufficiently elementary to be presented in the calculus text of
Spivak [1994], albeit with 10 rather than 2.

The discovery of continuous nowhere differentiable functions shocked the mathemati-
cal community. It also accentuated the need for analytic rigour in mathematics. Continu-
ous nowhere differentiable functions may seem to some as pathological. One hundred years
ago this was certainly an opinion expressed by many. (Note the quote at the beginning of
this section.) Nonetheless, yesterday’s pathologies are at times central in today’s “cutting
edge” theories and technologies. The existence of continuous nowhere differentiable func-
tions is crucial to our proper understanding of mathematical analysis. Moreover, without
nowhere differentiable functions we would not have Brownian motion, fractals, chaos, or
wavelets, to mention only a few of the more popular modern theories (see e.g., Yamaguti,
Hata, Kigami [1997], Meyer [1993], Hunt [1998] and references therein).

Continuous nowhere differentiable functions are also ubiquitous, in the sense of cat-
egory. In the space of continuous functions on [0, 1] (with the uniform norm), the set of
functions that at some point in [0, 1] have a one-sided derivative is of first category. That
is, its complement is exceedingly large. This is one of the elegant applications of the Baire
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category theorem. This result, due to Mazurkiewicz [1929] and generalized by Banach
[1931] may be found, for example, in Kuratowski [1958] and in Oxtoby [1980].

To return to Weierstrass’ example, the first published proof of the nondifferentiability
was given in du Bois-Reymond [1875]. As du Bois-Reymond explicitly states, the proof
of this is due to Weierstrass, and was given with his consent. It is word for word (ex-
cept, it seems, for one misprint) Weierstrass’ proof which “appears” in Volume 2 of his
Mathematische Werke as Weierstrass [1872].

What Weierstrass proved for the above f is that it has no derivative at every point
and that

lim
h→0

f(x+ h) − f(x)

h

does not exist, even in the generalized sense, i.e., as ∞ or −∞. The major generalization
of this result is due to Hardy [1916]. He showed that for every b ∈ (0, 1) and a > 1, the
above function has no finite derivative if (and only if) ab ≥ 1. Hardy also proved additional
facts concerning this function and the analogous

g(x) =

∞∑

n=0

bn sin(anxπ)

which exhibits much the same behaviour.
Let us now present Weierstrass’ proof of his result. The fact that f is continuous

follows immediately from the condition b ∈ (0, 1) and

|bn cos(anxπ)| ≤ bn ,

by what we now call the Weierstrass M -test for convergence.
The proof of the nondifferentiability needs a bit more work. Fix x ∈ IR. For each

positive integer m, let αm be an integer closest to amx, i.e., αm ∈ ZZ, and

xm = amx− αm

satisfies |xm| ≤ 1/2. Define the two sequences {ym} and {zm} via

ym =
αm − 1

am
; zm =

αm + 1

am
.

Then

x− ym =
1 + xm

am
; zm − x =

1 − xm

am
,

and, therefore,

ym < x < zm

and

lim
m→∞

ym = lim
m→∞

zm = x .
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Let us now consider

f(x) − f(ym)

x− ym
=

∞∑

n=0

bn
cos(anxπ) − cos(anymπ)

x− ym

=
m−1∑

n=0

bn
cos(anxπ) − cos(anymπ)

x− ym
+

∞∑

n=0

bn+m cos(an+mxπ) − cos(an+mymπ)

x− ym
.

We estimate the first sum as follows. For n ∈ {0, 1, . . . ,m− 1}, it follows from the mean-
value theorem that

cos(anxπ) − cos(anymπ)

x− ym
= −anπ sin cn ,

for some cn ∈ (anymπ, a
nxπ). Thus

∣∣∣∣∣

m−1∑

n=0

bn
cos(anxπ) − cos(anymπ)

x− ym

∣∣∣∣∣ ≤
m−1∑

n=0

(ab)nπ| sin cn|

≤ π
m−1∑

n=0

(ab)n = π
(ab)m − 1

ab− 1
≤ π

(ab)m

ab− 1
.

To estimate the second sum, note that since a is an odd integer and αm an integer, we
have

cos(an+mymπ) = cos(anπ(αm − 1)) = (−1)αm−1 .

In addition,
x− ym = (1 + xm)/am .

Thus

∞∑

n=0

bn+m cos(an+mxπ) − cos(an+mymπ)

x− ym
= (−1)αm(ab)m

∞∑

n=0

bn
(−1)αm cos(an+mxπ) + 1

xm + 1
.

Now
(−1)αm cos(an+mxπ) + 1 ≥ 0

for all n = 1, 2, . . . , while for n = 0

(−1)αm cos(amxπ) + 1 = (−1)αm cos((αm + xm)π) + 1 = cos(xmπ) + 1 ≥ 1

since |xmπ| ≤ π/2. In addition,
1

2
≤ xm + 1 ≤ 3

2
.

Thus ∞∑

n=0

bn
(−1)αm cos(an+mxπ) + 1

xm + 1
≥ cos(xmπ) + 1

xm + 1
≥ 2

3
.
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This implies that

(−1)αm

∞∑

n=0

bn+m cos(an+mxπ) − cos(an+mymπ)

x− ym
≥ (−1)αm(ab)m 2

3
.

From the above calculations we obtain

f(x) − f(ym)

x− ym
= εmπ

(ab)m

ab− 1
+ ηm(−1)αm(ab)m 2

3

for some εm, ηm satisfying |εm| ≤ 1 and ηm > 1. We can rewrite the right-hand-side as

ηm(−1)αm(ab)m

[
εm

ηm

(−1)αmπ

ab− 1
+

2

3

]

where ηm > 1 and |εm/ηm| < 1. The condition ab > 1 + 3π/2 is equivalent to

2

3
>

π

ab− 1
.

Thus for such a, b we have

lim
m→∞

(−1)αm
f(x) − f(ym)

x− ym
= ∞ .

This suffices to prove that f has no derivative at x.
An analogous argument shows that

lim
m→∞

(−1)αm+1 f(zm) − f(x)

zm − x
= ∞ .

Thus

lim
h→0

f(x+ h) − f(x)

h

does not exist even in a generalized sense.

Years later in 1880 Weierstrass himself used this result, presenting

g(z) =

∞∑

n=0

bnzan

as a function analytic in |z| < 1, continuous in |z| ≤ 1, but whose real part is nowhere
differentiable on |z| = 1. Thus g is not continuable as an analytic function anywhere
beyond |z| < 1 (see Weierstrass [1880] and Hille [1962, p. 91]).
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§3. The Fundamental Theorem of Approximation Theory

The basis of the theory of approximation of functions of a real variable is a theorem dis-

covered by Weierstrass which is of great importance in the development of the whole of

mathematical analysis. A. F. Timan [1963, p. 1]

In this section we review the contents of Weierstrass’ [1885] and its variants. We first fix
some notation. C(IR) will denote the class of continuous real-valued functions on all of
IR, C[a, b], −∞ < a < b < ∞, the class of continuous real-valued functions on the closed

interval [a, b], and C̃[a, b] the class of functions in C[a, b] satisfying f(a) = f(b). (C̃[a, b]
may, and sometimes should, be considered as the restriction to [a, b] of functions in C(IR)
which are (b− a)-periodic.)

The paper stating and proving what we in approximation theory call “the” Weierstrass
theorems, i.e., those that prove the density of algebraic polynomials in the space C[a, b] (for

every −∞ < a < b <∞), and trigonometric polynomials in C̃[0, 2π], is Weierstrass [1885].
It was published when Weierstrass was 70 years old!!! This is one paper, but it appeared in
two parts. It seems that the significance of the paper was immediately appreciated, as the
papers appeared in translation (in French) one year later in Weierstrass [1886]. Again it
was published in two parts under the same title (but in different issues, which is somewhat
confusing). The paper was “reprinted” in Weierstrass’ collected works (Mathematische
Werke). It appears in Volume 3 which originally appeared in 1903, although parts of
Volume 3 including, it seems, this paper, were edited by Weierstrass himself a few years
previously. Here the two parts do appear as one paper. In addition, some changes were
made. A half page was added at the beginning, ten pages of material were appended to
the end of the paper, and some other minor changes were made. We will return to these
additions later.

Weierstrass was very interested in complex function theory and in representing func-
tions by power series. The results he obtained in this paper should definitely be viewed
from that perspective. In fact the title of this paper emphasizes this viewpoint. The paper
is titled On the possibility of giving an analytic representation to an arbitrary function of

a real variable. In this section we review what Weierstrass did in this paper.
Weierstrass starts his original paper with the statement that if f is continuous and

bounded on all of IR then, as is known,

lim
k→0+

1

k
√
π

∫ ∞

−∞
f(u)e−( u−x

k
)2du = f(x) .

He then immediately notes that this may be generalized to any kernel ψ that is continuous,
nonnegative, integrable and even on IR. For such ψ he sets

F (x, k) =
1

2kω

∫ ∞

−∞
f(u)ψ

(
u− x

k

)
du ,

where

ω =

∫ ∞

0

ψ(x) dx ,
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and proves that
lim

k→0+
F (x, k) = f(x)

for each x. He not only proves pointwise convergence, but also uniform convergence on

any finite interval. The proof is standard. We will not repeat it here. Weierstrass also
notes that there are entire ψ, as above, for which F (·, k) is entire for every k > 0. He

explicitly states that ψ(x) = e−x2

is an example thereof. The consequence of the above is
the following.

Theorem A. Let f be continuous and bounded on IR. Then there exists a sequence of
entire functions F (x, k) (as functions of x for each positive k) such that for each x

lim
k→0+

F (x, k) = f(x) .

Weierstrass seems very much taken with this result that every bounded continuous
function on IR is a pointwise limit of entire functions. In fact he prefaces Theorem A with
the statement that this theorem “strikes me as remarkable and fruitful”. For unknown
reasons this sentence, and only this sentence, was deleted from the paper when it was
reprinted in Weierstrass’ Mathematische Werke.

As mentioned, on any finite interval, one may obtain uniform convergence. Further-
more, since F (·, k) is entire, the truncated power series of F (·, k) uniformly converges to
F (·, k) on any finite interval. Each of the above statements is easily proved. As such the
following is a consequence of Theorem A and a power series argument.

Theorem B. Let f be continuous and bounded on IR. Given a finite interval [a, b] and
an ε > 0, there exists an algebraic polynomial p for which

|f(x)− p(x)| < ε

for all x ∈ [a, b].

Throughout the first part of Weierstrass [1885] and for much of the second part,
Weierstrass is concerned with functions defined on all of IR. However later in the second
part he does note that given any f ∈ C[a, b], −∞ < a < b < ∞, we can define f to equal
f(a) on (−∞, a), and to equal f(b) on (b,∞). We can then apply the above Theorem B to
obtain what is technically never explicitly stated, but nonetheless very implicitly stated,
and what is today considered as the main result of this paper.

Fundamental Theorem of Approximation Theory. Let f ∈ C[a, b], −∞ < a < b <
∞. Given ε > 0, there exists an algebraic polynomial p for which

|f(x)− p(x)| < ε

for all x ∈ [a, b].

Returning to Weierstrass [1885], and bounded f ∈ C(IR), Weierstrass considers two
sequences of positive values {cn} and {εn}, for which limn→∞ cn = ∞, and

∑∞
n=1 εn <∞.

From Theorem B it follows that for f as above there exists a polynomial pn such that

|f(x) − pn(x)| < εn
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on [−cn, cn].
Set q0 = p1 and qm = pm+1 − pm, m = 1, 2, . . . . Then

n∑

m=0

qm(x) = pn+1(x)

and, thus, in a pointwise sense

f(x) =

∞∑

m=0

qm(x) . (3.1)

Furthermore, let [a, b] be a finite interval. Then for all m sufficiently large

|f(x) − pm(x)| < εm

for all x ∈ [a, b], implying also

|qm(x)| < εm + εm+1

for all x ∈ [a, b]. Thus for some M

∞∑

m=M

|qm(x)| < 2

∞∑

m=M

εm

for all x ∈ [a, b] and the series
∞∑

m=0

qm(x)

therefore converges absolutely and uniformly to f on [a, b]. This Weierstrass states as
Theorem C. That is,

Theorem C. Let f be continuous and bounded on IR. Then f may be represented, in
many ways, by an infinite series of polynomials. This series converges absolutely for every
value of x, and uniformly in every finite interval.

