Green’s Function for Forcing of a Thin Floating Plate

Colin Fox and Hyuck Chung

Abstract

The Green’s function for harmonic downward forcing of an infinite thin float-
ing plate is derived. The Green’s function models the response of a uniform
sheet of fast ice when locally loaded at rates at which the ice may be taken to be
elastic. A closed-form expression is given for the potential throughout the water
and detailed expressions are given for the vertical displacement of the ice sheet.
The displacement is graphed for various typical thickness of the ice sheet and for
a range of frequencies of forcing.
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1 Introduction

The New Zealand Programme in Sea-Ice Studies has a long standing interest in the
coupling of ocean waves to shore-fast ice, and the resulting fatigue that produces
break-up and other phenomena of geophysical importance (Fox et. al.[1]). That cou-
pling is completely determined once the propagation of waves (including evanescent
waves) is characterized in the open sea and ice covered sea. Since the propagation of
ocean waves is well understood, our interest turns to characterizing wave propaga-
tion in an ice cover. That process is simple to describe for an infinite homogeneous
cover, but the effective large-scale properties of a typical inhomogeneous cover are
not known.

As a first step towards theoretically determining the large-scale propagation char-
acteristics of inhomogeneous sea ice, we derive the Green’s function for local forcing
of an infinite homogeneous ice cover. It is intended that this “free-space” funda-
mental solution will be used within a boundary-integral formulation to express the
propagation through a composite ice cover consisting of locally homogeneous pieces
of ice joined by cracks, pressure ridges, steps in thickness, and other inhomogeneities

The Green’s function also serves to predict expected results of an upcoming field
experiment in which the surface strain due to local harmonic forcing will be measured.
A device, which we call the Thumper, is being constructed within the New Zealand
Programme to generate local forcing so that effective properties may be measured
directly.

2 The Green’s Function

2.1 Mathematical formulation

We consider the vertical forcing of a large sheet of floating sea ice. The sea ice is
modelled as a thin plate (so has negligible thickness) at the surface of water of fixed
depth H, as depicted in figure 1. Note that the surface is the plane z = 0 while the
sea bottom is the plane z = —H. The z- and y-axes are taken to be in the plane of
the ice sheet. The forcing is via a time-varying pressure ps with restoring force — due
to buoyancy and hydrodynamic effects — denoted by py.

Ps
surface pressure

plate z=0 |

Pw water pressure

bottom z=-H

Figure 1:



The resulting mathematical model is given by the system of equations (Fox et.
al.[1])
pi = LN 0 +m (1 + g) + B,
bi =Pw —Ps
U ¢z
¢t+%+977:0 at z=0 (1)

¢,—0 asz——H
Vi’yvz¢ = 0 in the water

at z =0

where n = 7 (x,y;t) is vertical displacement of ice from equilibrium, ¢ = ¢ (z,y, 2; t)
is velocity potential in the water, p is density of water, m = p;h, p; being density of
ice and h is thickness of the ice sheet, and 3 is a damping coefficient which is a small
positive number included to ensure that the model has a unique solution.

We will solve these equations for forcing p, that is localized at the origin, x =y =
0, and that has harmonic time dependence, i.e.,

ps = 6 (z,y) exp {iwt} . (2)

The total force applied by this pressure is 1 exp {iwt} Newtons.

Since the physical properties, and the system of equations, is invariant under
translations in the plane of the ice sheet, the response due to any localized harmonic
forcing is found by shifting the response we derive. Note that all other possible (finite
energy) forcing, with any given space and time dependence, is a linear combination
of such forces and as the system is linear, the resulting motion is the same linear
combination of responses. Since the system of equations is also invariant in time
it follows that the functions 1 and ¢ have the same harmonic time dependence, in
particular we note that ¢ (z,y, z;t) = ¢ (x,y, 2) exp {iwt}, and similarly for n. We will
omit writing the exp {iwt} time dependence from now on, and take it to be implicit.

2.2 Spatial Fourier Transform

We will solve the system of equations 1 by taking the spatial Fourier transform of
the localized forcing, in the plane of the ice sheet, solving the resulting equations in
the spatial Fourier domain and then transform back to spatial variables. The spatial
Fourier transform decomposes the delta-function spatial dependence into an integral
over wave-like forcing functions

ps (k) = exp {ik - x}

where k = (kz, ky) is the wave number that takes on all possible values in R?, and
x =(z,y) is the spatial variable in the plane of the ice sheet. Define k = |k||.
Since the system is linear and invariant under shifts in the plane of the ice sheet,
the functions ¢ and 1 will also have exp {ik - x} dependence in the plane of the ice
sheet. We will write the spatial transform of the functions ¢ and 7 as ¢ (kz, ky, z) and
1 (ksz, ky), respectively, and solve for those transform variables. That is, we use the
same symbol for the transformed functions, the operation of the function is implicitly
defined by the type of variables it takes as arguments.

