
On a question by D. I. Mendeleev

A. Markov
read in the session of the Physicomathematical Section on 24 October 1889

In the present work, we will consider the set of all polynomials [lit. entire functions]

f(z) = p0z
n + p1z

n−1 + p2z
n−2 + · · · + pn−1z + pn

whose degree does not exceed a given whole number n, whose absolute values do not exceed another given
value L for all values of the variable z lying between the two given values a and b > a. Thus,

−L < f(z) < L for a < z < b.

The question is which bound the absolute value of the derivative

f ′(x) = np0x
n−1 + (n− 1)p1x

n−2 + · · · + 2pn−2x+ pn−1

of f(x) with respect to x does not exceed.
This question was posed by D.I.Mendeleev, for n = 2, in his paper “The analysis of water solutions by

specific weight” (§86).
The answer depends on how much the number x is pinned down.
We distinguish two cases:

1) x is a given number,
2) x is an arbitrary number between a and b.

Correspondingly, we consider two problems.

Problem No. 1

To find, for particular x, the biggest absolute value of f ′(x).

Solution.

We denote by y that function f(z) of the ones considered by us for which f ′(x) in absolute value is
biggest.

By the statement of the question,
−L ≤ y ≤ +L

for all values z that lie between a and b.
From all these values z, we single out those at which y equals ±L.
Let us write them in a sequence

α1, α2, . . . , αi, αi+1, . . . , αs.

Denoting by
y(αi)

the value of y at z = αi, equal to ±L, we notice that the sequence of s− 1 ratios

y(α2)

y(α1)
,
y(α3)

y(α2)
, . . . ,

y(αs)

y(αs−1)

must contain at least n− 1 numbers equal to −1.
Indeed, in the contrary case it would not be difficult to find, among the polynomials of degree n− 2, an

infinite set of those whose ratios over y at

z = α1, α2, . . . , αs
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are negative numbers.
If then, having multiplied one of these

ϕ(z)

by (z − x)2 and by a sufficiently small positive number ǫ, we add the product

ǫ(z − x)2ϕ(z)

to y, then we obtain the polynomial
Y = y + ǫ(z − x)2ϕ(z)

of degree n in z and such that, for a < z < b, |Y | < L and, for z = x,

dY

dz
=

dy

dz
.

Finally, if we multiply Y by the ratio of the number L over the biggest absolute value of Y on a < z < b,
then the new function obtained this way will belong to the functions f(z) considered by us and, at z = x,
its derivative is bigger in absolute value than dy

dz
.

Hence, s is no smaller than n, and the sequence of ratios

y(α2)

y(α1)
,
y(α3)

y(α2)
, . . . ,

y(αs)

y(αs−1)
(1)

contains no less than n− 1 numbers equal to −1.
If −1 occurs n times in the sequence (1), then it is known that y is reduced to

±L cosnarc cos
2x− a− b

b− a
= ±f0(z).

In that case,
dy

dz
=

±nL
√

(z − a)(b − z)
sinn arc cos

2x− a− b

b− a
= ±f ′

0(z).

We study the condition under which the biggest absolute value of f ′(x) equals the absolute value of
f ′
0(x).

Since we concern ourselves with absolute values, then among all functions f(z) we can consider only
those for which f ′(x) has the same sign as f ′

0(x).
We take, for brevity,

a− b

2
cos

iπ

n
+
b+ a

2
= ξi, i = 0, 1, 2, . . . , n,

and
f(z) − f0(z) = ϕ(z).

Considering the value of f(z) and f0(z) at

z = ξ0, ξ1, ξ2, . . . , ξn,

we find
f ′
0(ξn) = +L and therefore ϕ(ξn) ≤ 0

f ′
0(ξn−1) = −L and therefore ϕ(ξn−1) ≥ 0
f ′
0(ξn−2) = +L and therefore ϕ(ξn−2) ≤ 0
... . ... ... . .

f ′
0(ξ0) = (−1)nL and therefore (−1)nϕ(ξ0) ≤ 0.