Weierstrass and subsequent authors would often phrase or rephrase these approxima-
tion or density results (in this case Theorem B) in terms of infinite series. It was only
many years later that this equivalent form went out of fashion. In fact such a phrasing
was at the time significant. One should also recall that it was only a few years earlier that
du Bois-Reymond had constructed a continuous function whose Fourier series diverged at
a point, see du Bois-Reymond [1876]. Weierstrass’ theorem was considered to be by many,
and by Weierstrass himself, as a “representation theorem”. The theorem was seen as a
means of reconciling the “analytic” and “synthetic” viewpoints which had estranged late
19th century mathematics, see Gray [1984]. Much of the remaining part of Weierstrass
[1885] is concerned with the construction (in some sense) of a good polynomial approxi-
mant or a good representation for f (as in (3.1)). Weierstrass was well aware that he could
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not possibly construct a good power series representation for f , but he did find, in some
sense, a reasonable expansion of f in terms of Legendre polynomials.

In the latter part of Weierstrass [1885], Weierstrass proves the density of trigonometric

polynomials in C̃[0, 2π]. His proof is interesting and proceeds via complex function theory.

Let f ∈ C̃[0, 2π]. Let ψ be an entire function, that is nonnegative, integrable and even
on IR and has the following property. The functions

F (z, k) =
1

2kω

∫ ∞

−∞
f(u)ψ

(
u− z

k

)
du ,

where

ω =

∫ ∞

0

ψ(x) dx ,

are entire for each k > 0 (as a function of z ∈ |C) and satisfy

lim
k→0+

F (x, k) = f(x)

uniformly on [0, 2π]. Weierstrass notes that such functions ψ exist, e.g., ψ(u) = e−u2

.
Since f is 2π-periodic so is F , i.e.,

F (z + 2π, k) = F (z, k)

for all z ∈ |C and k > 0. For each fixed k > 0, set

G(z, k) = F (
log z

i
, k) .

In general, since log z is a multiple-valued function, G would also be a multiple-valued
function. However from the 2π-periodicity of F , it follows that G is single-valued and thus
it is an analytic function on |C\{0}. Consequently, G has a Laurent series expansion of the
form

G(z, k) =

∞∑

n=−∞
cn,kz

n

which converges absolutely and uniformly to G on every domain bounded away from 0 and
∞. We will consider this expansion on the unit circle |z| = 1. Setting z = eix, it follows
that

F (x, k) =
∞∑

n=−∞
cn,ke

inx

where the series converges absolutely and uniformly to F (x, k) for all real x. (In fact, it

may be shown that if ψ(u) = e−u2

, then cn,k = cne
−n2k2/4, where the {cn} are the Fourier

coefficients of f .) In other words, Weierstrass has given a proof of the fact that for F (x, k)
2π-periodic and entire, its Fourier series converges absolutely and uniformly to F (x, k) on
IR. We now truncate this series to get an arbitrarily good approximant to F (x, k) which
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itself, by a suitable choice of k, was an arbitrary good approximant to f . The truncated
series is a trigonometric polynomial. This completes Weierstrass’ proof, the result of which
we formally state.

Second Fundamental Theorem of Approximation Theory. Let f ∈ C̃[0, 2π]. Given
ε > 0, there exists a trigonometric polynomial t for which

|f(x)− t(x)| < ε

for all x ∈ [0, 2π].

As was stated at the beginning of this section, when Weierstrass [1885] was reprinted in
Weierstrass’ Mathematische Werke there were two notable additions. These are of interest
and worth mentioning. We recall that while this reprint appeared in 1903 there is reason
to assume that Weierstrass himself edited this paper.

The first addition was a short (half page) “introduction”. We quote it (verbatim in
meaning if not in fact).

The main result of this paper, restricted to the one variable case, can be summarized as

follows:

Let f ∈ C(IR). Then there exists a sequence f1, f2, . . . of entire functions for which

f(x) =
∞∑

i=1

fi(x)

for each x ∈ IR. In addition the convergence of the above sum is uniform on every finite

interval.

We can assume that this is the emphasis which Weierstrass wished to give his paper.
It is a repeat of Theorem C (although the boundedness condition on f seems to have been
overlooked) and curiously without mention of the fact that the fi may be assumed to be
polynomials.

The second addition is 10 pages appended to the end of the paper. In these 10
pages Weierstrass shows how to extend the results of this paper (or, to be more precise,
the results concerning algebraic polynomials) to approximating continuous functions of
several variables. He does this by setting

F (x1, . . . , xn, k) =
1

2nknωn

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(u1, . . . , un)ψ(

u1 − x1

k
) · · ·ψ(

un − xn

k
)du1 · · ·dun

and then essentially mimicking the proofs of Theorems A and B. However Picard [1891a]
published already in 1891 an alternative proof of Weierstrass’ theorems and showed how
to extend the results to functions of several variables. As such, Weierstrass’ priority to
this result is somewhat in question.
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§4. Early Additional Proofs of the Fundamental Theorem

If it were necessary to designate one theorem in approximation theory as being of greater

significance than any other, that one would probably be the Weierstrass approximation

theorem. The influence of this theorem has been felt not only in the obvious way through its

use as a tool in analysis but also in the more far-reaching way of enticing mathematicians

into generalizing it or providing it with alternative proofs. E. W. Cheney [1966, p. 190].

In this section we present various alternative proofs of Weierstrass’ theorems on the density
of algebraic and trigonometric polynomials on finite intervals in IR. It is our belief that
the echo of these proofs have an abiding value. Some of the papers we will quote contain
additional results or emphasize other points of view. We ignore such digressions. The
proofs we present divide roughly into three groups. The first group contains proofs that,
in one form or another, are based on singular integrals. The proofs of Weierstrass, Picard,
Fejér, Landau, and de la Vallée Poussin belong here. The second group of proofs is based
on the idea of approximating a particular function. In this group we find the proofs of
Runge/Phragmén, Lebesgue, Mittag-Leffler, and Lerch. Finally, there is the third group
that contain the proofs which do not quite belong to either of the above groups. Here
we find proofs due to Lerch, Volterra and Bernstein. These are what we term the “early
proofs”. They all appeared prior to 1913. Note the pantheon of names which were drawn
to this theorem. The main focus of these proofs are the Weierstrass theorems themselves
rather than any far-reaching generalizations thereof. There are later proofs coming from
different and broader formulations. We discuss some of these in Section 5. For historical
consistency we have chosen to present here these proofs in more or less chronological order.
This lengthens the paper, but we hope the advantages of this approach offset this deficiency.

We start by formally stating certain facts which will be obvious to most readers, but
perhaps not to everyone. The first two simple statements have to do with changes of
variables, and are stated without proof.

Proposition 1. Algebraic polynomials are dense in C[a, b] iff they are dense in C[0, 1].

Analogously we have the less used:

Proposition 2. The trigonometric polynomials

span{1, sinx, cosx, sin 2x, cos 2x, . . .}

are dense in C̃[0, 2π] iff

span{1, sin 2πx

b− a
, cos

2πx

b− a
, sin 2

2πx

b− a
, cos 2

2πx

b− a
, . . .}

are dense in C̃[a, b].

We now show that the density of algebraic polynomials in C[a, b], and trigonometric

polynomials in C̃[0, 2π], are in fact equivalent statements. That is, we prove that each of
the fundamental theorems follows from the other, see also Natanson [1964, p. 16–19].
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Proposition 3. If trigonometric polynomials are dense in C̃[0, 2π], then algebraic poly-
nomials are dense in C[a, b].

Proof. We present two proofs of this result. The first proof may be found in Picard
[1891a].

Assume, without loss of generality, that 0 ≤ a < b < 2π. Extend f ∈ C[a, b] to

some f̃ ∈ C̃[0, 2π]. Since trigonometric polynomials are dense in C̃[0, 2π], there exists a

trigonometric polynomial t that is arbitrarily close to f̃ on [0, 2π], and thus to f on [a, b].
Every trigonometric polynomial is a finite linear combination of sinnx and cosnx. As such
each is an entire function. Thus t is an entire function having an absolutely and uniformly
convergent power series expansion. By suitably truncating this power series we obtain an
algebraic polynomial that is arbitrarily close to t, and thus ultimately to f .

A slight variant on the above bypasses the need to extend f to f̃ . Assume f ∈ C[0, 2π],
and define

g(x) = f(x) +
f(0)− f(2π)

2π
x .

Then g ∈ C̃[0, 2π]. We can now apply the reasoning of the previous paragraph to obtain
an algebraic polynomial p arbitrarily close to g on [0, 2π], whence it follows that

p(x) − f(0) − f(2π)

2π
x

is arbitrarily close to f on [0, 2π].
A different and more commonly quoted proof is the following. According to de la

Vallée Poussin [1918b], [1919], the idea in this proof is due to Bernstein.
Given f ∈ C[−1, 1], set

g(θ) = f(cos θ) , −π ≤ θ ≤ π .

Then g ∈ C̃[−π, π] and g is even. As such given ε > 0 there exists a trigonometric
polynomial t for which

|g(θ)− t(θ)| < ε

for all θ ∈ [−π, π]. We divide t into its even and odd parts, i.e.,

te(θ) =
t(θ) + t(−θ)

2

to(θ) =
t(θ) − t(−θ)

2

and note that te and to are also trigonometric polynomials. (Equivalently, te is composed
of the cosine terms of t, while to is composed of the sine terms of t.)

Since g is even we have

max{|(g − t)(θ)|, |(g− t)(−θ)|}
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= max{|(g − te)(θ) − to(θ)|, |(g− te)(θ) + to(θ)|} ≥ |(g − te)(θ)| ,
and, thus,

|g(θ)− te(θ)| < ε

for all θ ∈ [−π, π]. In other words, since g is even we may assume that t is even.
Let

t(θ) =
n∑

m=0

am cosmθ .

Each cosmθ is a polynomial of exact degree m in cos θ. In fact

cosmθ = Tm(cos θ)

where the Tm are the Chebyshev polynomials (see e.g., Rivlin [1974]). Setting

p(x) =

n∑

m=0

amTm(x) ,

we have
|f(x)− p(x)| < ε

for all x ∈ [0, 1].

Proposition 4. If algebraic polynomials are dense in C[a, b], then trigonometric polyno-

mials are dense in C̃[0, 2π].

Proof. The first proof of this fact was the one given by Weierstrass in Section 3. To our
surprise (and chagrin) we have essentially found only one other proof of this result, and it
is not simple. The proof we give here is de la Vallée Poussin’s [1918b], [1919] variation on
a proof in Lebesgue [1898].

Let f ∈ C̃[0, 2π] and consider f as being defined on all of IR. Set

g(θ) =
f(θ) + f(−θ)

2

and

h(θ) =
f(θ)− f(−θ)

2
sin θ .

Both g and h are continuous even functions of period 2π.
Define

φ(x) = g(arccosx) , ψ(x) = h(arccosx) .

These are well-defined functions in C[−1, 1]. Thus, given ε > 0 there exist algebraic
polynomials p and q for which

|φ(x) − p(x)| < ε

4
, |ψ(x)− q(x)| < ε

4
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for all x ∈ [−1, 1]. As g and h are even, it follows that

|g(θ)− p(cos θ)| < ε

4
, |h(θ) − q(cos θ)| < ε

4

for all θ. From the definition of g and h, we obtain

∣∣f(θ) sin2 θ −
[
p(cos θ) sin2 θ + q(cos θ) sin θ

]∣∣ < ε

2

for all θ.
We apply this same analysis to the function f(θ+π/2) to obtain algebraic polynomials

r and s for which
∣∣∣f(θ +

π

2
) sin2 θ −

[
r(cos θ) sin2 θ + s(cos θ) sin θ

]∣∣∣ <
ε

2

for all θ. Substituting for θ + π/2 gives

∣∣f(θ) cos2 θ −
[
r(sin θ) cos2 θ − s(sin θ) cos θ

]∣∣ < ε

2
.

Thus the trigonometric polynomial

p(cos θ) sin2 θ + q(cos θ) sin θ + r(sin θ) cos2 θ − s(sin θ) cos θ

is an ε-approximant to f .

After these preliminaries we can now look at the inherent methods and ideas used
in the various alternative proofs of either of the two Weierstrass fundamental theorems of
approximation theory. We present these proofs in more or less the order in which they
appeared in print.

Picard. Émile Picard (1856–1941) (Hermite’s son-in-law) had an abiding interest in Weier-
strass’ theorem and in Picard [1891a] gave the first in a series of different proofs of the
Weierstrass theorems. This proof also appears in Picard’s famous textbook [1891b]. Later
editions of this textbook expanded upon this, often including other methods of proof, but
not always with complete references. Picard’s proof, like that of Weierstrass, is based on
a smoothing procedure using singular integrals. Picard chose to use the Poisson integral.
His proof proceeds as follows.

Assume f ∈ C̃[0, 2π]. As f is continuous and 2π-periodic on IR, it is uniformly
continuous thereon. As such, given ε > 0 there exists a δ > 0 such that for |x− θ| < δ we
have |f(x)− f(θ)| < ε. Let

P (r, θ) =
1

2π

∫ 2π

0

1 − r2

1 − 2r cos(x− θ) + r2
f(x) dx

denote the Poisson integral of f .
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We claim that, with the above notation,

|P (r, θ)− f(θ)| < ε+
‖f‖(1 − r2)

r(1 − cos δ)

for all θ. This may be explicitly proven as follows.