Since the velocity potential ¢ satisfies Laplace’s equation, the Fourier transform
with respect to x and y satisfies the ordinary differential equation

%

oz (ke by, 2) = (kg + k) & (ks by, 2) = 0



which can be solved to determine that ¢ (ky, ky, 2) = A (ky, k) e + B (ky, ky) e7*2.
The boundary condition on ¢ at z = —H is ¢, (kg, ky,2 = —H) = 0 and hence
A kg, ky) = Ce* | and B (ky,k,) = Ce ®. Thus the depth-dependence of the

potential due to the wave-like forcing is

coshk (z+ H)

¢(k$,kyaz) :¢(k$,ky70> cosh kH . (3>

At the surface, z = 0, the vertical component of the velocity is
¢, (kz,ky,0) = ¢ (kg, ky,0) ktanh kH.

Using this relationship to substitute for ¢,, the system of equations 1 become, for
the spatial Fourier transform of the functions ¢ and n,

pi = Lk — mw?n + ifwn

at z =0
bi = DPw — 1
iwn = ¢ktanh kH (4)
z’w¢+%+gn=0 at z=0

Note that we have set p; = 1 as the coefficient of the exp {ik - x} term in the forcing
equals one. This system can be solved for the displacement of the ice sheet, 1, the

result being
—1
(k) = —— (5)
4 g2 B — —
LIS = me®+ pg b = o T h

Note that n is a function of the magnitude of the wave number only, which is not

surprising as the geometry is circularly symmetric with no preferred direction of prop-
agation. Note also that roots of the denominator are the solutions of the dispersion
equation (Fox et. al.[1]). Hence we know that, for fixed w # 0 and for 3 = 0, there are
two real roots corresponding to travelling waves, four complex roots corresponding to
damped-travelling waves, and a countably infinite set of imaginary roots correspond-
ing to evanescent modes. We will use the solution in the limit 8\, 0 and so the roots
are close to the ones described. Since the denominator is even, if kg is a root then so
is —ko.

The surface displacement in terms of spatial variables is the inverse 2-dimensional
Fourier transform of n (k).

We may also solve the system 4 for ¢ (kz, ky,0); The result is

wn —iw

ke, ky,0) = = , 6
¢ (ko by, 0) ktanhkH  ktanh kH (Lk* — mw? 4 pg + ifw) — pw? (6)

which is a function of k only and has the same poles as 7 (k).

2.3 Inverse Fourier Transform

Here, we remind ourselves that the inverse Fourier transform of radially symmetric
functions such as n (k) is (Bracewell [2])

0 =5 [ n ki ) i



where r = ||x|| is the distance from the point of forcing. Note that the factor 1/27 is
a result of the definition of the forward transform that we assumed.

For convenience we describe the poles in the absence of damping, i.e. when § =0,
but note that the positions of the poles will be slightly different when (3 is a small
positive number. As the poles occur as positive and negative pairs, we select only
those poles that lie in the upper-half plane when 3 > 0. Let ky denote the real
pole corresponding to travelling waves, kp a complex pole corresponding to damped
travelling waves choosing the pole with Rekp > 0 and Im &k > 0, and {ikn}n:m,...
the imaginary poles giving evanescent modes. Note that k, — (n — %) w/H as n
increases. A second complex pole —Fkj; also lies in the upper half plane. Let K =
{kv,kp, =k}, ik, ik, iks, - - -} denote this set of poles. Note that the remaining poles
are the negative of the poles in K .

Since n (k) is an even fractional function and bounded in the whole plane except
in regions around the poles, 1 can be expressed as
py= Y 2R

KEK™

where the sum is over the poles of 7 (k) with positive imaginary part (in the case
B > 0) and R (k) is the residue of n at k. The validity of this expansion is derived
in an appendix. The expansion allows us to use the identity (from Abramowitz and
Stegun [4] formula 11.4.44 with v = 0 and p = 0)

S
/0 ] J (ka)dk = Ko (za), Rez>0,a>0.

The identity (Abramowitz and Stegun [4] formula 9.6.4) Ky (2) = %Hél) (1z) (holding
for Rez > 0) gives an alternative form.
These formulas applied with z = —ix and a = r give

/ o (k) ke = Ko (~inr) = T Y (sr)

Jo

for Imk > 0, r > 0. Thus,
n(r) = k) kJo (kr) dk

1
],
_ QL / QKR >k:J0(kr)dk
: KEK"
1
" 2

(—ikr). (7)

Alternatively '
¢ (1)
n(r) =5 Z kR (k) Hy ' (k1) - (8)
reK
Note that, as with plane-wave propagation, the real root (when 3 = 0) gives rise
to a wave that propagates into the far field, the complex roots give damped travelling
waves that decay exponentially away from the point of forcing, while the (close to)
imaginary roots give modes that have no propagating component and decay rapidly
away from the point of forcing.



