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On Approximate Polynomials,

By
So10a1 KAREYA in Sendai.

Lately, Mr. J. P41 has proved the following interesting theorem : (1)
Let f(z) be a continuous function of & real variable = in the inter-
val 0 =|z|= a<1, which vanishes at the point z=0, and let e be
an arbitrary positive number, then there exists a polynomial P(z) with
integral coefficients such that

|f (@)= P(2) | <e
for all values of # in the interval 0 =|z|=a.

Tn his theorem, it is necessary that the number a, which is the
upper limit of |« |, is less than unity. Mo extend the theorem to the
case when a is equal to unity is the aim of the following lines.

1. For our purpose, it is necessary to introduce & certain new
condition for the given function f(z); and the theorem thus extended
runs as follows:

et a function f(x) be continuous in the interval 0=|z|=1 and

FO=7D)=/(-D=0,

then, for any given positive number ¢, there exists a corresponding polyno-

mial P(x) with integral coefficients such that
|f (z)—P(@) |<e

for oll values of x in the interval 0 =|z|=1.

To prove this theorem, we first consider an auxiliary polynomial

y=afe+1)@—1). 1

As it is easily seen, the new variable 7 varies monotonously from 0 to

——L, while z varies from —1 to — 1__, and y varies monotonously
3v3 v3

from 2 4 0, while z varies from — 1 4 0. Consequently the
3v3 v

G5

two values p and g of  such that

(') Tohoku Math. Jour. vol. 6, 1914, p. 42.
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y(—1+9)=y(—P) @)
1 1
0=g=1l——=, Y =p = —=> 3
=9=1-73 = EE (3)
correspond one to one, and any one of them vanishes when the other
vanishes. When 2 varies in the interval (0, 1), the variation of ¥ is
symmetric with respect to the former, only the signs being different.
Consequently we must have
y(1—g)=y(P)- 4)
Therefore, if a function () is continuous in the interval (-1, 1)
and has the properties

¢(—1+)=¢(—P) g(1—9)=¢(P) (5)
then ¢(z) is evidently a uniform continnous function of y in the interval
2 2
__A_, =) 6
( 373 3«3) ©

Let it be denoted by
¢(@)=9@)- M

Since ¢(x) is arbitrary in the interval 0 =] z|= 1/-—1—? , We can

define it in the following manner.
Take any two values P and p, (>P1) of p and corresponding two
values ¢, and @ of g, and let
iy ¢@=0 for 0=(z|=nm>
ii) ¢(@) varies linearly from 0 to 1 in the intervals o = || =p,

i) g)=1 for nElslS g

Then the form of ¢(x) in the remaining intervals is necessarily determin-
ed as follows:
A
v3

v) ¢®) varies monotonously from 1 to 0 in the intervals 1 — ¢
é l m l —E 1 —q >

vi) ¢(@)=0 for - =|s|=1

According to this defnition of ¢(@) ¢(y) is a uniform continuous

iv) ¢@)=1 for

_S_lm\él—%s

function of y in the interval 0=1v| = 5—3?<1 and vanishes ab the
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point y=0. Consequently, by the theorsm of Mr. P41, we can find a
polynomial Q(y) with integral coefficients such that

H—-Qw)<s for 0S|ISgog O
If we put
Q)=E(),
R(x) is also a polynomial with integral cosfficients and is such that
| ¢(@)—R(x)| <& for 0=|a|=L. (10)
Again, by the same theorem, we can find a polynomial S(z) with
integral coefficients such that
1f(@)—8S@)| <& for 0= z|=1-q- (11)
From (10) and (11), we get