Hence, the equation
ϕ(z) = 0
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must have one root between ξ0 and ξ1, between ξ1 and ξ2, . . ., between ξn−1 and ξn.
In other words, the function ϕ(z) must decompose into real factors of first degree in z,

ϕ(z) = q(z − η1)(z − η2) · · · (z − ηn),

where
a = ξ0 ≤ η1 ≤ ξ1 ≤ η2 ≤ ξ2 ≤ · · · ≤ ξn−1 ≤ ηn ≤ ξn = b.

Concerning the coefficient q, it must be negative.
With this, we have

f ′(x) = f ′
0(x) +

(

1

x− η1
+

1

x− η2
+ · · · + 1

x− ηn

)

ϕ(x)

and

f ′
0(x) =

22n−1nL

(b − a)n
(x− ξ1)(x − ξ2) · · · (x− ξn−1)

since f ′
0(z) vanishes at

z = ξ1, ξ2, . . . , ξn−1

and the leading term of the polynomial f0(z) is

22n−1nL

(b− a)n
.

We start with the case when x lies outside the bounds a and b.
Then each of the expressions

ϕ(x)

x− η1
,
ϕ(x)

x− η2
, . . . ,

ϕ(x)

x− ηn

has its sign opposite the sign of f ′
0(x) and so

|f ′(x)| < |f ′
0(x)|.

Thus, if x lies outside the bounds a and b, then the biggest value of |f ′(x)| equals |f ′
0(x)|.

Now we assume that x lies between ξi−1 and ξi.
Then

ϕ(x)

x− ηi

= q(x− η1)(x− η2) · · · (x − ηi−1)(x − ηi+1) · · · (x− ηn)

has its sign the opposite of the sign of f ′
0(z).

This leaves us to consider the sign of the sum

x− ηi

x− η1
+
x− ηi

x− η2
+ · · · + x− ηi

x− ηi−1
+
x− ηi

x− ηi

+ · · · + x− ηi

x− ηn

= Σ,

which, for brevity, we denote by the single letter Σ.
We now denote by f(z) some arbitrary polynomial of nth degree in z that satisfies the conditions

−L < f(z) < +L for a < z < b

and
f ′(x)

f ′
0(x)

> 0.

Then the numbers
η1, η2, . . . , ηn

3



can take on arbitrary values, subject only to the inequalities

ξ0 ≤ η1 ≤ ξ1 ≤ η2 ≤ ξ2 ≤ · · · ≤ ξn−1 ≤ ηn ≤ ξn

and the coefficient q is sufficiently small in absolute value.
Taking into account this remark, it is easy to see that the smallest (extreme) value of the sum Σ is equal

to the smaller of the numbers

x− ξi−1

x− ξ0
+
x− ξi−1

x− ξ1
+ . . .+

x− ξi−1

x− ξn−1
= (x− ξi−1)

{

f ′′
0 (x)

f ′
0(x)

+
1

x− a

}

and
x− ξi

x− ξ1
+
x− ξi

x− ξ2
+ . . .+

x− ξi

x− ξn
= (x− ξi)

{

f ′′
0 (x)

f ′
0(x)

+
1

x− b

}

.

If the smallest value of Σ is positive, then also all values of Σ are positive and the sign of the expression

(

1

x− η1
+

1

x− η2
+ · · · + 1

x− ηn

)

ϕ(x)

is the opposite of the sign of f ′
0(x); in addition, surely,

|f ′(x)| < |f ′
0(x)|.