2.4 Residues of 7 (k)

The residue R (k) at a pole k of (k) can be found using the usual technique, i.e.,

-1

2 !/
LE* — mw? 4 pg + ifjw — e —
ktanhkH ) |,_,

1 H 1 -1
— —(4L&3 2 - (= 9 .
(42040 (e = (o 1)

Since each pole k satisfies the dispersion equation

R(k) =

pw?

 tanhkH -

we may substitute tanh k H = pw?/ (L/@5 + a/{) where a = (pg —mw? + z’ﬁw). So the
residue may be given as the rational function of the pole

2 2\ 2 -1
R(n):—(5Ln3+%+H(<LK5+%>2_(’M> )) . (10)

Lk® + (pg — mw? + ifw) K 0 (9)

* pw

This form avoids calculation of the hyperbolic tangent which becomes small at the
imaginary roots causing numerical roundoff problems.

We denote the residues for the poles in K~ by Ry = R(kr), Rp = R(kp), and
R, = R (iky), n € N, respectively. Note that R (—kj) — —R}; as the damping tends
to zero.

For convenience we define

R (k) =R(k)k

for each k € K. R (k) is actually the residue of the function 7 (k) k at its pole k.
Note that 5
R (x) = —— ()
pw? (BLE* +a) + H ((L/{5 +ar)? — (pw2)2)

is an even function of x and is real for x real or pure imaginary. The values correspond-
ing to the poles of interest are denoted Rt = Rrkr, Rp = Rpkp, and R, = R,ik,,
n € N, respectively. The residue corresponding to the other damped-travelling pole
—k7y is RY.

Note that, as |«| increases, |R (k)| o |r| 5.

2 shows the residues (on a log-log plot) for the case T'= 10s, H = 1000m, h = 1m
and using E = 6 x 10°. The index is determined by the order the pole is listed in K .

2.5 Residues of ¢ (k,0)

The residues of k¢ (k, 0) are easily related to the residues R (k) of kn (k) via equation
6. The residue is

R _wR(k) —iwk (LK® 4 ak)
A v vy 5 1+ am)? — (ou?)?
pw? (BLE* +a)+ H ((LH +ak)” — (pw?) )

where we have used equation 11 and substituted the polynomial form of tanh kH as
in the previous section. Note that these residues decrease as |k| *as |«| increases.
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Figure 2: Magnitude of residues. Period of 10 seconds, water depth 1000 metres and
ice thickness of 1 metre.
2.6 Summary of finding Green’s function

The Green’s function is found by first finding the roots in the upper-half plane K =
{kr, kp, =k, ik1,iko,iks,- - -} of the dispersion equation 10, calculating the residue
for each root as in equation 11 and then computing the sum

1) = 5 3 R(x) H ()

KEK™

n=1

- < (RTHSD (kyr) + RpHY (kpr) + REHS (<kpr) + > Ry H (z’knr)>

i 1 1 i o 1) .
= SReH (krr) —Tm [RoHSY (hor)| + ;Rnl—[é  (iknr) - (12)

to find the resulting surface displacement. The step to the last line uses the identity
*
Hél) (—2*) = — (H(()l) (z)) . Alternatively we may write

n(r) = %ZAR(/{)KO(—Z'IW) (13)

1 2 1
= —RrKo(—ik — Ko (—ik — Ko (Er 14
—R Ko (=ikrr) + = Re [Rp Ko (—ikpr)] + = > RuKo (knr)  (14)

n=1

where we have used the identities —i (—kjy) = (—ikp)™ and Ky (2*) = (Ko (2))".
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Here is a picture of surface displacement calculated using equation 12 with 1000
evanescent modes. Note that the graph is scaled for clarity. In this case many fewer
would do.

8

Displacement *1e+8

0 50 100 150 200 250 300 350 400
Distance from forcing in metres

Figure 3: Surface displacement for the case Period of 10 seconds, water depth 1000
metres and ice thickness of 1 metre. Real part as dashed line, imaginary part as
dotted line, magnitude as solid line.

The values at » = 0 marked, real value with an ‘o’ and imaginary value with an
‘x’. Magnitude of forcing is 1Newton.

The potential throughout the water can be found by evaluating a similar inverse
Fourier transform, with the residues changed. The resulting potential in cylindrical
coordinates is

i coshk(z+H
6(n2) = 30 Ry () Y (sr) DR E L) (15)
KEK™

Our main interest here is to determine surface displacement and strain for the purpose
of designing experiments using strain gauges to detect the response due to the forcing.
Consequently, we will not take this expansion for ¢ further.

3 Surface displacement in special cases

While the infinite sum in equation 12 gives the exact surface displacement at all
r # 0, other forms are more convenient for some computational purposes. In the far
field, i.e. when r is large, the number of terms that need to be summed is relatively
few as the evanescent modes give no significant contribution. For very large r, the



asymptotic form of the Hankel function leads to a very simple expression for surface
displacement. In the near field, i.e. when r is very small, the singularities in the
imaginary part of the Hankel function leads to round-off error when using equation
12 directly; In that regime, using the form of the Bessel functions for small argument
leads to a computationally stable expression.

