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APPROXIMATION THEORY, OR A MISS IS BETTER THAN A MILE

Whatever else an inaugural lecture is supposed to be - and a variety
of descriptions have been offered here by previous victims of the
system - I take it as an opportunity for a new holder of a proféssorial
Chair to talk on something that interests him, preferably related to
his own subject, and in such a way that he can be understood, largely
at any rate, by his university colleagues, by students of all sorts, and
by lay members of the public wishing to spend a comfortable hour
relaxing in the lecture-room,

Now I profess to be a mathematician, and mathematicians are per-
culiar in having not merely the two modes of self-expression and
communication - prose and poetry - enjoyed by Moli2re's Monsieur
Jourdain and by others, but also a third, esoteric, mode - though

as University teachers we do our best to spread the secrets as widely
as we can. If] were to use this third mode - the language of mathe-
matics - today, I fear I would quickly lose, figuratively if not liter-
ally, a part of my audience. Since I do not wish to do this a moment
sooner that I can help, I will avoid this mode as much as I can,
though I may occasionally have to use a technical term or two.
Professor Lloyd, who faced the same problem in his inaugural
lecture five years ago, chose to give his audience a wide-ranging
discourse oh Mathematics in general, from ancient times to the
present. [ could not possibly emulate him in such an undertaking

and shall not attempt anything like it, Now in the course of my
mathematical activity I have had the good fortune to be concerned
among other things, with two subjects, namely electric network
theory and approximation theory, which have two important features
in common: they are both closely related to practical problems, and
they have both given rise to a great deal of interesting and varied
mathematics, Since this university is, as far as I know, almost if
not quite the only one in this country in which approximation theory

is offered as a distinct undergraduate topic in mathematics, I thinkit
will be appropriate for me in this lecture to try to convey something
of the nature and history of an aspect of that subject that particularly
interests me,and I shall incidentally mention an interesting connection
with network theory. If occasionally I am led to stray from my path
by a beautiful face or other distraction - well, that will be my
prerogative this evening.
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According to popular belief, ""a miss is as good as a mile", but

this is more indefensible than most sayings of this kind, Not

only does it distort, for the sake of a couple of anapaests, its
intended meaning, that '"a miss is no better than a mile", but this
thesis itself is highly questionable, and is indeed belied by that

other equally popular saying ""Tis better to have loved and lost than
never to have loved at all", which is surely far nearer the truth. So
is the Danish proverb which, in translation, (for I dare not inflict my
Danish on you), says "Almost shoots no man off his horse', Clearly
this is irrefutably true, but it does not tell the whole story - for

the objective might be not to shoot him off but to frighten him off. I
mention this because in the problems studied in approximation theory
the bull's eyeis in general an unattainable objective and the important
thing is to get as near to it as possible in the circumstances,

Before discussing what approximation theory is about, I would like

to say a few words on what it is not. That much of mathematics is
concerned with approximations is a familiar platitude., In fact
according to Bertrand Russell ""All exact science is dominated by

the idea of approximation'', The theoretical ratio of the circumference
of any circle to its diameter is, in abstract, a pPrecise universal
constant. But any concrete arithmetical representation of it, as a
fraction or decimal, can only be an approximation, and indeed a great
deal of effort has been devoted for thirty centuries or more to obtain-
ing increasingly accurate representations, for example the value 3
given in the Old Testament, the value 22/7 found by the Greeks, and
SO on until the present day when a computer can deliver a value
correct to thousands of decimal places on demand. However, such
approximations are not the concern of approximation theory, Or again
if a problem in applied mathematics, for example involving a vibrating
membrane, or torsion in a bar, or fluid motion,is to be solved,

this will usually mean solving a differential equation for which no neat
'packaged! solution in the form of a closed formula exists. Then by
sophisticated methods solution values can be obtained which are
approximations to the true values. Burt these methods belong to
numerical analysis, and not,in general, to approximation theory.

In order to convey what approximation theory is concerned with,

I propose to take you back more than 200 years, to the early days
of the industrial revolution, The scientific renaissance in the 16th
and 17th centuries led, among other things, to an increase in the
demand for minerals. It was not long before exhaustion of surface



ore deposits necessitated deeper and deeper mining, which gave rise
sooner or later to problems of drainage. Early steam engines were
invented specifically for the purpose of operating pumps for raising
water - mainly for mine drainage, though also for driving water-
wheels and for domestic purposes,

The first steam engines in general use were those of Newcomen,
dating from 1712. Newcomen came from Devon, and his engines
found their first application in the Cornish tin mines, Their fame
spread far and wide, and for sixty years they were in use, almost
unchanged, not only all over Britain but throughout Europe,