But if the smallest value of Σ is negative, then the undetermined numbers

η1, η2, . . . , ηn,

can be so chosen that |f ′(x)| exceeds |f ′
0(x)|

From this we conclude that the biggest value of |f ′(x)| equals the biggest value of |f ′
0(x)| if and only if

x lies outside the bound a and b, or else

a < x < b,
f ′′
0 (x)

f ′
0(x)

+
1

x− a
> 0, and

f ′′
0 (x)

f ′
0(x)

+
1

x− b
< 0. (2)

Instead of the rational expressions

f ′′
0 (x)

f ′
0(x)

+
1

x− a
and

f ′′
0 (x)

f ′
0(x)

+
1

x− b

it is possible to consider
(x − a)f ′′

0 (x) + f ′
0(x) and (x− b)f ′′

0 (x) + f ′
0(x),

since, firstly, in obedience to the inequality (2), the expressions

(x− a)f ′′
0 (x) + f ′

0(x) and (x− b)f ′′
0 (x) + f ′

0(x) (3)

have the same sign and, secondly, our inequalities (2) hold in case the signs of the expressions (3) are the
same and a < x < b.

Having considered in this fashion the case

y = f0(z),

we turn to the others.
If y is not = f0(z), then, by the above, the sequence of ratios

y(α2)

y(α1)
,
y(α3)

y(α2)
, . . . ,

y(αs)

y(αs−1)
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contains n− 1 numbers equaling −1. Also, s = n and, of the two differences

α1 − a, b− αn

at least one must be zero.
We take one of the functions f(z) that satisfy our conditions.
The equation

f(z) − y = 0

of nth or lower degree in z has a root

between α1 and α2, between α2 and α3, . . . ,between αn−1 and αn.

In other words, the difference f(z)− y must decompose into real factors of first degree in z:

f(z)− y = ψ(z) = (qz − r)(z − η1)(z − η2) · · · (z − ηn−1)

where
α1 ≤ η1 ≤ η2 ≤ · · · ≤ αn−1 ≤ ηn−1 ≤ αn,

r

q
≥ αn or ≤ α1.

Also, we have

f ′(x) =

(

dy

dz

)

z=x

+

(

1

x− η1
+

1

x− η2
+ · · · + 1

x− ηn−1
+

1

x− ηn

)

ψ(x),

with ηn = r
q
.

It is not hard to see also that the sign of the difference

qz − r

is the opposite of the sign of y(αn) for all values of z that lie between α1 and αn.
Under the conditions pointed out above, the numbers

η1, η2, . . . , ηn,

can be given arbitrary values, subject only to the condition that q be sufficiently small.
We assume, to begin with, that x is bigger than αn.
Then, for ηn > x, we get the inequalities

0 <
1

x− η1
+

1

x− η2
+ · · · + 1

x− ηn−1
<

1

x− α2
+ · · · + 1

x− αn

0 >
1

x− ηn

> −∞

and the undeterminedness of the numbers
η1, η2, . . . , ηn

can be made use of in such a way that the quantity

(

1

x− η1
+

1

x− η2
+ · · · + 1

x− ηn

)

ψ(x)

will have an arbitrary sign.
It follows that the case

x > αn

is impossible.
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One shows similarly that the case x < α1 is impossible.
So assume that x lies between αi and αi+1.
Then, the sign of

ψ(x)

x− ηi

is the opposite of the sign of

(−1)n−i−1y(αn)

and so, in order for f ′(x) to be, in absolute value, smaller than
(

dy

dz

)

z=x
, the sign of the sum

x− ηi

x− η1
+
x− ηi

x− η2
+ · · · + x− ηi

x− ηi

+ · · · + x− ηi

x− ηn

must be the same as the sign of

(−1)n−i−1y(αn)

(

dy

dz

)

z=x

.

Now, the expression

(−1)n−i−1y(αn)

(

dy

dz

)

z=x

is a positive number, hence the sign of

(−1)n−i−1y(αn)

is the same as that of y(αi+1) and of
(

dy

dz

)

z=x
.