3.1 Surface displacement at the point of forcing

The displacement, function may be found for all » > 0 using either equation 12 or ,
13. Strictly these expressions do not hold at the point of forcing » = 0 and, indeed,
both expressions are the sum of terms that are singular at the origin, » = 0. However,
since the plate equation is fourth order and Lapace’s equation is second order, we
would expect the solution to be smooth everywhere, including when » = 0. We study
the infinite series more closely to find the displacement at r = 0.

The modified Bessel function Kj (z) has the polynomial form

00 21
Ko (z) = —log (g) I(2)+Y (Z(ﬁ)? Y(l+1),
=0 '

where Iy and ¢ are the modified Bessel function and the Psi function, respectively
(see appendix A for details). When |z| is small, K¢ (z) = —logz + ¢ in which the
constant ¢ = log 2 — ~. Hence, as r — 0, the infinite series in 13 approaches

1) = 23 R (~log(—inr) + 9

= —= |Rylog(—ikyr)+ 2Re [Rp log (—ikpr)] + ZRn log (knr)]

n=1

+ S | Ry + 2Re(Rp) + ZRn]

n=1

1 B 00
= —— |Rulog(—iky) + 2Re[Rp log (—ikp)] + ) Rylog (k:n)]
L n=1
-1 >
c- o8t RT+2Re(RD)+ZRn]. (16)
n=1

Consider a contour integration of the function 7 (k) k along the path shown in
Figure 4. The arc of radius R is chosen to avoid the poles, which is always possible
as the number of poles in any bounded domain is finite (see appendix B).

Since n (k) k is an odd function, the integral over the real axis is zero. Further,
n (k) k tends to zero faster than R~2 on the semi-arc as the radius, R, tends to infinity
and so the integral over the semi-arc tends to zero as R — 0. Hence, the sum of
residues at poles in the upper half plane is zero, i.e.,

>y R(K):RT—l—QRe(RD)—l—i'Rn:O.

KEK™ n=1

Note that the residue at k = —kj; is R}, so Rp + R}, = 2Re(Rp).



imaginary axis

real axis

Figure 4: Contour used for integration with approximate pole positions shown.

We immediately see that the term multiplied by (¢ —logr) /7 in equation 16 is
zero. Thus at r = 0 the complex displacement takes the constant value

n(0) = - [RT log (—ik1) + 2Re [Rp log (—ikp)] + ZRn log (kn)]

1

m
n=1

1

m

- [RT (1og(k:T)—zg)+2Re[RD}log(kD)

—2Im [Rp)] (arg (kp) — g) + ZRn log (krn)]

= _% <1og {(k:T)RT (kp)?Fe™ T (kn)R”} — 2Im [Rp] (arg (kp) — g))

n=1
Rt
T
Note that the values of wavenumbers with no damping have been used; All the
wavenumbers and residuals are therefore real. Note that this formula gives the exact
value of the displacement at the origin. Note that the more compact, equivalent,
form L
0)=— R (k) log (k
10)=—= 3 R(s)log ()

KEK™

may also be used. Since R (k) decreases as k;® oc n=8 for the evanescent modes,
relatively few terms are need to evaluate this sum.

A plot of 1 (0) versus T is shown in figure 5 for various water depths.

Note that the smallest variation in the response is shown at small and large
periods.

3.2 Surface displacement in the near field

Returning to the power series expansions of the Bessel function,

10
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Figure 5: Plot of (0) versus T. Dotted line: Water depth 10m, Dashed line: 50m,
Dashdot line:100m, Solid line: 1000m. Again the graph is scaled.

1) = = 3 R(6) Ko (~inr)
KEK™
_ iZR() Iog(—z/-@r)Z mr/2 +Z mr/Q l+1)>
keK I= =
B ( mr/2)2l . iKY
g e (EE () o

since the [ = 0 terms in the sums is dealt with in the previous section and gives the
displacement at r = 0.

Note that the terms with { > 1 have the r-dependence (log (k7)) + ¢) (k) for
some constant c. Since

0% (log (kr) + ¢) (kr)* = k242~ (1 + 21 (log kr + ¢))

these terms have zero derivative at » = 0. Hence 7 (0) = 0 as expected. It follows

that the displacement function obtained by the method above is regular everywhere.
Figure 6 shows the displacement calculated using the series in equation 17 directly.
As can be seen, the power series allows stable calculation for a range of r away

from the point of forcing.

11



Displacement *1e+8

0 50 100 150
Distance from forcing in metres

Figure 6: Dotted: imaginary part of the displacement function. Solid: real part.
Dashed: absolute value. The constants used are, H = 1000 metres, h = 1.0 metres,
period= 10 seconds. Number of evanescent modes added was 100.