Their action depended on the creation of a vacuum in a cylinder

by the condensation of Steam in it. However, they were very ineffi-
cient, and the first major improvement in their design was the
invention of the separate condenser in 1765 by James Watt, then an
Obscure mathematical-instrument maker practising his trade at
Glasgow University, who some years earlier had been given the task
of repairing a broken-down Newcomen engine. Fig. 1 shows one of
Watt's "'single-acting pumping engines''. As to its mode of operation
I will say no more than that while condensation causes 3 vacuum in
the cylinder, steam at atmospheric pressure applied above the piston
forces it to the bottom, pulling down one end of the beam by means
of an attached chain, and thereby raising the pump-rod attached to
the other end, Valves operated by a third rod attached to the beam (the
"plug-rod'") now release the vacuum, and the piston is brought up
once more by the weight of the pump-rod, thus completing one cycle
of operation,

The next big step in development was the conversion of the recipro-
cating action, suitable for pump operation, into rotative action, needed
for countless purposes in mills and factories, Watt, who in Professor
French's memorable phrase was an "engineering animal" of the very
highest order, invented many ingenious devices to that end, resulting
in his double-acting rotative engine of about 1787, shown in Fig. 2,

but the device which concerns us here was his so-called 'parallel
motion', invented three years earlier,

As we have seen, the pumping engine was 'Single-acting", that is
Steam pressure acted onthe piston only during the down strcke,

the return motion being produced by the weight of the pump-rod, To
make the engine double-acting and so more efficient, it was necessary
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Fig. 1 Watt’s single-acting pumping engine, 1788-1800.

From Farey's Steam Engine, 1827.
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Fig. 2 Watt's double-acting
rotative engine, 1787-1800.

From Farey's Steam Engine, 1827.

to replace the flexible chain, attaching the piston rod to the beam,

by a rigid connection. However, a direct connection was not practicgl,
since the piston and piston-rod needed to move in a straight line, while
every point of the beam moved in a circular arc. Again, the use of
smooth guiding surfaces was ruled out because, as Watt knew, surfaces
of sufficient flathess could not be produced at that time, and in any case
the friction that would be introduced was undesirable,




In a letter to his partner, Matthew Boulton, in 1784 Watt referred to

his new idea in the following words; "'l have started a new hare, 1

have got a glimpse of a method of causing a piston rod to move up and
down perpendicularly by only fixing it to a piece of iron on the beam,
without chains or perpendicular guides or untoward frictions, arch-heads
or other pieces or clumsiness, [ think it is a very probable thing to
succeed, and one of the most ingenious simple pieces of mechanism

I have contrived. "

Watt's solution was a combination, ingenious indeed, of a 3-bar
jointed linkage (or 4-bar according to one's point of view) and a
pantograph, and with these not only the piston rod but also, as a
bonus, the plug rod was given an approximately linear motion. The
device, which can be'seen below the upper end of the beam in Fig., 2,
is shown diagrammatically in Fig. 3. There, EF is the beam,
pivoted at D, ABCD constitutes the linkage, with A fixed, while
DCEQB forms the pantogranh, with CEQB a jointed parallegram, and
P is that point of BC which is in line with Q and D. It is easy to see
that however the various parts of the pantograoh move, the paths of
P and Q will always be similar, like those of Peter Pan and his shadow,
and in particular if P moves in a straight line, or nearly so, then Q

Fig.3
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does likewise. Now as the beam oscillates to and fro about its nivet
the total path of P is a narrow figure of 8, and Watt showed that if the
various dimensions were such that the ratios BP : PC and DC : AB

were equal, then the part of the total path corresponding to a beam
oscillation of not more than 20" up or down would be very nearly linear.
In this way he ensured that oscillatory motion of the beam corres-
ponded to almost linear motion of the plug rod connected at P and of

the piston rod connected at Q, as desired.

Years later Watt said "'l am more proud of my parallel motion-

than of any other mechanical invention I have ever made''. He would
have been even prouder, I imagine, if he had known that in a later
epoch and in a distant country his parallel motion would lead to the
invention of a new kind of mathematical thinking, and the foundation
of a new type of mathematical theory, which would not only make vital
contributions to mathematical analysis, but would also play a major
part in numerical analysis, and would have an intimate connection
with computers.