On the other hand, it is not hard to see that the smallest value of the sum

x− ηi

x− η1
+
x− ηi

x− η2
+ · · · + x− ηi

x− ηi−1
+
x− ηi

x− ηi

+ · · · + x− ηi

x− ηn−1
+
x− ηi

x− ηn

equals the smaller of the numbers

(x − αi)

{

1

x− α1
+

1

x− α2
+ · · · + 1

x− αi

+ · · · + 1

x− αn−1
+

1

x− αn

}

,

(x− αi+1)

{

1

x− α2
+

1

x− α3
+ · · · + 1

x− αi+1
+ · · · + 1

x− αn

+
1

x− α1

}

and therefore cannot be greater nor less than zero.
For that reason, we arrive at the following condition

1

x− α1
+

1

x− α2
+ · · · + 1

x− αn−1
+

1

x− αn

= 0. (4)

Our considerations also show that, excluding the case that simultaneously

n = 2, α1 = a, αn = b, x =
a+ b

2
,

the derivative f ′(x) takes its biggest absolute value only for two functions f(z) and these two only differ by
a sign.

But if

n = 2 and x =
a+ b

2
,

6



then the biggest absolute value of f ′(x) equals 2L
b−a

and there exists an infinite set of different functions f(z):
namely, all functions of the form

L

{

2z − a− b

b− a
+ q(z − a)(z − b)

}

with

− 2

(b− a)2
< q <

2

(b − a)2
.

We recall that of the two differences
α1 − a, b− αn

at least one must be zero, and correspondingly distinguish three cases:

1) α1 = a, αn < b; 2) α1 > a, αn = b; 3) α1 = a, αn = b.

If
α1 = a and αn < b,

then we can adjoin to the numbers
α1, α2, . . . , αn

also some number
αn+1

which is bigger than b and satisfies the condition

y(αn+1) = −y(αn),

since, as z increases continuously from αn to +∞, the ratio

−y
y(αn)

also changes continuously from −1 to +∞.
Therefore we have

y = ±L cosn arc cos
2z − a− αn+1

αn+1 − a
= ±f1(z).

The unknown αn+1, in accordance with equation (4), must satisfy the equation

∑

i=1,2,...,n

1

x− a+αn+1

2 − αn+1−a

2 cos iπ
n

= 0, i.e.,
f ′′
1 (x)

f ′
1(x)

+
1

x− a
= 0

and also the inequalities

αn+1 > b >
a+ αn+1

2
+
αn+1 − a

2
cos

π

n
,

whence
b− a sin2 π

2n

cos2 π
2n

> αn+1 > b.

Therefore, for the case
α1 = a, αn < b

really to occur, one of the values αn+1 satisfying the equation

(x − a)f ′′
1 (x) + f ′

1(x) = 0 (5)
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must lie between
b − a sin2 π

2n

cos2 π
2n

and b.

And only one, since in the contrary case the sought-for biggest value of f ′(x) would be taken on by
several different functions f(z), but the preceding considerations show this to be impossible.

Considering then the sum
∑

i=1,2,...,n

1

x− a+αn+1

2 − αn+1−a

2 cos iπ
n

as a function of αn+1, we note this function increases continuously with αn+1 with the exception of those
values αn+1 at which it is infinite.

Therefore, equation (5) cannot have multiple roots.
From this, it is not hard to conclude that the case

α1 = a, αn < b

occurs exactly when during the passage of αn+1 from b to
b−a sin2 π

2n

cos2 π

2n

the expression

(x− a)f ′′
1 (x) + f ′

1(x)

changes its sign.
We also note that, for αn+1 = b, the expression

(x− a)f ′′
1 (x) + f ′

1(x)

reduces to
(x− a)f ′′

0 (x) + f ′
0(x).

In exactly the same way, with the introduction of the variable α0 and taking

L cosn arc cos
2z − α0 − b

b− α0
= f2(z),

we see that the case
α1 > a, αn = b

occurs exactly when during the passage of α0 from
a−b sin2 π

2n

cos2 π

2n

to a the expression

(x− b)f ′′
2 (x) + f ′

2(x)

changes its sign.
Then

y = ±f2(z),
where α0 must satisfy the equation

(x− b)f ′′
2 (x) + f ′

2(x) = 0

and the inequalities

α0 < a <
α0 + b

2
+
b− α0

2
cos

(n− 1)π

n
.