P (r, θ)− f(θ) =
1

2π

∫ 2π

0

1 − r2

1 − 2r cos(x− θ) + r2
[f(x)− f(θ)] dx

=
1

2π

∫

|x−θ|<δ

1 − r2

1 − 2r cos(x− θ) + r2
[f(x) − f(θ)] dx

+
1

2π

∫

δ≤|x−θ|≤π

1 − r2

1 − 2r cos(x− θ) + r2
[f(x) − f(θ)] dx .

Now
1

2π

∫

|x−θ|<δ

1 − r2

1 − 2r cos(x− θ) + r2
|f(x) − f(θ)|dx

<
ε

2π

∫ 2π

0

1 − r2

1 − 2r cos(x− θ) + r2
dx = ε .

In addition
1

2π

∫

δ≤|x−θ|≤π

1 − r2

1 − 2r cos(x− θ) + r2
|f(x) − f(θ)| dx

≤ 2‖f‖ 1

2π

∫

δ≤|x−θ|≤π

1 − r2

1 − 2r cos(x− θ) + r2
dx ≤ ‖f‖(1 − r2)

r(1 − cos δ)
.

This last inequality is a consequence of

1 − 2r cos(x− θ) + r2 ≥ 2r − 2r cos δ = 2r(1 − cos δ)

which holds for all x, θ satisfying δ ≤ |x− θ| ≤ π.
As a function of r,

‖f‖(1 − r2)

r(1 − cos δ)

decreases to zero as r increases to 1. Choose some r1 < 1 for which

‖f‖(1 − r21)

r1(1 − cos δ)
< ε .

Thus
|f(θ) − P (r1, θ)| < 2ε

for all θ.
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Let

f(x) = a0/2 +
∞∑

n=1

[an cosnx+ bn sinnx]

denote the Fourier series of f . Recall that the Fourier series of P (r, θ) is given by

P (r, θ) = a0/2 +

∞∑

n=1

rn [an cosnx+ bn sinnx] .

Since the an and bn are uniformly bounded, the above Fourier series converges absolutely,
and uniformly converges to P (r, θ) for each r < 1. Thus there exists an m for which

∣∣∣∣∣P (r1, θ) −
[
a0/2 +

m∑

n=1

rn
1 (an cosnx+ bn sinnx)

]∣∣∣∣∣ < ε

for all θ. Set

g(θ) = a0/2 +

m∑

n=1

rn
1 (an cosnx+ bn sinnx) .

We have “constructed” a trigonometric polynomial satisfying

|f(θ)− g(θ)| < 3ε

for all θ. In other words we have proven that in the uniform norm, trigonometric polyno-
mials are dense in the space of continuous 2π-periodic functions.

As noted in the proof of Proposition 3, Picard then proves the Weierstrass theorem
for algebraic polynomials based on the above result. Picard ends his paper by noting that
the same procedure can be used to obtain parallel results for continuous functions of many
variables. He was the first to publish an extension of the Weierstrass theorems to several
variables.

As Picard [1891a] states, this proof is based on an inequality obtained by H. A. Schwarz
(a student of Weierstrass) in his well-known paper Schwarz [1871]. In fact, as Cakon [1987]
points out, almost the entire Picard proof can be found in Schwarz [1871]. What is perhaps
surprising is that Weierstrass did not notice this connection.

Lerch I. M. Lerch (1860–1922) was a Czech mathematician of some renown (see Skrasek
[1960] and MacTutor [2000]) who attended some of Weierstrass’ lectures. Lerch wrote two
papers, Lerch [1892] and Lerch [1903], that included proofs of the Weierstrass theorem
for algebraic polynomials. Unfortunately the paper Lerch [1892] is in Czech, difficult to
procure, and I have found no reference to it anywhere in the literature except in Lerch
[1903] and in a footnote in Borel [1905] (but Borel did not see the paper). Subsequent
authors mentioned in this work were seemingly totally ignorant of this paper. Many of
these authors quote Volterra [1897], although Lerch [1892] contains a similar proof with the
same ideas. It is for the reader to decide whether, in these circumstances, Lerch deserves
prominence or only precedence.
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We here explain the proof as is essentially contained in Lerch [1892]. We defer the
discussion of Lerch [1903] to a more appropriate place. Let f ∈ C[a, b]. Since f is uniformly
continuous on [a, b], it can be uniformly approximated thereon by a polygonal (piecewise
linear) line. Lerch notes that every polygonal line g may be uniformly approximated by a
Fourier cosine series of the form

a0

2
+

∞∑

n=1

an cos
x− a

b− a
nπ ,

where

an =
2

b− a

∫ b

a

g(x) cos
x− a

b− a
nπ dx .

It was, at the time, well-known to any mathematician worth his salt that the Fourier cosine
series of a continuous function with a finite number of maxima and minima uniformly
converges to the function. This result goes back to Dirichlet in 1829, see e.g. Sz.-Nagy
[1965, p. 399]. Alternatively it is today a standard result contained in every Fourier series
text that if the derivative of a continuous function is piecewise continuous with one-sided
derivatives at each point, then its Fourier cosine series converges uniformly. Both these
results follow from the analogous results for periodic functions and the usual Fourier series.
Both these results hold for our polygonal line. As this Fourier cosine series converges
uniformly to our polygonal line we may truncate it to obtain a trigonometric polynomial
(but not a trigonometric polynomial as in Proposition 2) which approximates our polygonal
line arbitrarily well. Finally, as the trigonometric polynomial is an entire function we can
suitably truncate its power series expansion to obtain our desired algebraic polynomial
approximant.

Volterra. The next published proof of Weierstrass’ theorems is due to Volterra [1897].

V. Volterra (1860–1940) proved only the density of trigonometric polynomials in C̃[0, 2π].
As he was aware of Picard [1891a], this should not detract from his proof.

Volterra was unaware of Lerch [1892], but his proof is much the same. Let f ∈ C̃[0, 2π].
Since f is continuous on a closed interval, it is also uniformly continuous thereon. As such,
it is possible to find a polygonal line that approximates f arbitrarily well. One can also
assume that the polygonal line is 2π-periodic. It thus suffices to prove that one can
arbitrarily well approximate any continuous, 2π-periodic, polygonal line by trigonometric
polynomials. As stated in the proof of Lerch, the Fourier series of the polygonal line
uniformly converges to the function. We now suitably truncate the Fourier series to obtain
the desired approximation.

C. Runge (1856–1927), E. Phragmén (1863–1937), H. Lebesgue (1875–1941) and
G. Mittag-Leffler (1846–1927) all contributed proofs of the Weierstrass approximation the-
orems, and their proofs are related both in character and idea. What did each do?

Mittag-Leffler, in 1900, was the last of the above four to publish on this subject.
However he seems to have been the first to point out, in print, Runge and Phragmén’s
contributions. As such we start this story with Mittag-Leffler. The paper Mittag-Leffler
[1900] is an “extract from a letter to E. Picard”. This was, at the time, a not uncommon
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format for an article. Journals were still in their infancy, but were replacing correspondence
as the primary mode of dissemination of mathematical research. Thus this combination of
these two forms. The article came in response to what Picard had written in his “Lectures
on Mathematics” given at the Decennial Celebration at Clark University, Picard [1899]. In
this grand review Picard mentions the importance, in the development of the understanding
of functions, of Weierstrass’ example of a continuous nowhere differentiable function, and of
Weierstrass’ theorem on the representation of every continuous function on a finite interval
as an absolutely and uniformly convergent series of polynomials. Picard then goes on to
mention his own proof and that of Volterra [1897]. Mittag-Leffler [1900] points out that
Weierstrass’ theorem also follows from work of Runge [1885, 1885/86] although, as he notes,
it is not explicitly contained anywhere in either of these two papers. He then explains his
own proof, to which we shall return later. How did Mittag-Leffler know about Weierstrass’
theorem following from the work of Runge? Firstly, Mittag-Leffler was the editor of Acta
Mathematica and, as he writes, he was the one who published Runge’s paper. (Mittag-
Leffler founded Acta Mathematica in 1882 and was its editor for 45 years.) Moreover in
the paper of Mittag-Leffler [1900] there is a very interesting long footnote which seems
to have been somewhat overlooked. It starts as follows: I found on this subject among

my papers an article of Phragmén, from the year 1886, which goes thus. What follows is
two pages where Phragmén (who was 23 years old at the time) explains how Weierstrass’
theorem can follow from Runge’s work, Phragmén’s simplification thereof, and also how
to get from this the Weierstrass theorem on the density of trigonometric polynomials in
C̃[0, 2π] (with some not insignificant additional work). Before we explain this in detail, let
us start with the general idea behind these various proofs.

Let f ∈ C[0, 1]. Since f is continuous on a closed interval, it is also uniformly continu-
ous thereon. As Lerch and Volterra pointed out, it is thus possible to find a polygonal line
g (which today we might also call a spline of degree 1 with simple knots) that approximates
f uniformly to within any given ε > 0, i.e., for which

|f(x) − g(x)| < ε ,

for all x ∈ [0, 1]. This polygonal line is the first idea in these proofs. The second idea is to
show that there is an arbitrarily good polynomial approximant to the relatively “simpler”
g. This will then suffice to prove that we can find a polynomial which approximates our
original f arbitrarily well. The third and more fundamental idea is to reduce the problem
of finding a good polynomial approximant to g (which depends upon f) to that of finding
a good polynomial approximant to one and only one function, independent of f . Each of
Runge, Mittag-Leffler and Lebesgue do this in a different way.

Runge/Phragmén. We first fix some notation. Let 0 = x0 < x1 < · · · < xm = 1 be
the abscissae (knots) of the polygonal line g. There are various ways of writing g. One
elementary way is:

g(x) = g1(x) +
m−1∑

i=1

[gi+1(x) − gi(x)]h(x− xi) (4.1)
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where gi is the linear polynomial agreeing with g on [xi−1, xi] and

h(x) =

{
1, x ≥ 0
0, x < 0

.

gi may be explicitly given as

gi(x) = yi−1 +

(
x− xi−1

xi − xi−1

)
(yi − yi−1)

where yj = g(xj), j = 0, 1, . . . ,m.
What Runge did in his 1885/86 paper is the following. He considered the function

φn(x) =
1

1 + x2n

which has the property that

lim
n→∞

φn(x) =





1, |x| < 1
1/2, |x| = 1
0, |x| > 1

.

Set ψn(x) = 1 − φn(1 + x). Then restricted to [−1, 1] we have

lim
n→∞

ψn(x) =

{ 1, 0 < x < 1
1/2, x = 0
0, −1 < x < 0

.

Since each ψn is increasing on [−1, 1], and ψn+1(x) > ψn(x) for x ∈ (0, 1], while ψn+1(x) <
ψn(x) for x ∈ (−1, 0), it follows that given any δ > 0, small, the functions ψn are bounded
on [−1, 1] and uniformly converge to the function h on [−1,−δ]

⋃
[δ, 1] for any given δ.

Since the linear polynomial gi+1 − gi vanishes at xi, a short calculation verifies that
for each xi ∈ (0, 1)

[gi+1(x) − gi(x)]ψn(x− xi)

uniformly converges to
[gi+1(x) − gi(x)]h(x− xi)

on [0, 1]. Replacing the h in (4.1) by ψn we obtain a series of functions which uniformly
approximate g.

These functions

Ψn(x) = g1(x) +

m−1∑

i=1

[gi+1(x) − gi(x)]ψn(x− xi)

are not polynomials or entire functions. But they are rational functions. Thus any contin-
uous function on a finite real interval can be uniformly approximated by rational functions.
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This is the main result of Runge [1885/86]. It was published the same year as Weierstrass’
theorem.

Runge also discussed what could be said in the case of continuous functions on all of
IR. In that context he noted that from one of his results in Runge [1885] one could always
replace Ψn by another rational function, real on IR, with exactly two conjugate poles.

Phragmén in the above-mentioned footnote in Mittag-Leffler [1900] (but according
to Mittag-Leffler written in 1886), remarks that apparently Runge overlooked in Runge
[1885/86] (or did not think important) the fact that he could replace rational functions by
polynomials. Runge quite explicitly had the tools to do this from Runge [1885].