To understand how this carae about, we must travel to the University
of St, Petersburg, where Pafhuty Lvovich Chebyshev was a Professor
of Mathematics from 1847 to 1882, and enjoyed a European reputation
for his work in many fields, including the theory of numbers, theory
of probability, theory of integration, interpolation theory and numerical
analysis. Now Chebyshev had from childhood been passionately
interested in mechanisms and mechanical devices, whether for tovs or
for mere important purposes, and to the end of his days he spent much
of his time and money on inventing such devices and making working
models, In his later vears, for example, he designed and supervised
the construction of a calculating machine with several novel features:
it can be seen today in the Conservatoire des Arts et Metiers in Paris,

1851 was a very important date in the history of 19th century science
and technology, for it was the vear of the Great International Exhibition
in London, It was natural that Chebyshev should want to visit it, but in
spite of a memorandum sent to the St, Petersbury; authorities on his
behalf by several senior colleagues, who pointed out the likelv benefit
to Russian technology, permission was not granted, However, in 1852,
with official blessing, Chebyshev, at the age of 31, undertook an
extraordinary grand tour of Europe, lasting from June to November,
There never was such a tour as this before or since, and a long

report which he submitted afterwards tells us in detail of his activities.



He devoted his afternoons to visiting factories, mills, railways, and
inspecting machines and machinery of all kinds: Dutch windmills at
Lille, water turbines, the hydraulic engines at Marly used for the
foundations at Versailles, iron works and machine factories at

Metz, machines and working models at the Conservatoire in Paris
(many just purchased at the Exhibition in London), and so on, During
the evenings on the other hand he did mathematical research, which
resulted in at least two major papers, or else visited famous mathe~
maticians, including Liouville, Cauchy and Hermite in Paris,

Dirichlet in Berlin, and Sylvester and Cayley in London. (It is
interesting to note, by the way, that he was able to visit the last two on
Sundays also since in England, unlike France,all factories were closed
then!) He was particularly interested in Watt's parallel motion, which
was still much in evidence, not only on engines made by Watt's firm
(which he specially sought out while in England), but also on several
later types of beam engine, In fact, this meehanism is still in use

at the present time, for example in the construction of indicators,

in certain types of cranes, in ship-steering apparatus, and even in the
suspensions of some high-performance cars.

It will be apparent that Watt's device must indeed have had great merit,
Bue it was not perfect: the end of the piston rod did not move precisely
in a straight line, but only approximately so, and although the deviations
from linearity were very small (for example with a beam alout 15 feet
long, and a piston stroke of about 4 feet, the maximum lateral movement of
the piston rod was less than a tenth of an inch), nevertheless the result-
ing pressures gave rise to frictional resistance which produced a
certair amount of wear. Chebyshev, convinced that with the help of
mathematics he could improve on Watt's device, by suitably propor-
tioning the dimensions of its components, set to work on this task while
still on his travels - to such good effect that saon after his return he
was able to read a paper to the Imperial Academy of Sciences at St,
Petersburg,which might well be regarded as the inaugural lecture in
approximation theory. Like much of Chebyshev's published work, this
paper was in French, and it bore the strange title ""Théorie des
mécanismes connus sous le nom de parallélogrammes'" - strange,

that is, not only because one would not expect to find pioneering
mathematics hidden under such a banner; but also hecause, apart from
the introductory paragraphs, the paper contained nothing whatever
about mechanisms! After 30 pages of mathematics the author promises
to aoply his formulae to the design of ""parallélogrammes', i.e. Watt
linkages - but at that point his paper abruptly stops. In fact, although



Chebyshev remained extremely interested in linkages for the rest of
his life, and wrote many papers on them, he never completed this first
pavoer,

Since Watt's linkage illustrates rather vividly the nature of the problems
met in approximation theory, and the principles used in solving them, I
propose to examine it more clearly, Now referring to Fig, 3 it is

easy to see that once the scale of the linkage is determined, by fixing
the position of C on the beam, five adjustable parameters are available
namely the horizontal and vertical distances of A from D, the lengths

of the rods AB and BC, and the distance BP.

To obtain his solution Watt had argued that the moving point P should
lie exactly on the intended vertical line of motion at tiree points,
namely the top, middle and bottom points of the line. He thus prod-
uced a path for P of the form shown solid in Fig, 4 (a), and again in
Fig. 4 (b' after being turned through a right angle, for convenience.

,
]
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(The dotted portion of the curve in (a) represents positions of P
unattainable with the limited beam oscillation, The width of the curve

is of course highly exaggerated.) Now Chebyshev asserted in effect
that with 5 parameters available it must be possible to produce a path
that coincided with the intended line of motion not merely at 3 points
as in Watt's curve, but at 5, But he went further than this: he stated -



and this was the major contributionof his 1853 paper - that the maxi-
mum deviation from the desired line between the ends of the stroke,