We now address the case
α1 = a, αn = b,

which occurs exactly when neither of the preceding cases occurs.
If

α1 = a, αn = b,

8



then the equation
dy

dz
= 0

of (n− 1)st degree in z has the n− 2 roots

α2, α3, . . . , αn−1

between a and b and one root outside these bounds.
We denote this last root by the letter β and assume for definiteness that β > b.
In this case, |y|, as z moves from b to β, grows but, as z grows even larger, first diminishes to zero and

then grows without bound.
Also, the equation

y2 − L2 = 0

of 2nth degree in z certainly has the n− 2 double roots

α2, α3, . . . , αn−1

and the two simple roots
a, b

and also two roots which we will denote by the letters

γ and δ.

These last two roots are bigger than β.
It follows that

y2 − L2 = p2
0(z − α2)

2(z − α3)
2 · · · (z − αn−1)

2(z − a)(z − b)(z − γ)(z − δ)

and
dy

dz
= np0(z − α2)(z − α3) · · · (z − αn−1)(z − β),

from which we derive the first order differential equation

y2 − L2 =
(z − a)(z − b)(z − γ)(z − δ)

n2(z − β)2

(

dy

dz

)2

. (6)

E. I. Zolotarev, in his work “The application of elliptic functions to questions concerning functions that
deviate least and most from zero”, expressed the solution of that last equation in terms of elliptic functions.

Without relying on E. I. Zolotarev’s formulas, we show how it is possible to reduce our problem to three
algebraic equations.

For this, we obtain from the equation (6) by differentiation

n2(z − β)3y = (z − a)(z − b)(z − γ)(z − δ)y′′

+
1

2
(z − a)(z − b)(z − γ)(z − δ)(z − β)

{

1

z − a
+ · · · + 1

z − δ
− 2

z − β

}

y′.
(7)

Taking now
y = p0(z − β)n + p′1(z − β)n−1 + · · · + p′n−2(z − β)2 + p′n

and rewriting equation (7) in powers of z − β and comparing coefficients, we arrive at a system of n + 1
equations in the n+ 2 unknowns

p′1
p0
,
p′2
p0
, . . . ,

p′n−2

p0
,
p′n
p0
, β, γ, δ.
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It is not hard to eliminate the unknowns

p′1
p0
,
p′2
p0
, . . . ,

p′n−2

p0
,
p′n
p0

which depend linearly on the remaining three
β, γ, δ.

By eliminating
p′1
p0
,
p′2
p0
, . . . ,

p′n−2

p0
,
p′n
p0

we arrive at two algebraic equations for the unknowns

β, γ, δ.

Now, condition (4) gives the third equation

(

y′′

y′

)

z=x

+
1

x− a
+

1

x− b
+

1

x− β
= 0. (8)

As concerns the coefficient p0, it is determined from the condition

y(a) = ±L.

We arrive at the same results also in case β is less than a except that, for β < a, γ and δ must be less
than β.

For what is to follow it is important to notice that in each case the expression

(z − γ)(z − δ)

(z − β)2

is greater than unity for all values of z lying between a and b.
We now show that equation (6) may be transformed into two first-order linear differential equations

with two unknown polynomials.
Here, for definiteness, we’ll take

y(a) = L; a < b < β < γ < δ.

Let n be even.
Then, denoting the products

(z − α2)(z − α4) · · · (z − αn−2) and (z − α3)(z − α5) · · · (z − αn−1)

respectively by
U and V,

we obtain
y − L = p0(z − a)(z − δ)V 2

y + L = p0(z − b)(z − γ)U2

y′ = p0{2(z − a)(z − δ)V ′ + (2z − a− δ)V }V
= p0{2(z − b)(z − γ)U ′ + (2z − b− γ)U}U
=np0(z − β)UV

and thereby arrive at the desired two linear first-order differential equations

2(z − a)(z − δ)V ′ + (2z − a− δ)V = n(z − β)U
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2(z − b)(z − γ)U ′ + (2z − b− γ)U = n(z − β)V.

