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The present work deals with the inverse problem for a certain class of linear transformations of continuous

functions, along with an application to Fredholm’s integral equation. In this, we are less concerned with
new results than with a test of a extremely simple method. All is based on several theorems, developed in
§1 and concerning linear functional manifolds [linear spaces of functions], which derive almost immediately
from the definition of uniform convergence. The most important proofs are a kind of finiteness proof which
show that certain processes cannot be continued indefinitely but must necessarily stop. The most important
concept used therein is the concept, introduced into general set theory by Mr Fréchet, of a compact set
(here, more specifically, compact sequence) which has been of great use in various branches of Analysis. This
concept permits a particularly simple and fortunate formulation of the definition of a completely continuous
transformation which imitates in essence the similar concept formulation of Mr Hilbert for functions of
infinitely many variables.

The restriction made in this work to continuous functions doesn’t really matter. The reader familiar
with the recent investigations into various function spaces will recognize at once the general applicability of
the method; he will also notice that some of these, among them the collection of square-integrable functions
and the infinite-dimensional Hilbert space, permit simplifications, while the seemingly simpler case treated
here may be considered a touchstone for the general applicability.

§1. Definitions and propositions[”auxiliary theorems”].

In the following, we consider the collection of all functions f(x) defined on the interval a ≤ x ≤ b and
continuous there. Hence the variable x is assumed to be real, while function values may be complex. But
I want to stress at once that our developments are also directly valid for the smaller collection of all real
functions.

For the sake of brevity, we will call the collection considered a functional space. In addition, we call the
maximal value of |f(x)| the norm of f(x) and denote it ‖f‖; the quantity ‖f‖ is thus positive in general and
vanishes only when f(x) is identically zero. Further, we have the relations

‖cf(x)‖ = |c|‖f(x)‖; ‖f1 + f2‖ ≤ ‖f1‖ + ‖f2‖.

By the distance of the functions f1, f2 we mean the norm ‖f1 − f2‖ = ‖f2 − f1‖ of its difference. With that,
the uniform convergence of the function sequence {fn} to the limit function f is equivalent with the distance
‖f − fn‖ converging to 0. A necessary and sufficient condition for the uniform convergence of a sequence
{fn} is, according to the so-called general convergence principle, the relation ‖fm − fn‖ → 0 for m → ∞,
n → ∞. In particular, a sequence {fn} for which all distances ‖fm − fn‖ (m 6= n) have a nonzero, hence
strictly positive, infimum cannot converge uniformly.

In the following, we are going to be concerned with the inverse problem for linear transformations . A
transformation T which associates to each element f of our functional space a uniquely determined element
T [f ] is going to be called linear if it is distributive and bounded . The transformation is called distributive if
for all f

T [cf ] = cT [f ]; T [f1 + f2] = T [f1] + T [f2].

The transformation is called bounded when there is a constant M such that, for all f ,

‖T [f ]‖ ≤ M‖f‖.

It follows at once from the definition that T maps every bounded function sequence {fn}, i.e., any
sequence for which every ‖fn‖ lies below some bound, again into such a one. Also, it follows from

‖T [f ]− T [fn]‖ = ‖T [f − fn]‖ ≤ M‖f − fn‖

that each uniformly convergent sequence is carried into such a one, and that the limiting functions correspond
to each other, in short, that T is continuous.
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The notations cT , T1 + T2, T1T2, T n are so immediate that there is no need to explain them further. It
is also immediate that the new transformation derived in this way, as sum, product, or power of those, also
are linear.

We denote by E the identity transformation that associates each function to itself. We are now going
to be concerned with the inversion of transformations of the type B = E − A, where E is the identity
transformation but A belongs to a special type, namely it is completely continuous . In order to introduce
the concept of complete continuity and also capture it in the right way, we must first discuss another concept,
that of a compact sequence.

Following Fréchet, a sequence {fn} is called compact if each of its subsequences contains a further
uniformly convergent subsequence. In particular, each uniformly convergent sequence is compact but not
conversely since, e.g., through the interweaving of two uniformly convergent sequences with different limit
functions one also obtains a compact sequence.

A necessary and sufficient condition for a sequence to be compact has already been given long ago by
Arzelà1. We won’t make any use of this for the time being and merely give a condition whose absence
indicates in a given case that a given sequence is not compact. This condition is that, for each compact
sequence {fn}, the infimum of the distances ‖fm − fn‖ (m 6= n) must be zero since the sequence contains
uniformly convergent [sub]sequences.