or in other words the worst error, would be minimised if the points

of coincidence were so chosen that the error. actually reached its
maximum value, positively or negatively (that is, onone side of the
line or the other) at least 5+1=6 times. Thus for the least error the
nath should behave something like the curve in Fig. 5. However, this
cardinal property, the like of which had not been formulated in mathe-
matical literature before, was simply put forward by Chebyshev as a
known fact. He never, either then or later, gave any indication of how
he arrived at it. He knew instinctively that it was correct for the
problem he was studying, and made no attempt to justify it in this
paper. In fact he generally regarded the finer points of proof as of
less importance than the discovery of practical methods for solving
difficult problems. Whether this paper would have been accepted

for publication in a modern journal I rather doubt: the author would
probably have been told by a referce t¢ avoid making unproved
assertions, and anyway to tighten up on rigour generally. In judging
him however we should remember that his Daper was written at white
heat, while he was still in France on his tour, In any case, he made
handsome amends five years later in his second publication on what he
called "la répresentation approximative des fonctions', or approxi-
mation theory as we would now call it. This was a purely theoretical
paper of more than 100 pages, concerned with the general problem of
minimising the maximum error committed over an interval by
representing a given function on the interval by an approximating function
of specified type involving a number of adjustable parameters, He showed
how to calculate, for each particular type of approximating function, the
correct number of points at which the maximum error must be attained
In order to minimise it, and he then proceeded to solve the minimisation
problem completely in particular cases when the approximating

Fig.5
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function is a polynomial, a rational function with a prescribed denom-
inator, or a rational function with free numerator and denominator.
These cases are in increasing order of difficulty, and Chebyshev's
solution for the last case especially was a veritable tour de force,

for which he made extensive and ingenious use of continued fractions.
The problem was one of both algebra and calculus, but would have

been ouite insoluble by any orthodox approach, It was not until 1931
that a simpler solution to this problem was found, by another eminent
Russian mathematician, Achieser, using conformal transformations

in a complex plane, I have myself been interested in this problem for
many years, and succeeded in obtaining a simpler and more elementary
solution (the two adjectives are by no means synonymous} ), by a method
which can also be apolied to a ~umber of other problems,

If we return for a moment to the linkage problein, and imagine how
an orthodox mathematician would have tackled it, we can be fairly
sure that, armed with the Taylor expansion formula, he would have
aimed to make the error as small as possible near the middle of the
interval, by arranging for the error curve to have the highest possible
order of contact there with the desired line (5th order in the case of
Watt's curve), thus giving an error curve of the form shown in Fig, 6,

Fig.6

which is very good in the central region but gets progressively worse
as one moves out to the ends. In comparison with this 'classical'
solution one might loosely say that Chebyshev's curve minimises the
maximum error by, as it were, spreading the error more or less
evenly over the whole interval, The reward is considerable, for the
maximum error is thereby reduced by no less a factor than 2~ or 16,
It will be observed incidentally that Watt's solution is intermediate

11



between the two, and in fact Chebvshev claimed an improvement of
onlv about 2 or 3 to 1 over Watt,

It is clear that by the invention of his 'parallel motion' Watt can fairly
be considered as the progenitor of approximation theory (a claim I
have never seen made by even the most fanatical of steam-engine
enthusiasts!) It is interesting therefore that his double-actirg engine
(see Fig. ?) contained not just one but two cuite separate devices each
of which might have given rise to that claim. For besides his parallel
motion linkage, Watt's engine contained a governor for regulating the
speed, and although he had probably seen crude versions of this in
machines operating in Cornwall, his own device was greatly superior
to any of those. Naturally Chebyshev made a note of this too'during
his travels, and in due course - but very mueh later - he turned his
thoughts to improving on it. The problem is one of dynamical
synthesis rather than kinematical synthesis as in the case of the
parallel motion. The operation of the 8OVErnor is in principle very
simple: any change of speed results in a change of centrifugal force
acting on the heavy spheres, which accordingly move outwards or
inwards and thus by means of a linkage operate a butterfly valve in the
steam pipe which tends to counteract the original change in speed: a
classical example (probably the first) of automatic control by negative
feedback. Now of course the regulation is not perfect (it would be
useless if it were!) and the controlled speed, instead of being constant,
varies slightly with the angles of inclination of the rods. The design
problem is therefore to arrange the geometry of the device in such a
way that for an appreciable range of variation of the angles, the
corresponding speeds differ as little as possible from a constant value,
Chebyshev produced a solution in 1871. Formally the problem is
similar to the first one: again there are 5 adjustable parameters to be
found, and a curve to be made as flat as possiole., But in detail this
problem is much more complicated. He attacked it by first obtaining
tentatively what I have called the 'classical? solution and modifying
this, by a process developed in the paper of 1853, so as to get very
near to the optimal solution in which the worst error, or departure
from flatness, was minimised. However this solution has unfortuna-
tely a fatal flaw in practice, due to the very feature that makes it
optimal, namely the property that the curve must oscillate in the way
seen earlier. The result of this is that the same speed can occur for
five different angles, and in practice this means an unstable system:
for any particular speed, the governor would not knmow which configura-
tion to take up, and it would exhibit schizophrenia of a very high crder.