If (@) ¢(@) — S@) Rz)| <If (@) ]a+]¢@)|etere
<Metetet, (12)
for the interval 0 <|z|=1—gq,, where M is the greatest magnitude
of |f(2)] in the interval (-1, 1). Specially, if we consider only the
interval in which ¢(z) becomes 1, we get )
‘f(1'>-—S(£L‘) ER(x) i < MeHeates
for p.=|o| =1 (13)
Since, in the intervals p,=|z|=p. and 1—-¢.=|z|=1-aq,
¢(x) varies monotonously from 1 to 0, we have
If ()= S@) B@) | =1/ (@) ¢(2) - 8@ B@) | +1/ @)~/ (@) ¢(2) l
<M(P1 ’ P2)+M51+51+€1 & (14)
for p=|e|=p o 1-g=|2|=1-a,
where M (p,, p,) is the greatest magnitude of |f(z)| in the intervals
of (14).
Tn the remaining intervals ¢(z) becomes zero and hence | R(z)|
becomes less than ¢, so we have
|7 @) —S) B@) | = |f (@) |+] S@) || E@) |
<M (p)+ N (p) & (15)

for 0=|z|=p o l-g=|e|=1,

where M(p,) and N(p,) are the greatest magnitudes of |f (z)]| and
| S (2) | respectively in the intervals of (15).
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Take p, and p. in the above discussion sufficiently small, then
M (p,, p;) and M(p,) become sufficiently small, for /(z) is a continuous
function vanishing at the points 0, 1 and —1. Next take ¢, sufficiently
small, then the quantity N (p,) is determined. ILastly, take ¢, so small
that Me; and N(p,)¢, also become sufficiently small. Then the right
hand members of all the inequalities (13), (14) and (15) become suf-
ficiently small. Hence, combining those three inequalities, we get

|/ (@)~ S(z) B(2) |< ¢ (16)
for all values of « in the combined interval 0 =|z| =1, where ¢ can

be supposed to be an arbitrarily small number.
If we put

S(z) R(z)=P(z), (17)

P(z) is also a polynomial with integral coefficients, and, from (16) we
get

/(@) -P)| <e (18)

for all values of z in the interval 0 =|2|=1. Thus our theorem is
proved.

2. In the preceding theorem, we have given the condition that
J(z) vanishes at the points 0, 1 and —1. This condition can be replac-

ed by the condition that /' (z) takes such the integral values at the points

0,1 and —1 that f(1)+f(=1) is even.

For, in such a case, the
function

g(w):f(x)—[f(O)—{-f(l)—f(—l) o+ S+ (=1)—-27(0) me]

2 2
vanishes at the said three points and g(z)—f(z) is a polynomial with
integral coefficients.

The above new condition is also necessary. For, since f(0), £(1),
J(—1) can be approached indefinitely near by the integers P(0), P(1),
P(~1) respectively, they must be also integers and

SO)=P0), f(D)=PQ1), f(-1)=P(-1),
for sufficiently small e. That
S+ f(-1)=P(1)+P(-1)
must be even is a special consequence of the following general theorem: (*)
The necessary and syficient condition that the integral volues u,, u,,

(') This follows at once from Newton's formula of interpolation,
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..., u, can be atlained by a polynomial  P(x) with integral coefficients,
Jor the integral values ay; Gas.-vos On of x, 18 that al of the n—1 et~
pressions
% + ! +...
(@ —)(ty —as) - - (1 — ) (@ —r)(@a— ) . - (@:— ) |

__,4___4_?1_"_'_-«__,_- k=2, 3,...., @
(ax —‘aq)(ak““az) .. (ak’_ak-l)

should be integers.

To extend the theorem to an interval greater than or equal to
(-2 2) is impossible, unless the function f(x) itself is a polynomial
in that interval. For if there are two different polynomials P,(x) and
P,(z) with integral coefficients such that

|/ @) —Py@) | <1 |f @) —Po) | <1, and Py(&)— Py(x)==const.
in the interval 0=|z|=a (e=2) then we get a polynomial
P,(x)—P.z(x)zCom"—i-Cl 4 C (CoF0)
with integral coefficients such that
| Cpar+Ciz* 4 ...+ Cal <2 for 0=|z|=0a;
and this contradicts the known theorem of Tschebyscheff () that there
exists at least one point « in the interval (—a, @) for which

[C’oa;"+01x“"+....+C,.|§§;C-_°—1—a"§200.
I can not yet find out the upper limit of the intervals to which
the theorem can be extended.

(') Oeuvres, t. 1, pp. 273378,
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