A further property of compact sequences of importance here is that each compact sequence is also
bounded. For, in the contrary case, it would have to contain a sequence with norms monotonely growing to
infinity all of whose subsequences would have the same property hence could not be uniformly convergent.
On the other hand, not every bounded sequence needs to be compact: E.g., for 0 ≤ x ≤ 1, the sequence
fn(x) = xn is bounded but not compact since it and all its subsequences converge to a function that is
discontinuous at x = 1.

The fact just stressed, namely that a sequence can be bounded without being compact, provides the basis
for what is special about the completely continuous linear transformations compared to general ones. For,
as we already said, each linear transformation carries bounded sequences to bounded sequences, uniformly
convergent ones to uniformly convergent ones and thus also compact ones to compact ones. We now define:
a linear transformation is to be called completely continuous when it carries each bounded sequence to a
compact one.

Simplest examples of completely continuous transformations are: T [f ] = f(a) which carries each function
f(x) to the constant function = f(a); also, T [f ] = f(a)+ f(b)x or, more generally, T [f ] = f(a1)g1(x)+ · · ·+
f(am)gm(x), where a1, . . . , am, g1, . . . , gm are given points of the interval, resp. given continuous functions.
Further examples are provided by the integral

T [f ] =

∫ x

a

f(x) dx

and, more generally, the integral

K[f ] =

∫ b

a

k(x, y)f(y) dy,

with which we are going to be concerned in the application to the Fredholm integral equation of the more
general results to be obtained. The simplest example of a not completely continuous transformation offers
the identity transformation E which carries each sequence, hence also each bounded but not compact one,
to itself.

It follows immediately from the definition that the product T1T2 is certainly completely continuous when

at least one factor is completely continuous. Since, further, multiplication by a constant or the termwise
addition produces compact sequences from compact sequences, it follows that, along with T , T1, T2, also cT

and T1 + T2 are completely continuous.

1 C. Arzelà, “Sulle funzioni di linee”, Memorie d. R. Accad. d. Scienze di Bologna, serie 5, t. V (1895),
p. 225–244.
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We have to explain one more concept which is basic for what is to follow, namely the concept of the linear

manifold . By this, we mean any manifold of elements of our functional space that satisfies the following
conditions: 1) with f, f1, f2 it also contains cf , f1 + f2; 2) are the elements of a uniformly convergent
sequence fn contained in it, then it also contains the limit function f . Examples of linear manifolds are
provided by the functional space itself, also, in order to mention at once the other extreme, the manifold
consisting of the sole function f = 0. Further, as follows directly from the definition, each arbitrary set of
functions determines also two linear manifolds, namely 1) the collection of all linear combinations and their
limit functions (in the sense of uniform convergence), 2) the collection of all continuous functions for which
the product integral with any element of the set is zero.

We want to establish some theorems concerning linear manifolds that derive almost immediately from
the definitions and which will serve us as lemmas in the considerations to follow.

Proposition 1. If L is an arbitrary linear manifold and g is a function not belonging to it, then there is a

function f1 in L such that, for all functions f in L, there holds the inequality

‖g − f‖ ≥
1

2
‖g − f1‖.

Proof: Since the function g does not belong to the manifold L, the infimum d of the distances
‖g − f‖ is different from zero; for, in the contrary case, L would contain a sequence converging uniformly to
g, hence also g. We now choose f1 so that ‖g − f1‖ ≤ 2d; since, on the other hand, the distance ‖g − f‖ ≥ d

for all f , our inequality follows.

Proposition 2. If one of the two linear manifolds L1, L2, say L2, is a proper part of L1, i.e., if L2 is

contained in L1 without being identical, then there exists in L1 a function g1 such that, on the one hand

‖g1‖ = 1,

on the other hand, for all elements f of L2,

‖g1 − f‖ ≥
1

2
.

Proof: By assumption, L1 contains at least one element g that doesn’t belong to L2. By proposition
1, there then is in L2 an element f2 so that, for all f in L2 there holds the inequality

‖g − f‖

‖g − f2‖
≥

1

2
.

We set

g1 =
g − f2

‖g − f2‖
;

then we have ‖g1‖ = 1, further, g1, as a linear combination of g and f2, is in L1 and, finally,

‖g1 − f‖ = ‖
g − f2

‖g − f2‖
− f‖ =

‖g − f2 − ‖g − f2‖f‖

‖g − f2‖
=

‖g − f3‖

‖g − f2‖
,

where the function f3 = f2 + ‖g − f2‖f , being a linear combination of f2 and f , is in L2; therefore we also
have

‖g1 − f‖ =
‖g − f3‖

‖g − f2‖
≥

1

2
.

In both propositions, the number 1
2 can evidently be replaced by an arbitrary positive number < 1.