What is the relevant result from Runge [1885]? It is the following, which we state
in an elementary form. Assume D is a compact set and |C\D is connected. Let R be a
rational function with poles outside D. Then given any point w ∈ |C\D there are rational
functions, with only the one pole w, that approximate R arbitrarily well on D. This is
not a difficult result to prove. Here, essentially, is Runge’s proof. The rational function R
can be decomposed as R =

∑n
j=1Rj where each Rj is a rational function with only one

pole wj . We now show how to move each wj to w in a series of finite steps. For each j we
choose a0, . . . , am, where a0 = wj and am = w, and the ai are chosen so that

|ai−1 − ai| < |z − ai| , i = 1, . . . ,m

for all z ∈ D. This can be done. At each stage we will construct a rational function Gi

(G0 = Rj) with only the simple pole ai, and such that Gi is arbitrarily close to Gi−1. This
follows from the fact that for given k ∈ IN the function

1

(z − ai−1)k

can be arbitrarily well approximated on D by

[
1

(z − ai−1)

[
1 −

(
ai−1 − ai

z − ai

)n]]k

by taking n sufficiently large. Note that the latter is a rational function with a pole only
at ai. Runge further noted that by a linear fractional transformation (and a bit of care)
the pole could be shifted to ∞, whence the rational function becomes a polynomial. As
Phragmén points out, if the function f to be approximated on [0, 1] is real, we can replace
the polynomial approximant G obtained above by ReG on [0, 1] which is also a polynomial
and which better approximates f thereon. Thus Weierstrass’ theorem is proved.

Phragmén also notes that it is really not necessary to use the results of Runge [1885].
If we go back to Runge [1885/86] and consider his construction therein, we see that each of
the rational approximants are real on [0, 1], and have denominator 1 + (1 + x)2n for some
n. Any such R may be decomposed as

R = g + r1 + r2

where g is a polynomial, r1 is a rational function, all of whose poles lie in the upper half-
plane, and r2 = r1 is a rational function, all of whose poles lie in the lower half-plane. It is
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possible to choose a point z1 in the lower half plane such that there exists a circle centered
at z1 containing [0, 1], but not containing any poles of r1. As such the Taylor series of r1
about z1 converges uniformly to r1 in [0, 1]. Truncate it to obtain a polynomial p1 that
approximates r1 arbitrarily well on [0, 1]. It follows that p2 = p1 has the corresponding
property with respect to r2. As such

P = g + p1 + p2

is a real polynomial that can be chosen to approximate f arbitrarily well.
Another simple option, not mentioned by Phragmén, is simply to use the result of

Runge [1885], to move the poles of any rational approximant away from [0, 1] so that a
circle can be put about [0, 1] which does not contain any poles, and then use the truncated
power series as above. Phragmén’s proof of the density of trigonometric polynomials in
C̃[0, 2π] is more complicated and we will not present it here.

In any case, as we have seen, the Weierstrass theorem is a fairly simple consequence
of Runge’s [1885] and [1885/86] results. It is unfortunate and somewhat astonishing that
Runge did not think of it.

Lebesgue. Let us now give Lebesgue’s proof of Weierstrass’ theorem as found in Lebesgue
[1898]. This is one of the more elegant and cited proofs of Weierstrass’ theorem. It is
interesting to note that this was Lebesgue’s first published paper. He was, at the time
of publication, a 23 year old student at the École Normale Supérieure. He obtained his
doctorate in 1902.

A more “modern” form of writing the g of (4.1) is as a spline. That is,

g(x) = ax+ b+

m−1∑

i=1

ci(x− xi)
1
+

where

x1
+ =

{
x, x ≥ 0
0, x < 0

,

and ax+ b = g1(x). (This easily follows from the form (4.1). As gi+1(x)− gi(x) is a linear
polynomial that vanishes at xi, it is necessarily of the form ci(x − xi) for some constant
ci.) Since

2x1
+ = |x| + x

the above form of g may also be rewritten as

g(x) = Ax+ B +

m−1∑

i=1

Ci|x− xi| (4.2)

for some real constants A, B, and Ci.
Lebesgue [1898] considers the form (4.2) of g, and argues as follows. To approximate

g arbitrarily well by a polynomial it suffices to be able to approximate |x| arbitrarily well



24 Allan Pinkus

by a polynomial in [−1, 1] (or in fact in any neighbourhood of the origin). If for given
η > 0 there exists a polynomial p satisfying

||x| − p(x)| < η

for all x ∈ [−1, 1], then
||x− xi| − p(x− xi)| < η

for all x ∈ [0, 1] ⊂ [xi − 1, xi + 1] (since 0 ≤ xi ≤ 1). By a judicious choice of η depending
on the predetermined constants Ci in (4.2), it then follows that

∣∣∣∣∣g(x)−
[
Ax+ B +

m−1∑

i=1

Cip(x− xi)

]∣∣∣∣∣ < ε

for all x ∈ [0, 1].
Thus our problem has been reduced to that of approximating just the one function

|x|. How can this be done? As Lebesgue explains, one can write

|x| =
√
x2 =

√
1 − (1 − x2) =

√
1 − z

where z = 1 − x2, and then expand the above radical by the binomial formula to obtain
a power series in z = 1 − x2 which converges uniformly to |x| in [−1, 1]. One finally just
truncates the power series.

To be more explicit, we have

(1 − z)1/2 =
∞∑

n=0

(
1/2

n

)
(−z)n

where (
1/2

n

)
=

1
2 ( 1

2 − 1) · · · ( 1
2 − n+ 1)

n!
=

(−1)n−1 1
2

1
2

3
2 · · · 2n−3

2

n!
.

Thus

(1 − z)1/2 = 1 −
∞∑

n=1

anz
n

where a1 = 1/2, and

an =
(2n− 3)!

22n−2n!(n− 1)!
, n = 2, 3, . . .

This power series converges absolutely and uniformly to (1 − z)1/2 in |z| ≤ 1. It is easily
checked that the radius of convergence of this power series is 1. An application of Stirling’s
formula shows that

an =
e

2
√
π

1

n3/2
(1 + o(1))
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so that the series also has the correct convergence properties for |z| = 1. A different proof
of this same fact may be found in Todd [1961, p. 11]. This finishes Lebesgue’s proof.

An alternative argument (see Ostrowski [1951, p. 168] or Feinerman, Newman [1974,
p. 5]) gets around the more delicate analysis at |z| = 1 by noting that (1 − z)1/2 may be
uniformly approximated on [0, 1] by (1 − ρz)1/2 as ρ ↑ 1. (In fact it is easily checked that
for 0 < ρ < 1

|(1 − z)1/2 − (1 − ρz)1/2| ≤ (1 − ρ)1/2

for all z ∈ [0, 1].) Now the power series for (1 − ρz)1/2, namely

(1 − ρz)1/2 = 1 −
∞∑

n=1

anρ
nzn ,

is absolutely and uniformly convergent in |z| < ρ−1 and thus in |z| ≤ 1.
Bourbaki [1949, p. 55] (see also Dieudonné [1969, p. 137]) presents an ingenious argu-

ment to obtain a sequence of polynomials which uniformly approximate |x|. For t ∈ [0, 1]
define a sequence of polynomials recursively as follows. Let p0(t) ≡ 0 and

pn+1(t) = pn(t) +
1

2
(t− p2

n(t)) ,

n = 0, 1, 2, . . .. It is readily verified that for each fixed t ∈ [0, 1], pn(t) is an increasing
sequence bounded above by

√
t. The former is a consequence of the latter which is proven

as follows. Assume 0 ≤ pn(t) ≤
√
t. Then

√
t− pn+1(t) =

√
t− pn(t) − 1

2
(t− p2

n(t))

=(
√
t− pn(t))(1 − 1

2
(
√
t+ pn(t)))

≥0

since
√
t+ pn(t) ≤ 2

√
t ≤ 2 for t ∈ [0, 1]. Thus for each t ∈ [0, 1]

lim
n→∞

pn(t) = p(t)

exists. Since p(t) is nonnegative and satisfies

p(t) = p(t) − 1

2
(t− p2(t))

we have p(t) =
√
t. The {pn} are real-valued continuous functions (polynomials) which

increase, and converge pointwise to a continuous function p. This implies that the con-
vergence is uniform (Dini’s theorem). Let qn(x) = pn(x2) for x ∈ [−1, 1]. Then the

polynomials {qn} converge uniformly to
√
x2 = |x| on [−1, 1].
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A similar proof may be found in Sz.-Nagy [1965, p. 77]. He considers the series of
polynomials defined by p0(x) ≡ 1 and

pn+1(x) =
1

2
[p2

n(x) + (1 − x2)] ,

n = 0, 1, 2, . . . on [−1, 1]. The {pn} monotonically (and uniformly) decrease to 1 − |x|.
(Sz.-Nagy attributes this procedure to C. Visser.)

Mittag-Leffler. Mittag-Leffler presented his own proof in Mittag-Leffler [1900]. He also
considers g as given in (4.1). His proof then proceeds as follows. Let

χ
n(x) = 1 − 21−(1+x)n

.

It is easily checked that

lim
n→∞

χ
n(x) =

{ 1, 0 < x ≤ 1
0, x = 0
−1, −1 ≤ x < 0

.

Furthermore, since each χ
n is increasing on [−1, 1], and χ

n+1(x) > χ
n(x) for x ∈ (0, 1],

while χn+1(x) < χ
n(x) for x ∈ (−1, 0), it follows that given any δ > 0, small, the function

χ
n uniformly converges to 1 on [δ, 1] and to −1 on [−1,−δ]. Thus the functions

hn =
χ

n + 1

2

are bounded on [−1, 1] and uniformly approximate the function h of (4.1) on [−1,−δ]
⋃

[δ, 1]
for any given δ. Furthermore the χn and thus the hn are entire (analytic) functions.

As previously, since gi+1−gi is a linear polynomial vanishing at xi, a short calculation
verifies that for each xi ∈ (0, 1)

[gi+1(x) − gi(x)]hn(x− xi)

uniformly converges to
[gi+1(x) − gi(x)]h(x− xi)

on [0, 1]. Replacing the h in (4.1) by hn we obtain a series of functions {Hn} that uniformly
approximate g. Finally, since hn is an entire function, each of the functions Hn is an entire
function. As such they may be approximated arbitrarily well by a truncation of their power
series. This again proves Weierstrass’ theorem.

Fejér. L. Fejér (1880–1959) was a student of H. A. Schwarz and thus a grandstudent of
Weierstrass. What we will report on here is taken from Fejér [1900] (he had just turned 20
when the paper appeared). This fundamental paper formed the basis for Fejér’s doctoral
thesis obtained in 1902 from the University of Budapest. This paper contains what is today
described as the “classic” theorem on Cesàro (C, 1) summability of Fourier series. As we are

interested in Weierstrass’ theorem, we will restrict ourselves, a priori, to f ∈ C̃[0, 2π], and
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prove that the Cesàro sum of the Fourier series of any such f converges uniformly to f . Note
that this is the first proof of Weierstrass’ theorem (in the trigonometric polynomial case)
that actually provides, by a linear process, a sequence of easily calculated approximants.

Let σ0(x) = 1/2, and

σm(x) =
1

2
+ cosx+ cos 2x+ · · ·+ cosmx

for m = 1, 2, . . . . Set

Gn(x) =
σ0(x) + · · ·+ σn−1(x)

n
.

A calculation shows that

Gn(x) =
1

2n

1 − cosnx

1 − cosx
=

1

2n

[
sin

(
nx
2

)

sin
(

x
2

)
]2

.

Furthermore it is easily seen that

1

π

∫ 2π

0

Gn(x) dx = 1 .

Gn is a nonnegative kernel that integrates to 1 (and, as we shall show approaches the
Dirac-Delta function at 0 as n tends to infinity, i.e., convolution against Gn approaches
the identity operator).

Assume f ∈ C̃[0, 2π]. Let

a0

2
+

∞∑

k=1

ak cos kx+ bk sin kx

denote the Fourier series of f . Let s0(x) = a0/2, and

sm(x) =
a0

2
+

m∑

k=1

ak cos kx+ bk sin kx

denote the partial sums of the Fourier series. The functions sm do not necessarily converge
uniformly, or pointwise, to f as m→ ∞. However let us now set

Sn(x) =
s0(x) + · · ·+ sn−1(x)

n
=

1

π

∫ 2π

0

f(y)Gn(y − x)dy .

Explicitly the Sn are given by

Sn(x) =
a0

2
+

n−1∑

k=1

(
1 − k

n

)
[ak cos kx+ bk sin kx] .
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Surprisingly (at the time) the Sn always converge uniformly to f .

Theorem 5. For each f ∈ C̃[0, 2π], the trigonometric polynomials Sn converge uniformly
to f as n→ ∞.

Proof. From the above

Sn(x) =
1

π

∫ 2π

0

f(y)Gn(y − x)dy =
1

2nπ

∫ 2π

0

f(y)
1− cosn(y − x)

1 − cos(y − x)
dy .

Since f ∈ C̃[0, 2π], f may be considered to be uniformly continuous on all of IR. Thus
given ε > 0 there exists a δ > 0 such that if |x− y| < δ, then

|f(x) − f(y)| < ε

2
.