12
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Chebyshev had the practical sense to recognize this, and to see what
ad to be done. It will be noticed that the classical curve does not have
this objectionable property: it is monotonic, that is to say it continually
increases (or decreases), and never takes the same value twice, Thus
Chebyshev set himself the problem of finding the optimal design subject
to the constraint that the curve of speed should be monotonic. As far
as I know this was the first example of constrained approximation,

Such problems are always much more difficult to solve., Chebyshev

of course was not defeated by this problem, and produced a most
elegant solution.

Let us now take stock. As I have already indicated, approximation
theory is concerned with finding near misses, or nearest possible
misses, in problems where a bull's eye is unattainable. But are there
problems where a bull's eye can be scored in a non-trivial way?

The answer - which would certainly have suprised Chebyshev in 1860
when he was still engrossed in his work on Watt's parallel motion -

is yes! And it was another linkage that demonstrated this. In 1864

a French army engineer named Peaucellier, in a brief letter to a
mathematical journal, mentioned Watt's linkage and referred to the
problem of producing exact rather than approximate linear motion by
means of linkages, but he gave no hint that he might have found a
solution. In 1870 a young pupil of Chebyshev named Lipkin submitted a
paper to the Academy of Sciences describing a 7-bar linkage giving
exact linear motion which he had discovered two years before, at the
age of 17, and this paper was published in 1871. In 1873 Peaucellier
published an identical solution and claimed priority for it, saying he
had referred to it in his 1864 letter. This gave rise to an unpleasant
quarrel between Chebyshev on the one hand and the friends of
Peaucellier on the other. The verdict seems to have gone in favour

of the latter, for the discovery is now always attributed to him, while
Lipkin is rarely mentioned. Whatever the truth was, there is no doubt
that the discovery was a sensational event in the world of applied
mechanics, although, with its 7 bars and 6 joints (see Fig,7) it was in
practice less accurate than Chebyshev's 3-bar linkage, because of the
large number of errors due to production tolerances. An exact straight
-line linkage with fewer bars would clearly be preferable, but Chebyshev
having studied linkages for more than 20 years, expressed the opinion
that no such linkage could exist. But he had no proof of this, and was
relying only on intuition, That he was quite wrong was shown in 1874
by Hart, an English engineer whose 'crossed parallelogram!' straight
-line linkage has only 5 bars - which he proved in fact to be the smal-



Fig.7

lest possible number. The straight-line properties of both Hart!s

and Peaucelliers linkages depend on the fact that the inverse of a circle
with respect to a point on its circumference is a straight line, and
could easily have been proved by any Sixth-former of those days.
Whether this would still be the case today, now that Euclid has been
relegated to the scrap-heap, I am not sure.

Until the end of the 19th century, work on the theory of approximations
initiated by Chebyshev was confined to some of his students, who, using
the framework established by the master, tackled and solved difficult
problems involving approximation 'by polynomials or rational functions,
It is astcnishing however that neither Chebyshev nor his students ever *

considered the basic question of how accurate the approximation could
become if the number of parameters was increased indefinitely,

Could the maximum error be reduced to as near Zero as one wished,
or was there a lower bound below which it could never fall however
many parameters one used? The question was answered in 1885 in an
epoch-making way by the great German mathematician Weiersrass,
who showed that by sufficiently increasing the degree, and hence the
number of coefficients, of a polynomial approximation to a given con-
tinous function, ttre maximum error over a given interval can be made
as small as desired. This result has had a profound effect on the

14



theory of functions of a real variable, and is one of the major pillars
of mathematical analysis.

Weierstrass and Chebyshev were acquainted with each others' work, and
indeed were linked in a most interesting way - by a brilliant ard
beautiful Russian woman named Sophie Kovalevsky. In 1868, at the

age of 18, she tried to gain admittance to the faculty of Mathematics at
St. Petersburg, but even though Chebyshev supported her application,
the official anti-feminist prejudices of the time preveiled, and she

was refused.y’l‘hereupon, determined to enter a university, she contracted
an initially nominal marriage with a young lawyer who had become a
science student, and armed with her certificate of respectability,

went to Germany, After a year at Heidelberg, where she attended

the lectures of Kirchhof{ and Helmholtz, among others, she moved to
Berlin. There however she was not admitted to lectures, but contrived
to become a private student of Weierstrass-at that time the most
eminent analyst in Europe - and four years later returned to Russia as
a doctor of philosophy. After interruptions for high society, the
struggle for the emancipation of women, literary activity and the birth
of a daughter, she resumed her mathematical studies in 1880, and in
1884 was appainted Professor of Mathematics in Stockholm - the first
woman university professor in the world., Incidentally, she enjoys
another interesting distinction. In E. T. Bell's book ""Men of
Mathematics'there is one and only one reference to Chebyshev, namely
thathe had calledon Weierstrass when he was out, and had left a messa ge
saying that Sonja (that is, Sophie) had gone social in St. Petersburg,
Such is fame!

