Tokoku Math. J. V.S. 6, 1914 PP. 182 -186

On Approximate Polynomials,

By

Sôichi Kareya in Sendai.

Lately, Mr. J. Pál has proved the following interesting theorem: (1) Let f(x) be a continuous function of a real variable x in the interval $0 \le |x| \le \alpha < 1$, which vanishes at the point x=0, and let ε be an arbitrary positive number, then there exists a polynomial P(x) with integral coefficients such that

$$|f(x)-P(x)|<\varepsilon$$
,

for all values of x in the interval $0 \le |x| \le a$.

In his theorem, it is necessary that the number a, which is the upper limit of |x|, is less than unity. To extend the theorem to the case when α is equal to unity is the aim of the following lines.

1. For our purpose, it is necessary to introduce a certain new condition for the given function f(x); and the theorem thus extended runs as follows:

Let a function f(x) be continuous in the interval $0 \le |x| \le 1$ and

$$f(0)=f(1)=f(-1)=0$$
,

then, for any given positive number &, there exists a corresponding polynomial P(x) with integral coefficients such that

$$|f(x)-P(x)|<\varepsilon$$

for all values of x in the interval $0 \le |x| \le 1$.

To prove this theorem, we first consider an auxiliary polynomial

$$y = x(x+1)(x-1).$$
 (1)

As it is easily seen, the new variable y varies monotonously from 0 to $\frac{2}{3\sqrt{3}}$, while x varies from -1 to $-\frac{1}{\sqrt{3}}$, and y varies monotonously

from $\frac{2}{3\sqrt{3}}$ to 0, while x varies from $-\frac{1}{\sqrt{3}}$ to 0. Consequently the two values p and q of x such that

correspond one vanishes. Whe symmetric with Consequently w

Therefore, and has the pr

then $\varphi(x)$ is ev

Let it be denot

Since $\varphi(x)$ define it in the Take any values q_1 and q_2

- i) $\varphi(x) = 0$
- ii) $\varphi(x)$ vs
- iii) $\varphi(x)=1$

Then the form ed as follows:

- iv) $\varphi(x) = 0$
- \mathbf{v}) $\varphi(x)$ \mathbf{v} $\leq |x| \leq 1-q$ vi) $\varphi(x) =$

According

⁽ ¹) Tôhoku Math. Jour. vol. 6, 1914, p. 42.

function of y

$$y(-1+q) = y(-p),$$
 (2)

$$y(-1+q) = y(-p), 0 \le q \le 1 - \frac{1}{\sqrt{3}}, \quad 0 \le p \le \frac{1}{\sqrt{3}},$$
 (3)

correspond one to one, and any one of them vanishes when the other vanishes. When x varies in the interval (0, 1), the variation of y is symmetric with respect to the former, only the signs being different. Consequently we must have

$$y(1-q) = y(p). \tag{4}$$

Therefore, if a function $\varphi(x)$ is continuous in the interval (-1, 1)and has the properties

extres
$$\varphi(-1+q) = \varphi(-p), \quad \varphi(1-q) = \varphi(p),$$
 (5)

then $\varphi(x)$ is evidently a uniform continuous function of y in the interval

$$\left(-\frac{2}{3\sqrt{3}}, \frac{2}{3\sqrt{3}}\right)$$
 (6)

Let it be denoted by

$$\varphi(x) = \psi(y). \tag{7}$$

Since $\varphi(x)$ is arbitrary in the interval $0 \le |x| \le \frac{1}{\sqrt{3}}$, we can define it in the following manner.

Take any two values p_1 and $p_2(>p_1)$ of p and corresponding two values q_1 and q_2 of q, and let

i)
$$\varphi(x)=0$$
 for $0 \le |x| \le p_1$,

ii) $\varphi(x)$ varies linearly from 0 to 1 in the intervals $p_1 \leq |x| \leq p_2$,

iii)
$$\varphi(x)$$
 values $=$ for $p_2 \leq |x| \leq \frac{1}{\sqrt{3}}$.