In what follows we assume δ < π/2.
Since Gn integrates to 1 we have

Sn(x) − f(x) =
1

π

∫ 2π

0

[f(y) − f(x)]Gn(y − x)dy

=
1

π

∫

|y−x|<δ

[f(y)− f(x)]Gn(y − x)dy +
1

π

∫

δ≤|y−x|≤π

[f(y)− f(x)]Gn(y − x)dy .

We estimate each of the above two integrals.
On |y − x| < δ, we have |f(x) − f(y)| < ε

2 . Thus

∣∣∣∣∣
1

π

∫

|y−x|<δ

[f(y)− f(x)]Gn(y − x)dy

∣∣∣∣∣ <
ε

2

1

π

∫

|y−x|<δ

Gn(y − x)dy

<
ε

2

1

π

∫ 2π

0

Gn(y − x)dy =
ε

2
.

We have here used the crucial fact that Gn is nonnegative and integrates to 1 over any
interval of length 2π.

From the explicit form of Gn and the inequality |f(y) − f(x)| ≤ 2‖f‖ we have

∣∣∣∣∣
1

π

∫

δ≤|y−x|≤π

[f(y)− f(x)]Gn(y − x)dy

∣∣∣∣∣ ≤
2‖f‖
2nπ

∫

δ≤|y−x|≤π

1 − cosn(y − x)

1 − cos(y − x)
dy .

Now |1 − cosn(y − x)| ≤ 2, while on δ ≤ |y − x| ≤ π we have 1 − cos(y − x) ≥ 1 − cos δ.
Thus

∣∣∣∣∣
1

π

∫

δ≤|y−x|≤π

[f(y)− f(x)]Gn(y − x)dy

∣∣∣∣∣ ≤
2‖f‖
2nπ

2

1 − cos δ
2π =

4‖f‖
n(1 − cos δ)

.
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For n sufficiently large
4‖f‖

n(1 − cos δ)
<
ε

2
.

Thus for such n
|Sn(x) − f(x)| < ε .

Applying the method of the (second) proof of Proposition 3 to the above we see that
to each f ∈ C[−1, 1] we obtain a sequence of algebraic polynomials

pn(x) =
a0

2
+

n−1∑

k=1

(
1 − k

n

)
akTk(x)

where

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1 − x2

dx ,

k = 0, 1, . . .. These explicitly defined pn (each of degree at most n− 1) uniformly approx-
imate f .

Lerch II. The paper Lerch [1903] contains yet another proof of the density of algebraic
polynomials in C[0, 1]. In his previous proof, in Lerch [1892], Lerch had used general
properties of Fourier series to prove the Weierstrass theorem for algebraic polynomials.
His proof here is different in that while the same general scheme is used, he only needs to
consider the Fourier series of two specific functions, and their properties. In this sense it
is more elementary than his previous proof.

We recall from Lerch [1892] that it suffices to be able to arbitrarily approximate the
polygonal line g as given in (4.1). Lerch rewrites (4.1) in the form

g(x) =
m∑

i=1

`i(x)

where

`i(x) =





0, x < xi−1

yi−1 +
(

x−xi−1

xi−xi−1

)
(yi − yi−1) xi−1 ≤ x < xi

0, xi ≤ x

(when defining `m we should, for precision, define it to equal ym at xm = 1).
As we mentioned, Lerch bases his proof on quite explicit Fourier series. It is well

known and easily checked that

1

2
− x =

∞∑

n=1

sin 2nπx

nπ
, 0 < x < 1, (4.3)

and

x2 − x+
1

6
=

∞∑

n=1

cos 2nπx

n2π2
, 0 ≤ x ≤ 1 . (4.4)
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There is a problem with the convergence of the Fourier series in (4.3). This series converges
uniformly to 1/2 − x on any [a, b], 0 < a < b < 1, but does not converge uniformly in any
neighbourhood of x = 0 or x = 1. (In fact its value at x = 0 and x = 1 is 0.) However the
series in (4.4) does converge absolutely and uniformly to the given function on [0, 1]. It is
also readily checked, using the 1-periodicity of the Fourier series, that the function

1

2
(xi − xi−1)(yi + yi−1) +

∞∑

n=1

yi−1 sin 2nπ(x− xi−1) − yi sin 2nπ(x− xi)

nπ

−1

2

(yi − yi−1)

(xi − xi−1)

∞∑

n=1

cos 2nπ(x− xi−1) − cos 2nπ(x− xi)

n2π2

is the Fourier series of `i and that there is uniform convergence of this series to `i on any
compact subset of [0, 1] not containing xi−1 and xi.

Thus

1

2

m∑

i=1

(xi − xi−1)(yi + yi−1) +
∞∑

n=1

y0 sin 2nπx− ym sin 2nπ(x− 1)

nπ

−1

2

m∑

i=1

(yi − yi−1)

(xi − xi−1)

∞∑

n=1

cos 2nπ(x− xi−1) − cos 2nπ(x− xi)

n2π2

is the Fourier series of g. Note that this series converges uniformly to g also at x1, . . . , xm−1.

There remains the problem of convergence at x0 = 0 and xm = 1. (However if g ∈ C̃[0, 1],
i.e., g is 1-periodic, then y0 = ym and the problematic term has disappeared. In this
case, we have constructed the Fourier series of g which converges absolutely and uniformly
to g on [0, 1]. Truncate this Fourier series to obtain a trigonometric polynomial which
approximates g arbitrarily well. This proves the density of trigonometric polynomials.) If
y0 6= ym then we may, as does Lerch, again apply (4.3) to obtain

1

2

m∑

i=1

(xi − xi−1)(yi + yi−1) + (y0 − ym)(
1

2
− x)

−1

2

m∑

i=1

(yi − yi−1)

(xi − xi−1)

∞∑

n=1

cos 2nπ(x− xi−1) − cos 2nπ(x− xi)

n2π2
.

(Alternatively, just shift g by a polynomial so that the new g satisfies g(0) = g(1).) This
series converges absolutely and uniformly to g on all of [0, 1]. Truncating this infinite series
we obtain an entire function (trigonometric polynomial) that approximates g arbitrarily
well. We now appropriately truncate the power series of this entire function to obtain the
desired algebraic polynomial.

Unfortunately, there is no indication, in Lerch [1903], that he was aware of any of
the other previous proofs of the Weierstrass theorem. A more careful consideration of this
proof shows that it is essentially a quasi-constructive version of Lebesgue’s proof.
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Landau. The proof of E. Landau (1877–1938) in Landau [1908] follows the tradition of
the proofs of Weierstrass, Picard and Fejér in that the essential underlying mechanism
in his proof is a singular integral. However it is more direct than the former two in its
judicious choice of the kernel. Let f ∈ C[a, b] where, without loss of generality, it will be
assumed that 0 < a < b < 1. Extend f to be a continuous function on all of [0, 1].

Define

kn =

∫ 1

−1

(1 − u2)ndu

and set

pn(x) =
1

kn

∫ 1

0

f(y)
[
1 − (x− y)2

]n
dy .

Note that pn is a polynomial of degree at most 2n in x. What Landau proves is that
the sequence of polynomials {pn} converge uniformly to f on [a, b]. Landau’s sequence of
polynomial approximants differ from those of the previous proofs (except for Fejér’s proof)
in that they are explicitly given, and in that they are obtained via a linear method.

We first present Landau’s original proof. In this proof we will use the following
estimates. For every 0 < δ < 1,

∫

δ≤|u|≤1

(1 − u2)ndu ≤
∫

δ≤|u|≤1

(1 − δ2)ndu < 2(1 − δ2)n .

Similarly

kn =

∫ 1

−1

(1−u2)ndu ≥
∫

|u|≤1/
√

n

(1−u2)ndu ≥
∫

|u|≤1/
√

n

(
1 − 1

n

)n

du =
2√
n

(
1 − 1

n

)n

.

Thus
1

kn

∫

δ≤|u|≤1

(1 − u2)ndu ≤
√
n(1 − δ2)n

(
1 − 1

n

)−n

.

Note that for every fixed δ ∈ (0, 1) we have

lim
n→∞

√
n(1 − δ2)n

(
1 − 1

n

)−n

= 0 .

Now choose ε > 0. Since f is uniformly continuous on [0, 1] there exists a δ > 0 such
that if x, y ∈ [0, 1] satisfies |x− y| < δ, then

|f(x) − f(y)| < ε/3 .

Assume 0 < δ < min{a, 1− b}. Choose N so that for all n ≥ N

2‖f‖
√
n(1 − δ2)n

(
1 − 1

n

)−n

< ε/3 .
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For every x ∈ [a, b],

|pn(x) − f(x)| =

∣∣∣∣
1

kn

∫ 1

0

f(y)
[
1 − (x− y)2

]n
dy − f(x)

∣∣∣∣

≤ 1

kn

∫ 1

0

|f(y)− f(x)|
[
1 − (x− y)2

]n
dy + |f(x)|

∣∣∣∣1 − 1

kn

∫ 1

0

[
1 − (x− y)2

]n
dy

∣∣∣∣ .

We separate the integral

1

kn

∫ 1

0

|f(y)− f(x)|
[
1 − (x− y)2

]n
dy

into

1

kn

∫

|x−y|<δ

|f(y)− f(x)|
[
1 − (x− y)2

]n
dy+

1

kn

∫

δ≤|x−y|
0≤y≤1

|f(y)− f(x)|
[
1 − (x− y)2

]n
dy .

Now

1

kn

∫

|x−y|<δ

|f(y)− f(x)|
[
1 − (x− y)2

]n
dy <

ε

3

1

kn

∫

|x−y|<δ

[
1 − (x− y)2

]n
dy <

ε

3
.

Furthermore

1

kn

∫

δ≤|x−y|
0≤y≤1

|f(y) − f(x)|
[
1 − (x− y)2

]n
dy ≤ 2‖f‖

kn

∫

δ≤|u|≤1

[1 − u2]ndu

≤ 2‖f‖
√
n(1 − δ2)n

(
1 − 1

n

)−n

< ε/3 .

Finally

|f(x)|
∣∣∣∣1 − 1

kn

∫ 1

0

[
1 − (x− y)2

]n
dy

∣∣∣∣ ≤
‖f‖
kn

∣∣∣∣
∫ 1

1

[1 − u2]ndu−
∫ 1−x

−x

[1 − u2]ndu

∣∣∣∣ .

Since x ∈ [a, b] and δ < min{a, 1− b}, we have

‖f‖
kn

∣∣∣∣
∫ 1

−1

[1 − u2]ndu−
∫ 1−x

−x

[1 − u2]ndu

∣∣∣∣ ≤
‖f‖
kn

∫

δ≤|u|≤1

[1 − u2]ndu

≤ ‖f‖
√
n(1 − δ2)n

(
1 − 1

n

)−n

< ε/3 .

This proves the result.
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For completeness and as a matter of interest, it easily follows from integration by
parts that

kn =

∫ 1

−1

[1 − u2]ndu =
22n+1(n!)2

(2n+ 1)!
.

Applying Stirling’s formula it may be shown that

lim
n→∞

√
nkn =

√
π .

The following is a variation on and simplification of Landau’s proof. It is due to
Jackson [1934]. As above, assume f ∈ C[a, b] with 0 < a < b < 1. Extend f to be a
continuous function on all of IR which also vanishes identically off [0, 1]. This latter fact,
together with a change of variable argument, gives

pn(x) =
1

kn

∫ 1

0

f(y)
[
1 − (x− y)2

]n
dy

=
1

kn

∫ 1

−1

f(x+ u)(1 − u2)ndu

and thus we get the simpler

pn(x) − f(x) =
1

kn

∫ 1

−1

[f(x+ u) − f(x)] (1 − u2)ndu .

Let ε and δ be as above. For |u| ≥ δ, we have

|f(x+ u) − f(x)| ≤ 2‖f‖ ≤ 2‖f‖u2

δ2
,

while for |u| < δ we have

|f(x+ u) − f(x)| < ε

3
.

Thus

|f(x+ u) − f(x)| < ε

3
+

2‖f‖u2

δ2

for all x, u ∈ [0, 1]. Substituting it follows that

|pn(x) − f(x)| < 1

kn

∫ 1

−1

ε

3
(1 − u2)ndu+

1

kn

∫ 1

−1

2‖f‖u2

δ2
(1 − u2)ndu

=
ε

3
+

2‖f‖
δ2kn

∫ 1

−1

u2(1 − u2)ndu .

Set

jn =

∫ 1

−1

u2(1 − u2)ndu .
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Integration by parts yields

jn =
−u(1 − u2)n+1

2(n+ 1)

∣∣∣
1

−1
+

∫ 1

−1

(1 − u2)n+1

2(n+ 1)
du =

kn+1

2(n+ 1)
.