The point of this digression is that as a discipde of Weierstrass, through her
frequent contacts with Chebyshev she served to highlight the difference
in approach between the two men, and thus between their respective
mathematical schools. German mathematics was oriented towards
the general theory of functions, without regard to practical utility,
while the Russians, led by Chebyshev, always kept their feet firmly
on the ground, and concentrated on research likely to result in use-
ful applications, In the development of mathematics, there have
always been both kinds of mathematician, sometimes represented in
the same person as for example in the case of Euler, Gauss, and
Poincare;] and indeed both kinds are essential for progress. In this
country one might be tempted to refer to them respectively as "pure'
and "applied" mathematicians. But I have never liked this artificial
distinction, and indeed the epithets are not really applicable to the
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two men in question. Weierstrass was by no means unfamiliar with
the mathematical physics of his day. In fact his proof of the theorem
on approximation already quoted was achieved through an ingenious
application of an intenral occuring in the theory of heat, And when in
1880 Sophie Kovalevsky,after several years' separation from
mathematics, appealed to Weierstrass for a problem she could tackle,
he suggested an investigation of the propagation of light in a crystal-
line medium, On the other hand Chebyshev always had an active
interest in subjects so relatively ‘useless! (from a practical point of
view) as the theory of numbers and certain problems involving the
integration of irrationals. But in any case Chebyshev, though mainly
interested in gractical applications, was still not an applied mathe-
matician in the classical British sense. Nevertheless, like Weierstrass
he was well informed on problems of applied mathematics, and was
particularly interested in astronomy. Thus when a talented 26 year
old student named Lyapounov asked Chebyshev in 1882 for a problem,
he was given the important but extraordinarily difficult one of deter-
mining the possible equilibrium forms, other than the ellipsoidal
form already known, of a rotating mass of fluid suhject to

Newtonian attraction between its particles, and of investigating the
stability of these forms. Within a year he produced a thesis contain-
ing a partial solution, which, if he had published it, would have
astonished the mathematical world, for two years later Poincare,

in ignorance of Lyapounov's work, published a less satisfactory
solution which nevertheless gave him instant fame, election to the
French Academy of Sciences at the early age of 33, and the Gold
Medal of the Royal Society. Eventually, Lyapounov, after many
years of contimious work on what he always called ""Chebyshev's
problem", completely solved it, and therewith discovered a method
for the investigation of stability which is of the utmost importance at
the present time in the study of all kinds of linear or non-linear systems,
including systems for automatic control,

Mathematics has been called the Queen of the Sciences, but it is
equally their servant, and one of the most facinating features of its
relationship to science and technology is that each can provide an
energising and fertilising stimulus for the other. For example, we
have seen how a simple engineering device served, after a lapse

of nearly 70 years, to promote the birth of a new branch of mathe-
matics, In the opposite direction is the path from Riemannian
geometry, which burst upon the world in 1884, to Einstein's general
theory of relativity of 1917, 1 PTOpose now to mention two more
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examples of this interrelationship, one in each direction, and both
drawn from approximation theory.

About 1887 the great chemist Mendeleev, probably best knowh for his
periodic classification of the chemical elements, was investigating
the way in which the specific gravity s of various kinds of aqueous
solution varied with the percentage concentration p of the solute,
Among the soluies he considered were sulphuric acid and ethyl
alcohol. In each of these cases he gathered data from many reliable
sources, and for each value of p studied he took the mean of the
values of s available, which differed from each other by at most a
few parts in ten thousand. From these values of s he calculated the
values of the derivative ds/dp, and on plotting these he found in both
cases that the derivative was approximately a piecewise linear
function of p, that is to say, its graph consisted of a number of
consecutive straight lines with different slopes - which meant that s
was a piecewise quadratic function of p. Moreover, the transition
points between the pieces corresponded closely to various molecular
associations of sulphuric acid or alcohol with water which were
already known or suspected. A detailed analysis of the figures for s
gave sets of quadratic formulae which fitted them extremely well,
but when the corresponding derivatives were plotted, the linear
pieces did not meet at the transition points.