In similar fashion, for odd n, denoting the products

(z − α2)(z − α4) · · · (z − αn−1) and (z − α3)(z − α5) · · · (z − αn−2)

respectively by
U and V,

we obtain

2(z − a)(z − b)(z − γ)V ′ + {3z2 + 2(a+ b+ γ)z + ab+ aγ + bγ}V = n(z − β)U

2(z − δ)U ′ + U = n(z − β)V.

Examples.

I n = 2.
In this case,

f0(z) =
L

(b− a)2
{

8(z − a)(z − b) + (b− a)2
}

,

f ′
0(z) =

8L

(b − a)2
(2z − a− b), f ′′

0 =
16L

(b − a)2

(x− a)f ′′
0 (x) + f ′

0(x) =
8L

(b− a)2
(4x− 3a− b)

(x− b)f ′′
0 (x) + f ′

0(x) =
8L

(b− a)2
(4x− 3b− a).

Hence, for

x >
3b+ a

4
or x <

3a+ b

4
,

the greatest value of |f ′(x)| equals the absolute value of

f ′
0(x) =

8L

(b − a)2
(2x− a− b).

Turning now also to the functions f1(z) and f2(z), we find

f1(z) =
L

(α3 − a)2
{

8(z − a)(z − α3) + (α3 − a)2
}

,

(x − a)f ′′
1 (x) + f ′

1(x) =
8L

(α3 − a)2
(4x− 3a− α3)

f2(z) =
L

(b− α0)2
{

8(z − α0)(z − b) + (b− α0)
2
}

,

(x− b)f ′′
2 (x) + f ′

2(x) =
8L

(b − α0)2
(4x− 3b− α0).

α3 = 4x− 3a, α0 = 4x− 3b

from which we conclude that the absolutely largest value of f ′(x)

for 3a+b
4 < x < a+b

2 equals −8L
(α3−a)2 (2x− α3 − a) = L

x−a

for a+b
2 < x < 3b+a

4 equals 8L
(b−α0)2 (2x− α0 − b) = L

b−x
.
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As to the function y determined by the differential equation (6), for n = 2 it plays no role in our
question.

II n = 3.
Taking for simplicity of the results

a = −1 and b = +1,

we find
f0(z) = L(4z3 − 3z), f ′

0(z) = 3L(4z2 − 1), f ′′
0 (z) = 24Lz

(x− a)f ′′
0 (x) + f ′

0(x) = 3L(12x2 + 8x− 1) = 36L(x− ω1)(x − ω2)

(x− b)f ′′
0 (x) + f ′

0(x) = 3L(12x2 − 8x− 1) = 36L(x− ω′)(x − ω′′),

where

ω1 =
−2 −

√
7

6
< ω′ =

2 −
√

7

6
< ω2 =

−2 +
√

7

6
< ω′′ =

2 +
√

7

6
.

Hence, for
x < ω1, ω′ < x < ω2 or x > ω′′,

the absolutely largest value of f ′(x) equals the absolute value of

f ′
0(x) = 3L(4x2 − 1).

Turning now to the functions f1(z) and f2(z), we find

f1(z) = L

{

4

(

2z − 1 − α4

α4 + 1

)3

− 3
2z + 1 − α4

α4 + 1

}

(x − a)f ′′
1 (x) + f ′

1(x) =
6L

(α4 + 1)3
[

16(2x+ 1 − α4)(x+ 1) + 4(2x+ 1 − α4)
2 − (α4 + 1)2

]

(x− b)f ′′
2 (x) + f ′

2(x) =
6L

(1 − α0)3
{

16(2x− 1 − α0)(x − 1) + 4(2x− 1 − α0)
2 − (1 − α0)

2
}

The expression
16(2x+ 1 − α4)(x + 1) + 4(2x+ 1 − α4)

2 − (α4 + 1)2

for α4 = 1 turns into
48x3 + 32x− 4 = 48(x− ω1)(x − ω2),

and for α4 =
1+sin2 π

6

cos2 π

6

= 5
3 , it turns into

32(x− 1

3
)(x + 1) + 16(x− 1

3
)2 − 64

9
= 48x2 +

32

3
x− 16 =

= 48(x− ǫ1)(x − ǫ2),

where

ǫ1 =
−1 −

√
28

9
and ǫ2 =

−1 +
√

28

9
.