Since (1 − u2) ≤ 1 on [−1, 1] we also have kn+1 ≤ kn. Thus

jn ≤ kn

2(n+ 1)
.

Substituting we obtain

|pn(x) − f(x)| < ε

3
+

‖f‖
δ2(n+ 1)

.

We now choose n sufficiently large so that

|pn(x) − f(x)| < ε

for all x ∈ [0, 1] and thus on [a, b].
For much more concerning the “Landau” polynomials, see Butzer, Stark [1986a], and

the many references therein.

A few months after the appearance of Landau [1908], Lebesgue “responded” with
Lebesgue [1908] which appeared in the same journal and is an “extract from a letter
addressed to E. Landau”. Despite Lebesgue’s flowery opening Je me félicite de m’etre

rencontré avec vous sur un point particulier ..., Lebesgue then goes on to inform Landau
that he actually had the same proof for more than two years, but his manuscript was not
yet ready (he is probably referring to his treatise Lebesgue [1909]). But since Landau did
publish, then Lebesgue feels called upon to tell Landau (and the world) about some of his
reflections on this matter. Aside from the entertainment value of this exchange between
two stars, Lebesgue does make two valid points. The first has less to do with Landau’s
particular proof than with the proofs of Weierstrass, Picard, Fejér, and Landau. Lebesgue
notes that these proofs can and should be considered within the general context of integral
convolutions with sequences of non-negative kernels, where the convolution approaches the
identity. This was subsequently elaborated upon in Lebesgue [1909]. We will consider this
approach later in Section 5. Furthermore in the latter half of this short paper Lebesgue
goes on to ask questions about the order of approximation. This is a clear indication that
the subject is evolving.

De la Vallée Poussin. In addition to the above claim of Lebesgue, the treatise of de
la Vallée Poussin [1908] contains a proof of Weierstrass’ theorem using this exact same
integral. In fact Ch. J. de la Vallée Poussin (1866–1962) devotes over 30 pages of his paper
to a study of its various approximation properties (and not only the question of density).
A footnote on p. 197 therein states that de la Vallée Poussin was made aware of Landau’s
paper only while editing his own paper. (Landau’s paper appeared in January of 1908.)
So it seems that three outstanding mathematicians almost simultaneously discovered this
method of proving Weierstrass’ theorem. As Landau points out, this integral had in fact
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already been introduced by Stieltjes in a letter to Hermite dated September 12, 1893 (see
Baillaud, Bourget [1905]).

De la Vallée Poussin, in the second half of de la Vallée Poussin [1908], introduced
what he regarded as the periodic analogues of the Landau integrals. These are

In(x) =
1

hn

∫ π

−π

f(y)

[
cos

(
y − x

2

)]2n

dy

where

hn =

∫ π

−π

[
cos

(y
2

)]2n

dy =
π(2n)!

22n−1(n!)2
.

In is a trigonometric polynomial of degree at most n. The proof of the fact that the In

uniformly converge to f for f ∈ C̃[−π, π] is very similar to the proof of the analogous
result for the Landau integrals. We will not repeat the proof here. For more concerning
this proof, this paper, and de la Vallée Poussin’s other contributions to approximation
theory, we recommend Butzer, Nessel [1993].

Bernstein. What we will arbitrarily call the last of the early proofs of the Weierstrass
theorem is due to S. N. Bernstein (1880–1968) and appeared in Bernstein [1912/13]. (The
thesis advisor of Bernstein’s first doctorate was Picard.) This paper is reproduced in Stark
[1981]. A translation into Russian appears in his somewhat more accessible collected
works. This proof is very much different from the previous proofs, and has had a profound
impact in various areas. It is here that Bernstein introduces what we today call Bernstein
polynomials.

The Bernstein polynomial of f ∈ C[0, 1] is defined by

Bn(x) =

n∑

m=0

f
(m
n

) (
n

m

)
xm(1 − x)n−m .

Bernstein demonstrates, using probabilistic ideas, that the Bn converge uniformly to f on
[0, 1]. The proof of this fact, as generally given today, is slightly different from Bernstein’s
original proof and has the added advantage of providing “error estimates”. We will here
present Bernstein’s original proof, although it is somewhat overinvolved.

Since f ∈ C[0, 1], given ε > 0 there exists a δ > 0 such that

|x− y| < δ

implies

|f(x) − f(y)| < ε

2

for all x, y ∈ [0, 1]. Set

f(x) = max{f(y) : y ∈ [x− δ, x+ δ] ∩ [0, 1]}

and
f(x) = min{f(y) : y ∈ [x− δ, x+ δ] ∩ [0, 1]} .
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Thus for each x ∈ [0, 1]

0 ≤ f(x) − f(x) <
ε

2
,

and
0 ≤ f(x) − f(x) <

ε

2
.

For fixed δ > 0 as above, set

ηn(x) =
∑

{m:|x−(m/n)|>δ}

(
n

m

)
xm(1 − x)n−m .

From the decomposition

Bn(x) =
n∑

m=0

f
(m
n

) (
n

m

)
xm(1 − x)n−m

=
∑

{m:|x−(m/n)|≤δ}
f

(m
n

) (
n

m

)
xm(1−x)n−m +

∑

{m:|x−(m/n)|>δ}
f

(m
n

) (
n

m

)
xm(1−x)n−m ,

it easily follows that

f(x)[1 − ηn(x)] − ‖f‖ηn(x) ≤ Bn(x) ≤ f(x)[1 − ηn(x)] + ‖f‖ηn(x) .

Bernstein then states that according to Bernoulli’s theorem there exists an N such that
for all n > N and all x ∈ [0, 1] we have

ηn(x) <
ε

4‖f‖ .

Thus as a consequence of

f(x)+[f(x)−f(x)]−ηn(x)[‖f‖+f(x)] ≤ Bn(x) ≤ f(x)+[f(x)−f(x)]+ηn(x)[‖f‖−f(x)] ,

we obtain
f(x) − ε

2
− ε

4‖f‖2‖f‖ < Bn(x) < f(x) +
ε

2
+

ε

4‖f‖2‖f‖ ,

which gives
|Bn(x) − f(x)| < ε

for all x ∈ [0, 1].
For completeness we now verify Bernstein’s statement regarding ηn(x). (For a proba-

bilistic explanation of this quantity and estimate, see e. g. Levasseur [1984].) To this end
confirm that

n∑

m=0

(
n

m

)
xm(1 − x)n−m = 1



Weierstrass and Approximation Theory 37

n∑

m=0

m

n

(
n

m

)
xm(1 − x)n−m = x

and
n∑

m=0

m2

n2

(
n

m

)
xm(1 − x)n−m = x2 +

x(1 − x)

n
.

Then

ηn(x) =
∑

{m:|x−(m/n)|>δ}

(
n

m

)
xm(1 − x)n−m

≤
∑

{m:|x−(m/n)|>δ}

(
x− m

n

δ

)2 (
n

m

)
xm(1 − x)n−m

≤ 1

δ2

n∑

m=0

(
x− m

n

)2
(
n

m

)
xm(1 − x)n−m

=
1

δ2

[
x2 − 2x · x+ x2 +

x(1 − x)

n

]

=
x(1 − x)

nδ2

≤ 1

4nδ2
.

for all x ∈ [0, 1]. Thus for each fixed δ > 0 we can in fact choose N such that for all n ≥ N
and all x ∈ [0, 1]

ηn(x) <
ε

4‖f‖ .

This ends Bernstein’s proof.

Bernstein’s proof is beautiful and elegant! It constructs in a simple, linear (but un-
expected) manner a sequence of approximating polynomials depending explicitly on the
values of f at rational values. No further information regarding f is used. This was not
the first attempt to find a proof of the Weierstrass theorem using a suitable partition of
unity. In Borel [1905, p. 79–82], which seems to have been the first textbook devoted
mainly to approximation theory, we find the following formula for constructing a sequence
of polynomials approximating every f ∈ C[0, 1].

E. Borel (1871–1956) proved that the sequence of polynomials

pn(x) =

n∑

m=0

f
(m
n

)
qn,m(x)

uniformly approximates f where the qn,m are fixed polynomials independent of f . His
qn,m are constructed as follows. Set

gn,m(x) =





0,
∣∣x− m

n

∣∣ > 1
n

nx− (m− 1), m−1
n ≤ x ≤ m

n
−nx+ (m+ 1), m

n
≤ x ≤ m+1

n
.
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Note that the gn,m are non-negative, sum to 1, and gn,m(m/n) = 1. Let (by the Weierstrass
theorem) qn,m be any polynomial satisfying

|gn,m(x) − qn,m(x)| < 1

n2

for all x ∈ [0, 1]. It is now not difficult to verify that the pn do approximate f . However
the Bernstein polynomials are so much more satisfying in so many ways.

§5. Generalizations and Additional Proofs

A time came when there was no longer any distinction in inventing a proof of Weierstrass’s

theorem, unless the new method could be shown to possess some specific excellence, in the

way of simplicity, for example, or rapidity of convergence. D. Jackson [1921, p. 418].

Most great theorems are significant not only in the questions they answer, but also in
their influence on the development of a field. This is particularly valid in the case of
the Weierstrass approximation theorems. If we were to consider here all consequences
or developments from the Weierstrass theorems, then this article would be an immense
book. We will not do that. We will rather consider various results which provide different
perspectives, insights and generalizations of the Weierstrass theorems. The topics we will
touch upon in this section are (again in chronological order) the Müntz theorem, Hermite–
Fejér interpolation, Carleman’s theorem, the Stone–Weierstrass theorem, the Bohman–
Korovkin theorem, and finally, a strikingly elementary proof of the Weierstrass theorem
due to Kuhn.

Müntz’s Theorem. The three principal mathematicians who led the development of
approximation theory in the early decades of the twentieth century were S. N. Bernstein,
D. Jackson and Ch. J. de la Vallée Poussin. The predominant of these was undoubtedly
S. N. Bernstein. In his paper Bernstein [1912a] in the proceedings of the 1912 International
Congress of Mathematicians held at Cambridge, Bernstein wrote the following: It will be

very interesting to know if the conditions
∑

1
pk

= ∞ are necessary and sufficient for the

system {xpk} to be complete. However it is not completely certain that such necessary and

sufficient conditions will exist. Bernstein also addressed this question in Bernstein [1912b].
The Weierstrass theorems can and should be viewed as density theorems. In fact they

were the first significant density theorems. Thus it is natural to search for other “complete”
systems of functions, i.e., other systems whose linear span would be dense. This is the
question being posed by Bernstein, who himself had obtained some partial results.

It was just two years later that Ch. H. Müntz (1884–1956), see Müntz [1914], was able
to provide a solution confirming Bernstein’s qualified guess.

Müntz’s Theorem. The system

xp0 , xp1 , xp2 , . . .

where 0 ≤ p0 < p1 < p2 < · · · is dense in C[0, 1] if and only if p0 = 0 and

∞∑

k=1

1

pk
= ∞ .
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Müntz’s proof of his theorem contains all the elements of the proof which may be found
in many of the classic texts on approximation theory, see e. g. Achieser [1956, p. 43–46],
Cheney [1966, p. 193–198], Borwein, Erdélyi [1995, 171–205]. (The last reference presents
many generalizations of Müntz’s theorem and also surveys the literature on this topic.)
Müntz’s basic idea was to prove that one can approximate each xn in L2[0, 1] (n ∈ IN) from
the above system iff

∑
1
pk

= ∞. This was done via “lemmas” due to Cauchy and to Gram.

One then uses a simple trick bounding the uniform norm of the function with the L2[0, 1]
norm of its derivative, and finally one applies Weierstrass’ theorem. The proof in Müntz
[1914], although it contains all these ideas, is rather clumsy. Two years later Szász [1916]
generalized Müntz’s results and also put Müntz’s argument into a more elegant form. We
mention all this in order to justify the fact that we will not reprove this result here.

An alternative proof of Müntz’s theorem and its numerous generalizations is via du-
ality and the possible sets of uniqueness for analytic functions, see e. g. Rudin [1966,
p. 304–307], Luxemburg, Korevaar [1971], and Feinerman, Newman [1974, Chap. X]. This
method of proof is not based on the Weierstrass theorems. As such it provides us with
yet another proof, albeit far from simple or elementary, of the Weierstrass theorems. For
some different approaches see, for example, Rogers [1981] and Burckel, Saeki [1983].

Hermite–Fejér Interpolation. Lagrange interpolation by algebraic polynomials has a
long and distinguished history. One topic which has evoked much interest over the years
has been the question of the convergence of the interpolation process.

To be specific, given a triangular array {xnj}n
j=0

∞
n=0 of points in [a, b], a ≤ xn0 < · · · <

xnn ≤ b, then to each f ∈ C[a, b] and n ∈ IN there exists a unique algebraic polynomial
pn of degree at most n for which

pn(xnj) = f(xnj), j = 0, 1, . . . , n .