Now in the case of sulphuric acid the discontinuities at these points
were much too large to be explained away by experimental error:
they clearly represented a genuine chemical phenomenon. But in the
case of alcohel (shown in Fig. 8) they were much smaller and
Mendeleev was too good a scientist to overlook the possibility that
they might be accounted for by small errors (i.e. errors of at most
2 or 3 parts in 10, 000.) He was thus led to consider the following
mathematical problem: if a quadratic function of p is constrained to
have a prescribed maximum numerical value in a certain range of
values of p, what maximum value may the derivative have?

In fact Mendeleev solved this problem unaided, and concluded that
the discontinuities in the case of alcohol might indeed have been
produced by experimental errors. But meanwhile his mathematical
colleaue at St, Petersburg, A, A, Markov, had heard of Mendeleev's
problem. Markov, a former student of Chebyshev's and himself an
eminent mathematician, known today especially for his work in
probability theory, typically set himself the more general and much
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more difficult problem in which the quadratic was replaced by a
polynomial of degree n; and he solved it brilliantly, thereby starting
4 new and important chapter in approximation theory, His main
result was that if a polynomial of degree n is scaled so that its maxi-
mum numerical value does not exceed 1 for values of the variable
between -1 and +1, then the numerical value of the derivative cannot

exceed n?.

My second example concerns the design of electric filter networks,

on which I must first make a few introductory remarks, A filter
nerwork may be simple or complicated, and contain a small or a

large number of components (which may be of several different types),
but we need only note that it has an input and an output current or
voltage whose ratio, which we may call the transfer ratio, depends on
the oscillation frequency of the input, The filter design problem is to
put together components of the right types and right values so that the
graph of the transfer ratio when plotted as a function of the frequency,
has a prescribed shape. For example, an ideal low-pass filter tran-
sfer function would have the form shown in Fig. 9.

h
[Tl 1 Fig.9 Ideal low-pass filter characteristic
1
. ]
0 fs f -

All input frequencies below the cut-off frequency f, would be passed
through the filter without loss, but for frequencies above f, the output
would be zero. However, a mathematical analysis shows that such a
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filter cannot possibly be constructed - for if it existed it would have
the remarkable property of enabling messages to be received before
they were sent, Thus here we have a case where the bull's eye cannot
possibly be reached, and the designer must therefore aim for as neara
miss as possible with a prescribed number of components. The art
of filter design dates fram the early 1920's, and had reached a very
sophisticated and effective stage by 1930 - but the idea of designing
for pptima] approximation, in the sense of Chebyshev, had not yet
emerged. However, in 1931 the electrical design world was startled
by the appea ance in Berlin of a book, "'Siebschaltungen, by Wilhelm
Cauer, in which the complete design of filters with the best possible
performance for a given size was described. Formulae involving
elliptic functions were profusely displayed , but no proofs were given,
and it is said that for some time after the publication, the best mathe-
matical brains in the Bell Telephone Laboratories in the United States
were assigned the task of finding out how Cauer had arrived at his
results. In fact, Cauer had been a mathematical physicist before
turning electrical engineer, and had become acquinted with Chebyshev
approximation. He saw that this was exactly what was needed for his
design problem: for example, for a low-pass filter, since the ideal
curve could not be attained, one must aim at a curve of the so-called
"'equiripple' type shown in Fig. 10, in which the deviation from the

1

’T, Fig. 10  Equiripple filter characteristic

ideal curve oscillates in both the pass-band and the stop-band in a
similar way to that in Chebyshev!s linkage, However, the problem
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of achieving this behaviour was a difficult one, and here Cauer was
helped by a paper of 1877 by Zolotarev, another of Chebyshev's students.
Cauer found that by adapting Zolotarev's results, he could solve his
design problem. I may add that it was through this work of Cauer that,
as a mathematician engaged many years ago in electric network design
I first became acquainted with and fascinated by the whole subject of
approximation theory.

In this last example I have leapt from the 19th century well into the
20th. Let me go back however to 1899. This was an important year

in the history of the subject, for it marked the simultaneous publication
in both Russian and French of Volume 1 of Chebyshev's collected works,
the first fruit of which was the inclusion -in a text-book on real-variable
theory in 1905 by the famous French mathematician Emile Borel, of a
simple yet completely rigorous treatment of Chebyshev's method,
Chebyshev had left two important questions unanswered: whether, in

a given problem, there really was a best approximation (one that could
not be improved upon ) and, if so, whether there were several
equally good best approximations; in other words the questions of
existence and uniqueness of best approximation. Thatitis not merely
pedantic to bother with the existence question is shown by the fact

that for some types of approximating function, and in certain cases,
there may not be a best approximation. Borel used what I might call
Weierstrassian analysis to solve the existence problem. But his

main contribution was to emphasise the importance of the error
oscillation property, according to which the error must not only attain
its maximum value a sufficient number of times (as indicated by
Chebyshev), but must take positive and negative values alternately

in doing so. Chebyshev was certainly aware of this property, but
unaccountably he never mentioned or used it. In Borel's hands it
became the key to a full understanding of the situation, and he showed
that it completely characterised the optimum error in the case of
approximation by polynomials. The uniqueness of best approximation
is then a simple consequence of this alternation property.