On the other hand, in general, one cannot replace it by 1 itself. E.g., if we take for L1 the collection of all
functions for which g(a) = 0, but for L2 the one for which in addition also its integral over (a, b) vanishes.
If now there were a function g1 in L1 such that ‖g1‖ = 1 and, for all f ∈ L2, the distance ‖g1 − f‖ ≥ 1, then
this function g1 would also have to have the additional extremal property that it maximizes the absolute
value of the integral of g over all g with ‖g‖ ≤ 1. For, if there were a function g2 in L1 for which ‖g2‖ ≤ 1
and the integral greater than for g1, then the equation

∫ b

a

g1(x) ds − ξ

∫ b

a

g2(x) ds = 0
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would provide a number ξ for which |ξ| < 1 and, on the other hand, the function f = g1 − ξg2 would belong
to L2. But then, g1 − f = ξg2 ≤ |ξ| < 1, contrary to our assumption. Therefore, the absolute value of the
integral reaches its maximum at g1. But now, because of the condition ‖g‖ ≤ 1, this maximum is certainly
≤ b − a, on the other hand one can come arbitrarily close to this value b − a by functions g that are almost
everywhere equal to 1 and only near a approach the value 0 continuously. Therefore, the integral of g1 is,
in absolute value, equal to b − a, i.e., equal to the length of the interval of integration. But that, because of
the continuity of g1 and since ‖g1‖ = 1, would be possible only if everywhere |g1| = 1 which contradicts the
assumption g1(a) = 0.

The example just discussed shows that, in Proposition 2, the number 1
2 cannot, in general, be replaced

by 1. A corresponding example for Proposition 1 is obtained by choosing for L the manifold L2 just used,
and choosing for g the function x − a or any arbitrary function from L1 that doesn’t also belong to L2. In
one particular case, though, one may use in both theorems the number 1, namely when L, respectively L2

is finite-dimensional. By this we mean the case where all elements of the manifold are linear combinations
of a finite number of them. It is sufficient to rewrite correspondingly only the first proposition.

Proposition 3. If L is a linear manifold of finite dimension and g is a function not belonging to it, then

there exists in L a function f∗ such that, for all f in L, there holds the inequality

‖g − f‖ ≥ ‖g − f∗‖.

The proof of this assertion is based on the

Proposition 4. When a sequence of elements of a linear manifold of finite dimension is bounded, then it is

also compact.

Proof of the Propositions 3. and 4.: By assumption, all elements of this manifold can be
written

g = c1g1 + c2g2 + · · · + ckgk.

We may assume that the functions g1, . . . , gk on which this representation is based are linearly independent;
in the contrary case we would leave off the superfluous ones. To prove 4., it is now sufficient to prove that
the assumption of a bound for

‖g‖ = ‖c1g1 + c2g2 + · · · + ckgk‖

implies the existence of a corresponding bound for all |ci|, i.e., that, for a bounded sequence of elements g, also
the corresponding points (c1, . . . , ck) of k-dimensional space form a bounded sequence, and this immediately
implies Proposition 4., by the Bolzano-Weierstrass Theorem.

Thus, it remains to show that the boundedness of ‖g‖ implies also a bound for the |ci|. The contrary
assumption would imply the existence of a bounded sequence of functions g for which the corresponding sums
|c1| + · · · + |ck| grow without bound. From this sequence we could then obtain, by dividing each function
by the corresponding sum |c1| + · · · + |ck|, a new sequence which converges uniformly to 0, and for each of
its elements we had |c1| + · · · + |ck| = 1. By the Bolzano-Weierstrass theorem, there would then be a
subsequence for which the corresponding coefficients ci converge to corresponding limit values c∗i , and also
|c∗1| + · · · + |c∗k| = 1. But, since c1 → c∗1, . . . , ck → c∗k implies

c1g1 + · · · + ckgk → c∗1g1 + · · · + c∗kgk,

while, on the other hand, the whole sequence, hence also this subsequence, converges to 0, we would have to
have

c∗1g1 + · · · + c∗kgk = 0,

hence, because of the assumed linear independence of the functions g1, . . . , gk, also c∗1 = 0, . . . , c∗k = 0; but
this is contradicted by |c∗1| + · · · + |c∗k| = 1.

Thus 4. is proved. Now, 3. follows from 4. by the following considerations. It is to be proved that
‖g − f‖ actually takes on its infimum. Let {fn} be a sequence for which ‖g − fn‖ converges to the infimum
d of ‖g − f‖; then the sequence {g − fn} is certainly bounded and, because of ‖fn‖ ≤ ‖g‖ + ‖g − fn‖,
so is the sequence {fn}. By Proposition 4., the bounded sequence {fn} is therefore also compact. Thus,
there is a uniformly convergent subsequence, and the limit function f∗ of this subsequence has, because of
‖g − f∗‖ ≤ ‖g − fn‖ + ‖fn − f∗‖ → d the desired property to provide a minimum for ‖g − f‖.