From this we conclude that the biggest absolute value of f ′(x) equals the absolute value of f ′
1(x) in

those cases when ω1 < x < ǫ1 or ω2 < x < ǫ2.
Here, the number α4 must be determined from the equation

16(2x+ 1 − α4)(x+ 1) + 4(2x+ 1 − α4)
2 − (α4 + 1)2 = 0.
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In order to give the expression f ′
1(x) a possibly simple form, we take

α4 = −1 + ξ and x+ 1 = t.

Then
f ′
1(x) = −tf ′′

1 (x)

f ′′
1 (x) =

4.3.2.22(2t− ξ)

ξ3
L = 96

{

2

(

t

ξ

)3

−
(

t

ξ

)2
}

L

t2

48t2 − 32tξ + 3ξ2 = 0,
t

ξ
=

4 ±
√

7

12

2

(

t

ξ

)3

−
(

t

ξ

)2

=
10 ± 7

√
7

144.6

f ′(x) = −10 ± 7
√

7

9

L

x+ 1
.

Of the two signs ± for
√

7 one must take the one for which

α4 = −1 +
12

4 ±
√

7
(x+ 1)

lies between 1 and 5
3 .

And the inequalities
5

3
> α4 > 1

are equivalent to
−1 ±

√
28

9
> x >

−2 ±
√

7

6
.

Comparing these last inequalities with the ones found earlier

ω1 < x < ǫ1 or ω2 < x < ǫ2,

we see that the absolutely largest value of f ′(x)

for ω1 < x < ǫ1 equals 7
√

7−10
9

L
x+1

and for ω2 < x < ǫ2 equals 7
√

7+10
9

L
x+1 .

Similarly, taking
1 −

√
28

9
= ǫ′ and

1 +
√

28

9
= ǫ′′

we find that the absolutely largest value of f ′(x)

for ǫ′′ < x < ω′′ equals 7
√

7−10
9

L
1−x

but for ǫ′ < x < ω′ equals 7
√

7+10
9

L
1−x

.

If now x lies
between ǫ1 and ǫ′ or between ǫ2 and ǫ′′

then the biggest absolute value of f ′(x) coincides with that of the function y which is determined by the
equations (6) and (8) for n = 3, a = −1, b = +1.
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In our example, the differential equation (6) can be changed into the two equations

y − L = p0(z
2 − 1)(z − γ), y − L = p0(z

2 − α2)
2(z − δ),

from which we deduce that

γ = δ + 2α2, −1 = α2
2 + 2α2δ, −2L = p0(α

2
2δ + γ)

δ = −1 + α2
2

2α2
, γ =

3α2
2 − 1

2α2
, p0 =

4α2L

(1 − α2
2)

2
.

Now, equation (8) becomes

1

x− α2
+

1

x+ 1
+

1

x− 1
= 0.

Hence

x− α2 =
1 − x2

2x
, α2 =

3x2 − 1

2x

1 − α2 =
1 + 2x− 3x2

2x
=

(1 − x)(1 + 3x)

2x
, 1 − γ =

(1 − α2)(1 + 3α2)

2α2

1 + α2 =
3x2 + 2x− 1

2x
=

(1 + x)(3x − 1)

2x
, 1 + γ =

(1 + α2)(3α2 − 1)

3α2

1 + 3α2 =
9x2 + 2x− 3

2x
=

9(x− ǫ1)(x − ǫ2)

2x

3α2 − 1 =
9x2 − 2x− 3

2x
=

9(x− ǫ′)(x− ǫ′′)

2x

(

dy

dz

)

z=x

=
4α2L

(1 − α2
2)

2

{

3x2 − 3α2
2 − 1

α2
x− 1

}

=
4(x− α2)(3xα2 + 1)

(1 − α2
2)

2
L

= − 16x3L

(1 − 9x2)(1 − x2)
.