Borel may be said to have wedded the ideas of Chebyshev and
Weierstrass, and it was this union that produced the approximation
theory of today. His book was widely read and very influential, and
was undoubtedly responsible far the spread of the subject in Western
Europe and beyond, though it was nearly 40 years before it took
root on this side of the Channel-but that is another story!

In the hard s of mathematicians of Europe and the United States the
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subject developed rapidly, and greatnames like Bernstein, Dunham
Jackson, Polya, Walsh, Achieser and many more graced the pages
of papers devoted to an ever increasing number of its branches.
Moreover, with the appearance of functional analysis in the world
of mathematics, from about 1920, approximation thecrists received
a powerful new tool which at the same time opened ever wider fields
for their activities,

Nearly all this work was theoretical. It is true, some Russian
mathematicians, especially Remez, concentrated on the practical
aspect, that is to say, the approximate representation of given
functions by polynominals or other standard types of function , as
efficiently as possible., Remez in 1935 developed algorithms,
guaranteed to lead to the best possible solution, but unfortunately
the amocunt of computational work involved was so great as to dis-
courage the use of his method.

The situation changed dramatically after the War, with the rise of the
digital computer. The calculations became practicable, and the
algorithms once more worthy of study and development. But now a
most interesting new phenomenon appeared, for it was seen that not
only did approximation theory need the computer - but the computer
needed approximation theory! To understand this, we should

recall that when a mathematician solves problems numerically, he
must have available a wide range of mathematical tables, giving values
or functions of many kinds: trigonometric functions, exponential
functions, Bessel functions, and so on, which are liable to be needed
at any stage of the calculation. If a computer is to solve these
problems, it too needs to be able to call on the values of such functions
- and moreover to have them available to a very high degree of
accuracy, for otherwise the numerical capabilities of the computer
will be wasted. Now the obvious procedure would be to put all the
values that might be required into the computer's store, But alas

if this were done there would be no room for anything else - and any-
wdy, computer storage space is a very expensive canmodity. The
alternative is to give the computer the means - i, e, a programme -
for calculating any function that may be needed, and it is here that
approximation theory makes its contribution, for it provides the most
efficient possible programmes for the calculations, for which all

that need to be stored are the values of a small number of parameters,
for example the coefficients of a poiynomial approximation. Using
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these, the computer can calculate the value of the corresponding
function for any value of the variable, and this moreover to an accu-
racy guaranteed in advance.

Thus there has developed a sort of symbiotic relationship between
approximation theory and computers which has lasted for about

20 years and has undoubtedly contributed greatly to the explosive
growth of the subject since the War, As P, J. Davis has said,
writing of the impagt of computers: ""The computer research effort
has been a great spur to the theoretical aspects of approximation
theory. In blunt language, an awful lot of money has been spent on
approximation theory in the name of computation'." To which I can
only add ""famen!',

In Chebyshev's first paper on the subject he introduced a special
polynomial - the best approximation to zero, in an interval, among”
all polynomials with fixed leading term, and this polynomial, which
now bears his name, is anindispensable tool in much of numerical
analysis as well as in approximation theory itself. So important has
it become that some years ago an international committee was set up

to decide on a standard spelling of the name Chebyshev from 9 different
forms then in use! These polynomials have been powerfully used, in
particular far the numerical solution of differential equations, and it is
appropriate for me to mention that one of the foremost workers in

this field has been my colleague at Lancaster, Professor C.W,Clenshaw,

In this account of approximation theory I have, I realise, allowed my
enthusiasm for Chebyshev approximation to obscure the fact that there
are other forms of best approximation, in which the root-mean-square
or some other average value of error is minimised, rather thanthe
worst error. However, there is no doubt in my mind that Chebyshev
approximation is the 'best of the best', and I make no apology for having
concentrated on it,

This subject which, as I have tried to show, has inspired and been
inspired by technology, science, pure mathematical analysis, numerical
analysis, and the most abstract flights into function spaces, has clearly
earned itself a permanent place not only in mathematics, but also in

the university mathematics curriculum, and I am confident that
Lancaster's example in this respect will be followed by many other
university departments of mathematics.
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