3.3 Displacement in the far field
When |z]| is large then (Abramowitz and Stegun [4] formula 9.2.3)

H (2) ~ \/ﬁz exp {i(z —w/4)}.

Thus, selecting just the term due to the travelling mode in equation 7?7 gives the
complex displacement far from the point of forcing as

1) ~ B fi b - m/)

Ry exp{i(kyr+7/4)}
vV 27TkT \/7_”

for large r.

3.4 Static forcing

The deflexion due to static point loading can easily be found using the method used
to solve the dynamic case. That solution was previously given by Wymann[5], but we
present an alternative derivation here as a check on our method and, in particular,
the scaling.

Since the pressure is constant, we set w = 0 in equation 5 to give

—1
k)= ——.

12



Now 7 (k) has four complex poles, ky = ei™*/l, ky = "7/ /1, —k;, and —ky where
[l = (L/pg)1/4 is the characteristic length of the ice sheet. The set of poles in the
upper half plane is K = {k1,ko} .

The residues of kn (k) at a pole  is

—K -1
R (k)= ———— =—,
) (Lk* +gp)' |yey  ALK?
1
Hence R1 =R (k1) = ol and Rg = —R;.
Using equation 13 we find

1 i . . kei (r /1)
Ko (—ikyr) — Ko (—ikor)) = —1Y
n(r)= 7T4pgl2( 0 (—tkir) — Ko (—ikor)) Smgpl?

where kei(z) is the Kelvin function (of zero order) and we have used the identity
(Abramowitz and Stegun [4] formulas 9.9.2 and 9.6.32)

Ky (e’iﬂ'/4m) - K (efiﬂ'/élx)

kei (x) = 5

This expression is the same as given by Wymann and alternatively derived by Fox

et. al.[6].

3.5 Deep water case

As the water depth becomes infinite, the poles of the evanescent modes become denser
in proportion to the water depth and almost equally spaced with a spacing of 7+ on
the imaginary axis. Then, we can see the formula 11 for the residue R (k) as a

function of a discrete variable k = inw/H, n = 1,2, 3, .... We then have
—bk?
R(r) = 2

b(5Lk*+a)+ H ((L/@5 +ak)” — bQ)

1 —bK?
H L (h(50k* +a)) + ((LM5 +ar)® — b2)
1 —bK? 1
1LI(L/<;5—&-a/£)2—b2 HQ() (19)

as H becomes large. Hence, we have an approximation formula for integral, i.e.,

SR ) Y (1) — %i@(ﬂ;—”)ﬂgn () =
- / Q (ik) HSY (ikr) dk

_pE2
_ = /0 Tﬁﬁ é )(zkr) dk or 20)

7bk2
27r2 fO (Lk:5+ak:) 4b2 KO (k’?“) dk

13



where b = pw?. Note that the variable has been changed to real. Finally, we have a
Green’s function for a deep water case,

nir) =3 (RTH(S” (krr) + R HSY (kpr) + R HY (=kr)

100 —bk2 1) ,.
+% LIO (Lk5+22)§+b2 H(g ) (Zkr) dk) .

(21)

We notice that the integration 20! can be computed analytically by a series ex-
pansion of function @ (ik). Let us remind an integral transform (Abramowitz and
Stegun [4] formula 11.4.47),

/-oo L—1/2—v 2

1 ng (kr)dk = 1T 5¢C (vm) [Hy (ar) =Y, (ar)], (22)

when Rer > 0,v < i, |argal < m,Rea > 0. H, is a Struve function (Abramowitz
and Stegun [4] formula 12.1.3),

(Z/2>2m+1/+1

(m+3HT (v+m+3)

H, ()= ) (-1)" =

m=0

Since, function @ (ik) is even, by the same derivation previousl usedy in subsection
2.3, we have

5 5
) R, R, 2a, R,
k) = - = 2
Q (ik) ;(k_an Haﬂ) 2 g (23)
where {a,} are five poles of ) (ik) with positive imaginary part and R, is a residue
at k = ay. In order to use formula 22, we set a = —ia and v = 0. We then have

00 1 -2
/0 72 gz Ko (kr) dk = % [Ho (—iar) — Yo (—iar)], Tma > 0.

Hence, integration 20 becomes

5 .
el 2 n 2 ' '
Z / k; R;; Ko (kr)dk = E n QR” Ho (—ianr) — Yy (—ianr)] .
n=1" 0  Yn n=1

Hence, the formula 21 becomes
n(r) = (ReA (hrr) + RoHSY (kpr) + Ry Hy (~kpyr)

24
S0 Ry [Ho (—ianr) — Yo (—ianr)]> ) (24)

We notice that function @ (k) in equation 19 is a combination of the dispersion
equation for a deep water case, i.e.,

-1
N = ————— 25

Q) = S —n(-k)),

'Tntegration of this form is called K-transform or Meijer formula (Bateman [7])

0(y) = / " [ (@) VFTK, (ay) da, f (z) = / ~ 9(9) VAL (ay) dy.