Proposition 5. which we now establish is a complement to Proposition 4.; for it states that the compact-
ness of all bounded sequences of elements of a linear manifold of finite dimension is characteristic.
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Proposition 5. If every bounded sequence of elements of a linear manifold is compact, then the manifold

is finite-dimensional.

Proof: In the contrary case, the manifold would contain a sequence {gn} all of whose elements
are linearly independent of the remaining ones, i.e., none can be written as a linear combination of its
predecessors. Denoting by Lk the collection of all linear combinations of g1, . . . , gk, then it is certain that
gk+1 is not contained in Lk. On the other hand, Lk is linear manifold; for, on the one hand it contains all
linear combinations of its elements, on the other hand, as we made clear in the proof of Proposition 4., the
condition ‖c1g1 + · · · + ckgk‖ → 0 also implies c1 → 0, . . . , ck → 0, consequently, the uniform convergence

of a sequence {g(n) = c
(n)
1 g1 + · · · + c

(n)
k gk} to a limit function g∗ implies the convergence of the coefficients

c
(n)
i to corresponding limit values c∗i , hence g∗ = c∗1g1 + · · · + c∗kgk, hence it belongs to the manifold. Since,

further, Lk is a proper subset of Lk+1, there is, by Proposition 2., a function fk such that ‖fk‖ = 1 while its
distance from every function in Lk is at least 1

2 .1 The functions fk form, because of ‖fk‖ = 1, a bounded
sequence. On the other hand, for i 6= k, the distance ‖fi − fk‖ ≥ 1

2 since either fi belongs to the manifold
Lk or fk belongs to the manifold Li. Thus, the infimum of the distances ‖fi − fk‖ (i 6= k) is different from
zero and the bounded sequence {fk} is, thus, not compact.

Proposition 6. If the linear manifolds L1 and L2 have no common element other than f = 0 and if at least

one of them is finite-dimensional, then there exists a constant C so that for every element f in L1 and every

element g in L2 there holds

‖f‖ + ‖g‖ ≤ C‖f + g‖.

Proof: In the contrary case, there would exist sequences {fn} and {gn} such that ‖fn‖ + ‖gn‖ >

n‖fn + gn‖, and we can assume without loss of generality that ‖fn‖ + ‖gn‖ = 1 since this can always be
achieved by dividing both fn and gn by ‖fn‖ + ‖gn‖. Now assume that, e.g., L1 is finite-dimensional; then,
by Proposition 4., the bounded sequence {fn} is also compact; there is therefore a uniformly convergent
subsequence f (n) → f∗. Since also ‖f (n) + g(n)‖ < 1

n
→ 0, hence uniformly f (n) + g(n) → 0, so also

uniformly g(n) → −f∗. This implies, on the one hand, ‖f (n)‖ → ‖f∗‖,2 ‖g(n)‖ → ‖ − f∗‖ = ‖f∗‖, and so,
because of ‖f (nj)‖ + ‖g(n)‖ = 1, also 2‖f∗‖ = 1; on the other hand, f∗, as limit function of {f (n)} resp. of
{−g(n)}, would have to belong to both manifolds L1, L2 and therefore would have to vanish everywhere,
which contradicts the relation 2‖f∗‖ = 1 just proved.

§2. The inversion of the linear transformation.

[The rest of the paper deals with the inversion of a map B = E −A with A completely continuous, i.e.,
what we now call a compact perturbation of the identity, bringing for the first time an abstract discussion
and proof of all the basic facts now rightly thought classical, including (in order) the finite dimensionality of
the kernel of B, the uniform finite dimensionality of the kernels of its powers, the fact that B onto implies B

1-1 in which case B is bounded below, the closedness of the range of B, the existence of a finite n for which
the space is the direct sum of kerBn and ranBn, the fact that B onto implies B 1-1; etc. etc.

The original article, entitled ‘Über lineare Funktionalgleichungen’, appeared in Acta Math. 41 (1918),
71–98.]

translated by C. de Boor

1 Since Lk is finite-dimensional, we could replace 1
2 by 1; but this deeper fact doesn’t matter here; the

corresponding Proposition 3. is going to be used only later.
2 One obtains the limit equation ‖f (n)‖ → ‖f∗‖ for every uniformly convergent sequence f (n) → f∗ most

simply from the two inequalities ‖f∗‖ ≤ ‖f∗ − f (n)‖ + ‖f (n)‖, ‖f (n)‖ ≤ ‖f∗ − f (n)‖ + ‖f∗‖ and the limit
equation ‖f∗ − f (n)‖ → 0.
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