It is natural to ask if there exists an array, as above, for which the associated polynomial
sequence {pn} uniformly converges to f for every f ∈ C[a, b]. That is, does there exist a
fixed triangular array of points for which the Weierstrass theorem follows by interpolation?

For more than a century it was known that for some reasonable triangular arrays, with
more or less equally spaced points, there exist continuous functions for which the associated
polynomial sequence diverges, see e. g. Méray [1896] or the better known example from
Runge [1901]. Nonetheless it was somewhat surprising when Faber [1914] proved that for
every triangular array of points there exists a continuous function for which the associated
polynomial sequence diverges. (For much more on this subject see the book of Szabados,
Vértesi [1990].) This result of Faber should be compared with Bernstein’s 1912/13 proof
of the Weierstrass theorem. Bernstein constructs a polynomial of degree n based on the
values of the function (defined on [0, 1]) at the equally spaced points {j/n}, j = 0, 1, . . . , n.
These polynomials converge uniformly to the function, but they do not interpolate the
function at these points.

Based on this result of Faber, it was all the more surprising when Fejér proved two
years later in Fejér [1916] (see also Fejér [1930]) that Weierstrass’ theorem may be obtained
via interpolation. The difference was that Fejér used Hermite interpolation rather than
Lagrange interpolation. Hermite interpolation is the term applied to the generalizations of
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Lagrange interpolation which are based not only on function values, but also on consecutive
derivative values. Fejér considered a rather specific Hermite type interpolation scheme. (He
actually considered two schemes, but we will detail only one.) This interpolation scheme
is today called Hermite–Fejér interpolation.

Let f ∈ C[−1, 1] and xj = cos(2j−1)π/2n, j = 1, . . . , n, be the zeros of the Chebyshev
polynomial Tn of degree n (see Section 4). There exists a unique polynomial Hn of degree
at most 2n− 1 which satisfies

Hn(xj) =f(xj),

H ′
n(xj) =0,

j = 1, . . . , n

j = 1, . . . , n .
(5.1)

The following is contained in Fejér [1916, Theorem XI].

Hermite–Fejér Interpolation Theorem. For every f ∈ C[−1, 1] the sequence of poly-
nomials Hn, as defined above, converges uniformly to f on [−1, 1].

Proof. For any given distinct {xj}n
j=1, set

ω(x) =

n∏

j=1

(x− xj)

and

`i(x) =
ω(x)

ω′(xi)(x− xi)
. (5.2)

The `i are (fundamental) polynomials of exact degree n− 1 that satisfy

`i(xj) = δij , i, j = 1, . . . , n .

For each i = 1, . . . , n, set

hi(x) = [1 − 2(x− xi)`
′
i(xi)] (`i(x))

2 .

It is readily verified from (5.2) (and L’Hôpital’s rule) that

hi(x) =

[
1 − ω′′(xi)(x− xi)

ω′(xi)

]
(`i(x))

2 . (5.3)

Each hi is a polynomial of exact degree 2n− 1, and

hi(xj) =δij ,

h′i(xj) =0,

j =1, . . . , n

j =1, . . . , n .

Thus the polynomial of degree at most 2n− 1

Hn(x) =
n∑

i=1

f(xi)hi(x)
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satisfies (5.1).
We now assume, as in the statement of the theorem, that xj = cos(2j − 1)π/2n,

j = 1, . . . , n. Then ω(x) = aTn(x) for some known constant a. (ω is monic, while Tn is
normalized to have norm one.) In this case we show how we can further refine formula
(5.3) for the hi. The polynomial ω satisfies the second order differential equation

(1 − x2)ω′′(x) − xω′(x) + n2ω(x) = 0

(see e. g. Rivlin [1974, p. 31]). At the points xi we have ω(xi) = 0 and therefore

(1 − x2
i )ω

′′(xi) = xiω
′(xi)

and
ω′′(xi)

ω′(xi)
=

xi

(1 − x2
i )
. (5.4)

Furthermore it is easily verified from the formula Tn(x) = cos(n arccosx) that

ω′(xi) = aT ′
n(xi) =

an(−1)i

√
1 − x2

i

.

Thus from (5.2)

(`i(x))
2 =

[
ω(x)

ω′(xi)(x− xi)

]2

=
(1 − x2

i )

(x− xi)2
T 2

n(x)

n2
. (5.5)

Substituting (5.4) and (5.5) into (5.3) we obtain

hi(x) =
(1 − xxi)

(x− xi)2
T 2

n(x)

n2
.

Note that since |xi| < 1 it follows that

hi(x) ≥ 0 (5.6)

for all x ∈ [−1, 1]. Furthermore
n∑

i=1

hi(x) ≡ 1 (5.7)

since the right hand side is the unique polynomial of degree at most 2n− 1 which assumes
the value 1 and has derivative 0 at each xj , j = 1, . . . , n.

Finally, before proving the convergence result, we note that since |Tn(x)| ≤ 1 and
|1 − xxi| ≤ 2 for all x ∈ [−1, 1], we have the inequality

hi(x) ≤
2

n2(x− xi)2
(5.8)

for all x ∈ [−1, 1] and i = 1, . . . , n.
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The remaining steps of the convergence proof are now similar to what we have seen in
previous proofs. Given ε > 0 there exists a δ > 0 such that for all x, y ∈ [−1, 1] satisfying
|x− y| < δ we have |f(x) − f(y)| < ε. Now from (5.7)

f(x) −Hn(x) =
n∑

i=1

[f(x) − f(xi)]hi(x) .

We divide the sum on the right hand side into

∑

{i:|x−xi|<δ}
[f(x) − f(xi)]hi(x) +

∑

{i:|x−xi|≥δ}
[f(x) − f(xi)]hi(x) .

Applying both (5.6) and (5.7) we have

∣∣∣∣∣∣

∑

{i:|x−xi|<δ}
[f(x) − f(xi)]hi(x)

∣∣∣∣∣∣
< ε

∑

{i:|x−xi|<δ}
hi(x) ≤ ε

n∑

i=1

hi(x) = ε .

We estimate the second sum by an application of (5.8).

∣∣∣∣∣∣

∑

{i:|x−xi|≥δ}
[f(x) − f(xi)]hi(x)

∣∣∣∣∣∣
≤ 2‖f‖




∑

{i:|x−xi|≥δ}
hi(x)





≤ 4‖f‖
n2

∑

{i:|x−xi|≥δ}

1

(x− xi)2
≤ 4‖f‖

n2

n

δ2
=

4‖f‖
nδ2

.

Choosing n sufficiently large it follows that

|f(x) −Hn(x)| < 2ε

for all x ∈ [−1, 1].

Carleman’s Theorem. In 1927 T. Carleman (1892–1949), see T. Carleman [1927], proved
a direct generalization of Weierstrass’ original Theorem A (see Section 3). This result would
have undoubtedly pleased Weierstrass. It is the following.

Carleman’s Theorem. Let η ∈ C(IR), η(x) > 0 for all x. To each f ∈ C(IR) there exists
an entire function g for which

|f(x)− g(x)| < η(x)

for all x ∈ IR.

Proof. In what follows we assume z ∈ |C and x ∈ IR. Furthermore, let α0 > α1 > · · ·
satisfy

0 < αn < min
n≤|x|≤n+1

η(x)
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and
βn = αn+1 − αn+2

n = 0, 1, 2, . . . , and β−1 = 0.
We will construct a sequence of polynomials {pn} in the following manner. The

polynomial p0 is chosen, by Weierstrass’ theorem, to satisfy

|f(x) − p0(x)| < β0

for |x| ≤ 1. Now set

h1(z) = p0(z), |z| ≤ 1 and h1(x) = f(x), 3/2 ≤ |x| ≤ 2

and extend h1 to {x : 1 < |x| < 3/2} so that it is continuous on {x : 1 ≤ |x| ≤ 2} and also
satisfies

|f(x) − h1(x)| < β0

on {x : 1 ≤ |x| ≤ 3/2}. This is possible. Set

A1 = {z : |z| ≤ 1} ∪ {x : 1 ≤ |x| ≤ 2} .

By a theorem of Walsh [1935, p. 47, Theorem 15] (a Runge type theorem) the function h1

can be uniformly approximated on A1 by polynomials. Thus there exists a polynomial p1

satisfying
|h1(z) − p1(z)| < β1

for all z ∈ A1.
The general form of the construction is the following. For n ∈ IN set

An = {z : |z| ≤ n} ∪ {x : n ≤ |x| ≤ n+ 1} .

Assume we have chosen the polynomial pn satisfying

|f(±(n+ 1)) − pn(±(n+ 1))| < βn .

Set

hn+1(z) =

{
pn(z), |z| ≤ n+ 1
f(x), n+ 3/2 ≤ |x| ≤ n+ 2

and extend hn+1 to {x : n+ 1 < |x| < n+ 3/2} so that it is continuous on An+1 and also
satisfies

|f(x) − hn+1(x)| < βn

on {x : n + 1 ≤ |x| ≤ n + 3/2}. This is possible. By the above-mentioned theorem of
Walsh, there exists a polynomial pn+1 satisfying

|hn+1(z) − pn+1(z)| < βn+1
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for all z ∈ An+1 (and thus our “assumption” also holds at ±(n+ 2)).
Let

g(z) = lim
n→∞

pn(z) = p0(z) +

∞∑

k=0

[pk+1(z) − pk+2(z)] .

We claim that g is an entire function which satisfies the claim of the theorem.
The function g is entire since

|pn+1(z) − pn(z)| < βn+1

on {z : |z| ≤ n+ 1}, and
∑∞

k=0 βk <∞.
To prove the approximation property note that on {x : n ≤ |x| ≤ n+ 1} we have

|f(x) − pn(x)| ≤ |f(x) − hn(x)| + |hn(x) − pn(x)| < βn−1 + βn

(which also holds for n = 0 since we have set β−1 = 0). Furthermore, on {x : n ≤ |x| ≤
n+ 1}

|g(x)− pn(x)| =

∣∣∣∣∣

∞∑

k=n

[pk+1(z) − pk(z)]

∣∣∣∣∣ <
∞∑

k=n

βk+1 .

Thus on {x : n ≤ |x| ≤ n+ 1} we have

|f(x) − g(x)| ≤ |f(x) − pn(x)| + |pn(x) − g(x)| <
∞∑

k=n−1

βk .

Recalling that βk = αk+1 − αk+2, k = 0, 1, 2, . . . , and β−1 = 0, it follows that

∞∑

k=n−1

βk ≤
{
αn, n ≥ 0
α1 < α0, n = 0

and thus
|f(x)− g(x)| < η(x)

for all x ∈ IR.

We have presented here a variation on Carleman’s original proof, although the basic
structure of the proof is much the same. The major difference is that Carleman does
not reference Walsh, but constructs the desired {pn}. The proof as given here may be
found in Kaplan [1955/56]. He ascribes it to Marcel Brelot. This is essentially the same
proof as appears in Gaier [1987], where numerous extensions are discussed. In addition,
in Carleman’s original formulation η was taken as a positive constant. However from the
method of proof it easily follows that the positive constant can be replaced by η as above.
Note that η can tend to 0 as x→ ±∞.

H. Whitney, in his seminal paper Whitney [1934] on the analytic extension of differen-
tiable functions, proves an extension of this result of Carleman to open sets in IRn and also
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simultaneously approximates the function and any finite set of derivatives. Narasimhan
[1968, p. 34] contains an elegant proof along the lines of both Whitney’s proof and Weier-
strass’ original proof. Unfortunately Whitney’s paper contains no reference to Carleman.
As a consequence there seem to have been two streams of papers which discuss and gen-
eralize these results, each stream referencing one author but not the other. Frih, Gauthier
[1988] has some interesting extensions to both results.

Stone–Weierstrass Theorem. In Stone [1937], M. H. Stone (1903–1989) generalized
Weierstrass’ theorem proving a result which, as stated in Buck [1962, p. 4], represents one

of the first and most striking examples of the success of the algebraic approach to analysis.
There have since been numerous modifications and extensions of the original theorem
and various proofs have been given. See, for example, Nachbin [1976], Prolla [1993] and
references therein. Stone himself reworked relevant portions of Stone [1937] in Stone [1948],
which was reprinted in the more accessible Stone [1962]. According to Stone, the proof
in Stone [1948], [1962], was much improved by Kakutani, with the aid of suggestions made

by Chevalley. (He is referring to the double compactness argument given below.) The
importance of the theorem and the insight it provides into the Weierstrass theorems is
such that we feel it imperative that we present and prove a form of this theorem here. Our
proof will follow closely the essential ideas contained in Stone [1948], [1962].