14



which can be obtained by following the same procedure in subsection 2.2 with a
boundary condition at z = —oco. It is apparent that the poles, a,, and the residues,
Ry, in formula 24 are related to kt and kp in equation 12. Figure 7 shows the
positions of the poles of function 25 when the forcing period is ten seconds and the
ice thickness is one metre.

0.08
0.06
A
&
0.04
0
% 0.02
>
g o %
()]
[}
£
=.0.02
0.04-
o A
-0.06-

| 8! L L L L L L
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Figure 7: Poles of n (k) for a deep water case. The forcing period is ten seconds and
the ice thickness is one metre.

Let the poles shown above be {k1, kp, &k}, kg, kf } where "*” is kr, ’triangle’ is kp
and kjy, 'diamond’ is kg and k. We notice that

{kT7 vak]>57 _kE7 _kE} = {_ian}nzl,...,5 :

We can see that {kr, kp, &y}, {—ke, —kj} are poles of 1 (k) and 7 (—k) respectively.
Hence, the residues, R,, in equation 24 can be expressed with the residues, R (k),
K &€ {kT, kD,k]*), —]CE, —]ﬁ?E} .

R = Jim (k= an) Qik) = lim (k) 5 (9 (ik) — n(~ik))
= lim (b —ik) B ((ik) — (~k) = — Tim (K~ ix) = ( (<)~ (K)).

where k' = —ik. If k is a pole of n (k')
. i . o / no_ 1
R, = kl[lglﬁ (K" — k) K'n (K') 27%(/-@),
and if k is a pole of n (—k')
7
= —= lim (K — k) E'n (=K.
R Jim (K — k) K'n (=K

Hence, for the poles {—kg, —Fk{;} we have

. T ..
R, = ) k’EElk:F (kﬁl + kE) k/77 (—k‘l> = 3 k’h—{rlir (k;' — kE) k/77 (k‘l>
= —5R (k)
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Similarly, for —kf; we have R, = —5 (kg)*. Hence, we can ultimately obtain a
formula for the dlsplacement function, n (r), with the five poles of function 25,

0() = R B )+ 5 (Bo (k) = Yo (b))

~1m [Roy (" (hor)] - %Re (R {Ho (knr) — Yo (kor)}]  (26)
+ Re [RE {HO (—]{)ET> — }/0 (—kE?")H
The identity, R (k) = R (k)" ,Ho (¢*) = Ho (2)*, and Yy (2*) = Yo (2)" were used.

The displacement function 26 shows that the real pole kr corresponds to travelling
waves and the two complex poles kpy, and kg correspond to damped travelling waves.

4 Swurface strain

The surface strain for point loading is

2
3() =~ T n(r) 1)

pointing in the radial direction, since the Green’s function is a function of distance
from the point of forcing, only. Using equation 12 (and Abramowitz and Stegun [4]
formulas 9.1.27)

YRG0 (2 () - ZH o)) (28)

Figure 8 is a plot of function 28.
Note that the real component has the singularity at r = 0.

4.1 Strain in the near field

The displacement in the near field, r small and possibly 0, is given by equation 17
in which the non-constant terms have the terms with { > 1 have the r-dependence

(log (k7) + ¢) (k) for some constant ¢. The second derivative for each term is
d2 2l 1,.21
3 (log (k) +¢) (kr)* = K2r#72 (20 — 1) (2 (Inkr + ¢)) + 21 + 1)

which is non-zero at r = 0 only for the [ = 1 term. That term can be written

_Z ( 22(1/1(2)—log/@—logr—{—logZ—ig))_

KEK™

In general the term

Z R (k) K*

KEK™

is real but not zero. Hence, the strain has a singularity at the origin that behaves
like log r plus a constant and is in phase with the forcing.
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Surface strain *1e+10

0 50 100 150 200 250 300 350 400
Distance from forcing in metres

Figure 8: Strain at surface of ice for unit forcing in the running example, Period of
10 seconds, water depth 1000 metres and ice thickness of 1 metre. Real part dashed
line, imaginary part dotted line, magnitude solid line.

4.2 Strain in the far field

When r is large the surface displacement given by equation 18. The strain form
equation 27 is then

ho*n h Ry (k& kr 31 .
) = SR T I e (ﬁﬂm—zm)exp{“kﬂ”/‘m
h k2R exp {i (krr +7/4)}

5\/27714@ NG

for large r. The strain direction is in the radial direction only. Hence the maximum
strain is given by the complex magnitude of s (7).