Then the form of $\varphi(x)$ in the remaining intervals is necessarily determined as follows:

iv)
$$\varphi(x)=1$$
 for $\frac{1}{\sqrt{3}} \leq |x| \leq 1-q_2$,

v) $\varphi(x)$ varies monotonously from 1 to 0 in the intervals $1-q_2$ $\leq |x| \leq 1-q_1$

$$\begin{array}{ll} |x| \stackrel{\scriptstyle =}{=} 1 - q_1, \\ \text{vi)} \quad \varphi(x) = 0 \quad \text{for} \quad 1 - q_1 \stackrel{\scriptstyle =}{=} |x| \stackrel{\scriptstyle =}{=} 1. \end{array}$$

According to this definition of $\varphi(x)$, $\psi(y)$ is a uniform continuous $\mathbf{vi}) \quad \varphi(x) = 0$ function of y in the interval $0 \le |y| \le \frac{2}{3\sqrt{3}} < 1$ and vanishes at the

 $\iota : (^1)$ intert e be

) with

is the to the

n new :tended

and

polyno-

10mial

(1)

om 0 to

otonously

intly the

point y=0. Consequently, by the theorem of Mr. Pál, we can find a polynomial Q(y) with integral coefficients such that

$$|\psi(y) - Q(y)| < \varepsilon_1 \quad \text{for} \quad 0 \leq |y| \leq \frac{2}{3\sqrt{3}}.$$
 (8)

If we put

$$Q(y) = R(x),$$

R(x) is also a polynomial with integral coefficients and is such that

$$|\varphi(x) - R(x)| < \varepsilon_1 \quad \text{for} \quad 0 \le |x| \le 1.$$
 (10)

Again, by the same theorem, we can find a polynomial S(x) with integral coefficients such that

$$|f(x)-S(x)|<\varepsilon_2 \quad \text{for} \quad 0\leq |x|\leq 1-q_1.$$
 (11)

From (10) and (11), we get

$$|f(x) \varphi(x) - S(x) R(x)| < |f(x)| \varepsilon_1 + |\varphi(x)| \varepsilon_2 + \varepsilon_1 \varepsilon_2 < M \varepsilon_1 + \varepsilon_2 + \varepsilon_1 \varepsilon_2,$$
(12)

for the interval $0 \le |x| \le 1-q_1$, where M is the greatest magnitude of |f(x)| in the interval (-1, 1). Specially, if we consider only the interval in which $\varphi(x)$ becomes 1, we get

$$|f(x) - S(x) R(x)| < M \varepsilon_1 + \varepsilon_2 + \varepsilon_1 \varepsilon_2$$
for $p_2 \le |x| \le 1 - q_2$. (13)

Since, in the intervals $p_1 \le |x| \le p_2$ and $1-q_2 \le |x| \le 1-q_1$, $\varphi(x)$ varies monotonously from 1 to 0, we have

$$|f(x) - S(x) R(x)| \leq |f(x) \varphi(x) - S(x) R(x)| + |f(x) - f(x) \varphi(x)|$$

$$< M(p_1, p_2) + M \varepsilon_1 + \varepsilon_2 + \varepsilon_1 \varepsilon_2$$
(14)

for
$$p_1 \leqq |x| \leqq p_2$$
 or $1-q_2 \leqq |x| \leqq 1-q_1$,

where $M(p_1, p_2)$ is the greatest magnitude of |f(x)| in the intervals of (14).

In the remaining intervals $\varphi(x)$ becomes zero and hence |R(x)| becomes less than ϵ_1 , so we have

$$|f(x) - S(x)| R(x)| \le |f(x)| + |S(x)| |R(x)|$$
 $< M(p_1) + N(p_1) \varepsilon_1$ (15)

for
$$0 \le |x| \le p_1$$
 or $1-q_1 \le |x| \le 1$,

where $M(p_i)$ and $N(p_i)$ are the greatest magnitudes of |f(x)| and |S(x)| respectively in the intervals of (15).

Take p_1 $M(p_1, p_2)$ as function vanismall, then t that $M \varepsilon_1$ anhand member ficiently small.

for all values be supposed If we p

P(x) is also get

for all value proved.