Now it is not hard to see that, for

ǫ1 < x < ǫ′ or ǫ2 < x < ǫ′′,

the function y constructed by us satisfies all the aforementioned conditions and the absolutely largest value
of f ′(x) equals the absolute value of

16x3L

(1 − 9x2)(1 − x2)
.

Problem No. 2

To find the biggest absolute value of f ′(x) for all x lying between a and b.
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Solution.

In solving the previous problem, we found all those functions f(z) for which f ′(x) takes on its largest
absolute value.

One of our results is the fact that, for

(x− b)f ′′
0 (x) + f ′

0(x)

(x− a)f ′′
0 (x) + f ′

0(x)
> 0,

the absolutely largest value of f ′(x) equals

|f ′
0(x)| = |

nL sinn arc cos 2x−a−b
b−a

√

(x− a)(b − x)
|.

Assuming now

x =
a+ b

2
+
b− a

2
cosϕ,

we find that

f0(x) = L cosnϕ, f ′
0(x) =

2nL sinnϕ

(b− a) sinϕ
,

f ′′
0 (x) =

4nL{sinnϕ cosϕ− n cosnϕ sinϕ}
(b− a)2 sin2 ϕ

,

(x− b)f ′′
0 (x) + f ′

0(x)

(x− a)f ′′
0 (x) + f ′

0(x)
=

1 − cosϕ

1 + cosϕ

sinnϕ+ n cosnϕ sinϕ

sinnϕ− n cosnϕ sinϕ
.

If 0 < ϕ < π
2n

or π > ϕ > π − π
2n

, then

| sinnϕ| > |n cosnϕ sinϕ|

and
(x− b)f ′′

0 (x) + f ′
0(x)

(x− a)f ′′
0 (x) + f ′

0(x)
> 0.

On the other hand, from the formula

f ′
0(x) =

2nL sinnϕ

(b− a) sinϕ
,

it is evident that, for a ≤ x ≤ b, the largest absolute value of f ′
0(x) equals

2n2L

b − a

and occurs when x = a and x = b.
Therefore, for all values of x lying

between a and
a+ b

2
− b− a

2
cos

π

2n
or between

a+ b

2
+
b− a

2
cos

π

2n
and b,

the absolutely largest value of f ′(x) equals
2n2L

b− a
.

We assume now that x lies between

a+ b

2
− b− a

2
cos

π

2n
and

a+ b

2
+
b− a

2
cos

π

2n
.
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In this case,

(x− a)(b− x) =

(

b− a

2

)2

−
(

b+ a

2
− x

)2

>

(

b− a

2

)2

sin2 π

2n
>

(

b− a

2

)2
1

n2
.

The derivative f ′(x) takes on its absolutely largest value at one of the aforementioned functions

f0(x), f1(x), f2(x)

or for the function y that satisfies the differential equation (6).
But, by the above observed

|f ′
0(x)| <

2n2L

b− a
,

and, in the same way, we see that

|f ′
1(x)| <

2n2L

αn+1 − a
<

2n2L

b− a

and

|f ′
1(x)| <

2n2L

b− α0
<

2n2L

b− a
.

Also, from equation (6) and for

a+ b

2
− b− a

2
cos

π

2n
< x <

a+ b

2
+
b− a

2
cos

π

2n
,

the inequality
(

dy

dz

)2

z=x

<
n2

(x− a)(b − x)
L2 <

4n4

(b− a)2
L2

results, and therefore

|
(

dy

dz

)

z=x

| < 2n2L

b− a
.

All these results show that the sought-for biggest absolute value of f ′(x) equals

2n2L

b− a
.
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