Figure 9 shows the magnitude of strain at r = 500 metres for a range of ice
thicknesses as a function of period. In all cases the water depth is 1000 metres. Note
that the strain for 0.5 metre ice is considerably greater than the other thicknesses
shown.
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Magnitude of strain *1e+11

4 6 8 10 12 14 16 18 20
Forcing period in seconds

Figure 9: The amplitude of strain function at r = 500 metres at a range of forcing
periods, 4 seconds to 20 seconds, for various thickness of ice. Solid line: 0.5 metre,
dotted line: 1.0 metre, dashed line: 1.5 metre.
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5 Some results in graph form

Here are graphs of magnitudes of residues, displacement, strain for the periods
T=4,5,7,10,15,20 seconds and H = 1000 metres, h; = 1 metre.

5.1 Residues

The following sequence of graphs show the residues, indexed by the order that the
corresponding pole appears in K . The first residue is for the travelling mode, the
second and third for the damped travelling modes, and the remainder for evanescent
modes. The graphs from (a) to (f) are for the geometry H = 1000 metres, h; = 1
metre and for the periods T=4,5,7,10,15,20 seconds respectively. The value E=6x10"
has been used for the effective Young’s modulus.
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5.2 Surface displacement

The following graphs from (a) to (f) show the surface displacement for the same
geometry and range of periods as used in the previous series of graphs of the residues.
The real (in-phase) part is shown as a dashed line, the imaginary (quadrature) part
is shown as a dotted line, and the magnitude is shown as a solid line.
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5.3 Surface strain

The following graphs from (a) to (f) show the surface strain for the same geometry
and range of periods as used in the series of graphs of residues. The real (in-phase)
part is shown as a dashed line, the imaginary (quadrature) part is shown as a dotted
line, and the magnitude is shown as a solid line. Note that the real part is singular

at r =0.
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One interesting feature of the strain is the peak in strain magnitude at about
40m from the point of forcing. The following pair of graphs shows magnitude of that
peak and the distance from the point of forcing at which that the peak occurs as a
function of period of forcing. The geometry H = 1000 metres, h; = 1 metre is as in
the previous graphs.
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Magnitude of peak (top figure) and position of peak (lower figure) for Imetre thick ice.
Here are the analogous graphs for the same range of parameters except h; = 0.5m.
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Magnitude of peak (top figure) and position of peak (lower figure) for 0.5 metre thick ice.
Note that the distance to the peak strain scales as the characteristic length while

the period at which the peak occurs scales as the square-root of the characteristic
lengths.
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A Special functions

Power series expansions for the modified Bessel functions Iy and Ky are given in
Abramowitz and Stegun [4] in formulas 9.6.12 and 9.6.13, respectively, and are

0 2k
Io(z) — Z(Z/Q)

00 2k
Ky(z) = —log (E> In(2) + Z (Zj))Q ¥ (k+1)

where 1 is the Psi function for positive integer argument defined by ( [4] formula
6.3.2)

k
Yk+1) = (Z%)‘V» k> 1
n=1

in which v = 0.5772156649015325 - - - is Euler’s constant.
Since Iy (0) = 1 and 9 (1) = —~, the modified Bessel function the second kind,
Ky (2), tends to —log (2) — v + log 2 near the origin and is singular at z = 0.

B Series expansion of 7 (k)

We wish to expand 7 (k) as a sum of terms like R/ (k — a) over poles a of . We first
establish general conditions for such an expansion to exist, and then show that those
conditions are satisfied by n as given in equation 5.

B.1 Series expansion of fractional functions

We consider a function that is regular in the whole plane except at isolated points.
Such a function is known as fractional function. We show that a fractional func-
tion that has an infinite number of poles can be expressed by infinite series of
polynomials[3].

Let f(z) be a fractional function that has an infinite number of poles. We note
that a number of poles that are situated within a bounded region is always finite since
the set of poles does not have limit-points. Indeed, if there is a limit-point z = ¢ then
any small circle with centre at 2z = ¢ would contain an infinite number of poles. Once
we have a finite number of poles in a confined part of the plane we can number them
in the order of their non-decreasing moduli, so that denoting the poles by a; we have

lai| < lag| <las| < ...,

where |ag| — oo as k — oo. At every pole z = qj the function f(z) will have
a definite infinite part, which will be a polynomial with respect to the argument
1/ (z — ax) without the constant term. We denote this polynomial term by

Gk< ! >,k=L2$Pm (29)

zZ — ag
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We show that the fractional function f(z) can be represented by a simple infinite
series of G by making certain additional assumptions. Suppose that a sequence of
closed contours C),, which surround the origin exists and satisfy following conditions:

C1 Non of poles of f(z) are on the contours C,, n =1,2,3,...
C2 Every contour C,, lies inside the contour Cy, 1.

C3 Let I, be length of the contour C), and 6,, be its shortest distance from the origin
then ¢,, — 0o as n — o0, i.e., the contours C), widen indefinitely in all directions
as n increases.