2. In (f(x) vanishe ed by the α 0, 1 and – function

$$g(x) = f($$

vanishes at integral coef

The abo f(-1) can P(-1) resp

for sufficient

must be eve:
The nec

⁽¹⁾ This

Take p_1 and p_2 in the above discussion sufficiently small, then $M(p_1, p_2)$ and $M(p_1)$ become sufficiently small, for f(x) is a continuous function vanishing at the points 0, 1 and -1. Next take ε_2 sufficiently small, then the quantity $N(p_1)$ is determined. Lastly, take ε_1 so small that $M \varepsilon_1$ and $N(p_1) \varepsilon_1$ also become sufficiently small. Then the right hand members of all the inequalities (13), (14) and (15) become sufficiently small. Hence, combining those three inequalities, we get

$$|f(x) - S(x)| < \varepsilon \tag{16}$$

for all values of x in the combined interval $0 \le |x| \le 1$, where ε can be supposed to be an arbitrarily small number.

If we put

$$S(x) R(x) = P(x), \tag{17}$$

P(x) is also a polynomial with integral coefficients, and, from (16) we get

$$|f(x) - P(x)| < \varepsilon \tag{18}$$

for all values of x in the interval $0 \le |x| \le 1$. Thus our theorem is proved.

2. In the preceding theorem, we have given the condition that f(x) vanishes at the points 0, 1 and -1. This condition can be replaced by the condition that f(x) takes such the integral values at the points 0, 1 and -1 that f(1)+f(-1) is even. For, in such a case, the function

$$g(x) = f(x) - \left[f(0) + \frac{f(1) - f(-1)}{2} x + \frac{f(1) + f(-1) - 2f(0)}{2} x^2 \right]$$

vanishes at the said three points and g(x)-f(x) is a polynomial with integral coefficients.

The above new condition is also necessary. For, since f(0), f(1), f(-1) can be approached indefinitely near by the integers P(0), P(1), P(-1) respectively, they must be also integers and

$$f(0) = P(0), f(1) = P(1), f(-1) = P(-1),$$

for sufficiently small ε . That

$$f(1)+f(-1)=P(1)+P(-1)$$

must be even is a special consequence of the following general theorem: (1)

The necessary and sufficient condition that the integral values u₁, u₂,

⁽¹⁾ This follows at once from Newton's formula of interpolation.

..., u_n can be attained by a polynomial P(x) with integral coefficients, for the integral values a_1, a_2, \ldots, a_n of x, is that all of the n-1 expressions

$$\frac{u_1}{(a_1-a_2)(a_1-a_3)\dots(a_1-a_k)} + \frac{u_2}{(a_2-a_1)(a_2-a_3)\dots(a_2-a_k)} + \dots + \frac{u_k}{(a_k-a_1)(a_k-a_2)\dots(a_k-a_{k-1})} \qquad k=2, 3, \dots, n$$

should be integers.

To extend the theorem to an interval greater than or equal to (-2, 2) is impossible, unless the function f(x) itself is a polynomial in that interval. For if there are two different polynomials $P_1(x)$ and $P_2(x)$ with integral coefficients such that

 $|f(x)-P_1(x)| < 1$, $|f(x)-P_2(x)| < 1$, and $P_1(x)-P_2(x) \neq \text{const.}$ in the interval $0 \le |x| \le a$ ($a \ge 2$), then we get a polynomial

$$P_1(x) - P_2(x) = C_0 x^n + C_1 x^{n-1} + \dots + C_n \qquad (C_0 \neq 0)$$

with integral coefficients such that

graf coefficients such that
$$|C_0 x^n + C_1 x^{n-1} + \ldots + C_n| < 2 \quad \text{for} \quad 0 \le |x| \le \alpha;$$

and this contradicts the known theorem of Tschebyscheff(1) that there exists at least one point x in the interval $(-\alpha, \alpha)$ for which

$$|C_0 x^n + C_1 x^{n-1} + \ldots + C_n| \ge \frac{C_0}{2^{n-1}} a^n \ge 2C_0.$$

I can not yet find out the upper limit of the intervals to which the theorem can be extended.

on

In the given function sub-interval portion of tl sions.

If this ..., a_n) on an unfavoral

⁽¹⁾ Oeuvres, t. 1, pp. 273-378.