Theorem. Let X be a compact space and let C(X) be the space of continuous real-valued
functions defined on X. Assume A is a subalgebra of C(X) which contains the constant
function and separates points. Then A is dense in C(X) in the uniform norm.

We recall that an algebra is a linear space on which multiplication between elements
has been suitably defined satisfying the usual commutative and associative type postulates.
Algebraic and trigonometric polynomials in any finite number of variables are algebras. A
set in C(X) separates points if for any distinct points x, y ∈ C(X) there exists a g in the
set for which g(x) 6= g(y).

Proof. First some preliminaries. From the Weierstrass theorem, or more explicitly from
Lebesgue’s proof thereof and its variations as given in Section 4, there exists a sequence of
algebraic polynomials {pn} which uniformly approximates the function |t| on [−c, c], every
c > 0. As such, if f is in A, the closure of A in the uniform norm, then so is pn(f) for each
n which implies that |f | is also in A. Furthermore

max{f(x), g(x)} =
f(x) + g(x) + |f(x) − g(x)|

2

and

min{f(x), g(x)} =
f(x) + g(x) − |f(x) − g(x)|

2
.

It thus follows that if f, g ∈ A, then max{f, g} and min{f, g} are also in A. This of course
extends to the maximum and minimum of any finite number of functions.

Finally, let x, y be any distinct points in X, and α, β ∈ IR. There exists a g ∈ A for
which g(x) 6= g(y), and the constant function is also in A. Thus

h(w) = β + (α− β)
g(w) − g(y)

g(x) − g(y)
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is in A and satisfies the interpolation conditions h(x) = α and h(y) = β.
We can now present a proof of this theorem. Given f ∈ C(X), ε > 0 and x ∈ X,

for every y ∈ X let hy ∈ A satisfy hy(x) = f(x) and hy(y) = f(y). Since f and hy are
continuous there exists a neighbourhood Vy of y for which hy(w) ≥ f(w)−ε for all w ∈ Vy.
The ∪y∈XVy cover X. As X is a compact metric space, it has a finite subcover, i.e., there
are points y1, . . . , yn in X such that

n⋃

i=1

Vyi
= X .

Let g = max{hy1
, . . . , hyn

}. Then g ∈ A and g(w) ≥ f(w) − ε for all w ∈ X.

The above g depends upon x, so we shall now denote it by gx. It satisfies gx(x) =
f(x) and gx(w) ≥ f(w) − ε for all w ∈ X. As f and gx are continuous there exists a
neighbourhood Ux of x for which gx(w) ≤ f(w) + ε for all w ∈ Ux. Since ∪x∈XUx covers
X, it has a finite subcover. Thus there exist points x1, . . . , xm in X for which

m⋃

i=1

Uxi
= X .

Let

F = min{gx1
, . . . , gxm

} .

Then F ∈ A and

f(w) − ε ≤ F (w) ≤ f(w) + ε

for all w ∈ X. Thus

‖f − F‖ ≤ ε .

This implies that f ∈ A.

Bohman–Korovkin Theorem. As we noted in Section 4, many of the proofs contained
therein are based on sequences of singular integrals, and in fact on positive singular inte-
grals. In his famous treatise Lebesgue [1909], Lebesgue considered the subject of singular
integrals. This paper was largely motivated by the various above-mentioned proofs. As
Lebesgue states in Lebesgue [1908] in reference to the methods of proof of Weierstrass,
Picard, Fejér and Landau: ... the study of these diverse integrals is done by the same

process and evidently depends on those properties relative to singular integrals of positive

functions.

The paper Lebesgue [1909] is lengthy and contains many diverse results on integrals,
different forms of convergence of sequences of singular integrals, and upper and lower
bounds on the orders of approximation by various approximation processes. With respect
to convergence of sequences of singular integrals, it is perhaps easiest to formulate some
of these main concepts in the periodic case.
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Theorem. Assume that for each n ∈ IN we have Kn ∈ C̃[−π, π], Kn(y) ≥ 0 for all
y ∈ [−π, π], and ∫ π

−π

Kn(y) dy = 1 .

Further assume that for every δ > 0

lim
n→∞

∫

δ<|y|≤π

Kn(y) dy = 0 .

For each f ∈ C̃[−π, π] set

In(f ;x) =

∫ π

−π

f(y)Kn(x− y) dy .

Then

lim
n→∞

In(f ;x) = f(x)

and the convergence is uniform on [−π, π].

The proof of this result is elementary. We have essentially proven it repeatedly in this
and the previous section.

If Kn is a trigonometric polynomial, as in the proofs of Fejér and de la Vallée Poussin,
then In is a trigonometric polynomial and this immediately implies Weierstrass’ theorem.
The singular integral of Jackson (contained in his thesis Jackson [1911] and also in the
more accessible Jackson [1930])

Jn(f ;x) =

∫ π

−π

f(y)jn(x− y) dy ,

where

jn(y) = an

[
sin(ny/2)

n sin(y/2)

]4

with an chosen so that jn integrates to 1, is another example thereof. If In(f ;x) is either
a polynomial or suitably analytic, in which case it can be replaced by a truncated power
series approximant, then we also obtain the Weierstrass theorem. The proofs of Weierstrass
and Landau fall within these categories. This framework and these results can also be
generalized to include Bernstein’s proof and the proof via Hermite–Fejér interpolation.

In the above we sought conditions verifying that a sequence of singular integrals
appropriately approaches the identity. Positive singular integrals give rise to positive
linear operators. It so happens that there are easily checked properties guaranteeing the
convergence of a sequence of positive linear operators to the identity operator. The major
result in this context is the following which can be applied to simplify many of the methods
of proof of the previous section.
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Bohman–Korovkin Theorem. Let {Ln} be a sequence of positive linear operators
mapping C[a, b] into itself. Assume that

lim
n→∞

Ln(xi) = xi , i = 0, 1, 2 ,

and the convergence is uniform on [a, b]. Then

lim
n→∞

(Lnf)(x) = f(x)

uniformly on [a, b] for every f ∈ C[a, b].

Proof. Let f ∈ C[a, b]. As f is uniformly continuous, given ε > 0 there exists a δ > 0
such that if |x1 − x2| < δ, then |f(x1) − f(x2)| < ε.

For each y ∈ [a, b], set

pu(x) = f(y) + ε+
2‖f‖(x− y)2

δ2

and

p`(x) = f(y)− ε− 2‖f‖(x− y)2

δ2
.

Since
|f(x) − f(y)| < ε

for |x− y| < δ, and

|f(x) − f(y)| < 2‖f‖(x− y)2

δ2

for |x− y| > δ, it is readily verified that

p`(x) ≤ f(x) ≤ pu(x)

for all x ∈ [a, b].
Since the Ln are positive linear operators, this implies that

(Lnp`)(x) ≤ (Lnf)(x) ≤ (Lnpu)(x) (5.9)

for all x ∈ [a, b], and in particular for x = y.
For the given fixed f , ε and δ the pu and p` are quadratic polynomials which depend

upon y. Explicitly

pu(x) =

(
f(y) + ε+

2‖f‖y2

δ2

)
−

(
4‖f‖y
δ2

)
x+

(
2‖f‖
δ2

)
x2 .

Since the coefficients are bounded independently of y ∈ [a, b], and

lim
n→∞

Ln(xi) = xi , i = 0, 1, 2 ,
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uniformly in [a, b], it follows that there exists an N such that for all n ≥ N , and every
choice of y ∈ [a, b]

|(Lnpu)(x) − pu(x)| < ε

and similarly

|(Lnp`)(x) − p`(x)| < ε

for all x ∈ [a, b]. That is, Lnpu and Lnp` converge uniformly in both x and y to pu and
p`, respectively. Setting x = y we obtain

(Lnpu)(y) < pu(y) + ε = f(y) + 2ε

and

(Lnp`)(y) > p`(y) − ε = f(y) − 2ε .

Thus given ε > 0 there exists an N such that for all n ≥ N and every y ∈ [a, b] we
have from (5.9)

f(y) − 2ε < (Lnf)(y) < f(y) + 2ε .

This proves the theorem.

H. Bohman (1920–1996) was a Swedish actuary and statistician. In Bohman [1952]
he proved the above mentioned result but only for positive linear operators of the form

(Lnf)(x) =
n∑

i=0

f(ξi,n)ψi,n(x)

where the ψi,n are non-negative functions, and the points ξi,n are in [a, b], i = 0, 1, . . . , n.
His proof, and the main idea of his approach, was a generalization of Bernstein’s proof
of the Weierstrass theorem (see Section 4). P. P. Korovkin (1913–1985) one year later
proved the same theorem for integral type operators. Korovkin’s original proof, as found
in Korovkin [1953], is based on positive singular integrals (à la Lebesgue). Korovkin was
probably unaware of Bohman’s result. Korovkin subsequently much extended his theory,
major portions of which can be found in Korovkin [1960]. The proof we have presented
here is taken from Korovkin [1960].

Kuhn’s Proof. There are many elegant and simple proofs of Weierstrass’ theorem. For
those comfortable with either power series or Fourier series or singular integrals, then the
previous sections contain many simple proofs. But perhaps the most elementary proof (of
which we are aware) is the following due to Kuhn [1964]. Kuhn’s proof uses one basic
inequality, namely Bernoulli’s inequality

(1 + h)n ≥ 1 + nh

which is valid for h ≥ −1 and n ∈ IN .



50 Allan Pinkus

We present Kuhn’s proof except that we save a step by recalling from Section 4 that
we need only approximate continuous polygonal lines which we can write as

g(x) = g1(x) +
m−1∑

i=1

[gi+1(x) − gi(x)]h(x− xi)

where the 0 = x0 < x1 < · · · < xm = 1 are the abscissae of the polygonal line g, each gi is
linear, gi+1 − gi vanishes at xi, and

h(x) =

{
1, x ≥ 0
0, x < 0

.

This form was used in the proofs of Runge/Phragmén, Mittag-Leffler and Lebesgue. In
fact, in the first two of these proofs it was noted that it suffices to find a sequence of
polynomials bounded on [−1, 1] and approximating h uniformly on [−1,−δ]∪ [δ, 1], for any
given δ > 0.

Kuhn simply writes down such a sequence of polynomials. They may be given as

pn(x) =

[
1 −

(
1 − x

2

)n]2n

.

(Note that the polynomials {x[2pn(x) − 1]} uniformly converge to |x| on [−1, 1]. See
Lebesgue’s proof as given in Section 4.)

It is more convenient to consider the simpler

qn(x) = (1 − xn)2
n

,

which is just a shift and rescale of pn. On [0, 1] the qn are decreasing and satisfy qn(0) = 1,
qn(1) = 0. The requisite facts concerning the pn therefore reduce to showing

lim
n→∞

qn(x) =

{
1, 0 ≤ x < 1/2
0, 1/2 < x ≤ 1

.

Let x ∈ [0, 1/2). Then from Bernoulli’s inequality

1 ≥ qn(x) = (1 − xn)2
n ≥ 1 − (2x)n .

Since 0 ≤ 2x < 1, we have
lim

n→∞
qn(x) = 1 .

Let x ∈ (1/2, 1). Then using Bernoulli’s inequality we obtain

1

qn(x)
=

1

(1 − xn)2n =

(
1 +

xn

1 − xn

)2n

≥ 1 +
(2x)n

1 − xn
> (2x)n

and thus

0 < qn(x) <
1

(2x)n
.

As 2x > 1, it follows that
lim

n→∞
qn(x) = 0 .

The monotonicity of the qn implies that this approximation is appropriately uniform. This
ends the proof.

Kuhn’s proof motivated Brosowski, Deutsch [1981], and subsequently Ransford [1984],
to provide elementary proofs of the Stone–Weierstrass Theorem.
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Rogers, L. C. G. [1981] A simple proof of Müntz’s theorem, Math. Proc. Camb. Phil. Soc.
90, 1–3.

Rudin, W. [1966] “Real and Complex Analysis”, McGraw-Hill, New York.

Runge, C. [1885] Zur Theorie der eindeutigen analytischen Functionen, Acta Math. 6,
229–244.
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arbitraires d’une variable réelle, J. Math. Pure et Appl. 2, 105–113 and 115-138. (This is
a translation of Weierstrass [1885] and, as the original, it appeared in two parts and in
subsequent issues, but under the same title. This journal was, at the time, called Journal
de Liouville)

Whitney, H. [1934] Analytic extensions of differentiable functions defined in closed sets,
Trans. Amer. Math. Soc. 36, 63–89.

Yamaguti, M., M. Hata, and J. Kigami. [1997] “Mathematics of Fractals”, AMS Transl.
Math. Monographs, Providence.

Allan Pinkus
Department of Mathematics
Technion, I. I. T.
Haifa, 32000
Israel
pinkus@tx.technion.ac.il