C4 A positive number m exists such that

l
= <'m for any n.
bn

We now suppose that given such a sequence of contours, there exists a positive
number M, such that on any contour Cj, our fractional function f(z) satisfies

If(2)l <M (30)

Consider the integral

LI,

2mi Jo, 2 — 2

(31)

where the point z lies inside C), and is other than aj (the poles inside C,.) We also
consider the sum of the polynomials 29 for the poles ay, inside C,,

()= 3Gy (Z_1%>. (32)

(Cn)

The integrand of 31 has a pole 2’ = z and poles 2’ = a;. We can calculate the
residue at the pole 2/ = z by

f(Z)

===

- /()

z'l=z

E—— f (z) :

The residues at the poles 2/ = a; are, by the definition 32, the same as the residues
of the function
wp, (2)
2 -z

(33)

We note that all poles of this function are situated inside C,,. We now show that the
sum of residues of the function 33 at the poles aj, is

—wn (2) =—(C§Gk (2_1%)_ (34)

Since the definition of wy, and Gy, is a polynomial of 1/ (2 — a) , the order of the
denominator of function 33 is at least two units higher than that of the numerator of
function 33. Hence, for a circle with a sufficiently large radius R we have

! !
2me Res wln—(z) = j{ wn—(z)dz'.
R




The LHS of this does not change as the radius R increases, and the RHS— 0 as

R — o0. Indeed,
!/
% w':L (Z >dZ/ S %
Cp % —% Cr

and the term || tends to zero as R — oo. Thus, the sum of residues at poles within
a finite distance is zero. Since we know that the residue of 33 at 2/ = z is wy, (2), the
sum of the rest is 34. Thus, we have an expression for the integral 31,

LI -Y o <Z_1ak>. (35)

2mi Jo 2 —z
" (Cn)

Jen()1
2 —z 2

dz

Also, when z = 0 we have
1 [ &), 1
57 '/Cn z’ dz' = f(0) — E G ) (36)

Subtracting equation 35 from equation 36 gives

%Lﬂ%cy:ﬂz)—f@—z {Gk (2_1%) e (_aikﬂ

(Cn)

We prove that LHS of t\hi expression tends to zero as n — co.
Since |2| > bp, |2 — 2| > 2| — |2| > 6n — |2|, we have

) f " , Mi,
_J\mJ < 7 m
./cn 2 (2 —2) @) = bn (60 — |2])
Mm
< 5o R (37)

Since 0, — oo as n — oo, integral in 37 tends to zero as n increases. Note that we
used the condition in equation 30 and condition (C4).
Finally, we have formula for f (z),

=0 o () - (2]

(Cn)

Since, the contour C, will widen indefinitely as n increases,the second term is a sum
over all poles, so we have f(z) in the form of an infinite series

=10+ o (o) -6 (-] (38)

B.2 Conditions for 7 (k)

We define a sequence of square contours

C\, = square with its four corners at 6, — 10y, 0pn + 10pn, —0pn + 10pn, and — 6, — @6y,
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where 6, = (n+ %) w/H,n = N,N +1,.... The function which we would like to
estimate on the contours C,, is
-1
n(k) = 2

LI — w2 P
9P L anh (RH)

We show that |1 (k)| is bounded on any C), in order to apply the method introduced
above. The function 7 has two real poles, four complex poles, and an infinite number
of imaginary poles.

For the sake of simplicity we write the function n (k) as

-1

Lk* + A-— ktanﬁ(kH) .

n (k)

When Im k is large the poles of  are almost +inn/H. In fact, the poles iky, (k, € R)
of n (k) satisfy
1
(LkL+ A) ky,

so kn, — £nw/H as k, increases. Thus, by choosing N large the contours C,, are
certain distance away from the poles for any n > N. We prove the boundedness of
|n| by showing that |n (x4 iy)| is bounded for y = £6,, n = N,N+1,..., x € R and
then for x = £6,, n =N, N+ 1,..., y € [=6p,n].

For any n > N we have

= tan (knH),

L'+ A| > LIk[*+C
= Llz+iyl*+C
> L&+ C for any x € R, y = by, (39)

where C' is a constant determined by A and L. When y = §,, we have
62mH€i2yH 1

(Z’ + zy) (62mHei2yH _ 1)
QmHeiQyH + 1’

1
‘ k tanh (kH ) ’

e

’m+iy“62mH6i2yH_1’
2 1 1
S it RS SR (40)
[ -yl X +1] 7 o +ay| T bn
for any € R. We used exp (¢ (2n+1)7) = —1 and
eZa:H_]_
€2$H+1‘ <L
For large N we have
B B
L'+ A— ———— | > LK + A] — | ————|.
- k:tanh(kH)‘_‘ - ’ ‘ktanh(k:H)‘
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Since RHS of this inequality is positive from 39 and 40,

1
k) < — ~
|Lk* + Al - ‘ktanh(kH)‘
_
Lo +C—£
1

< — — foranyn > N. 41
= Lehtro-—Z e (4
N

Note that the same relationship holds for y = —6,,.
For k on the line segment 6,, — i, to 6, + ¢6, we use the fact that

le
|$’+1y| |€2mH€i2yH _ 1|
1 1 [e 0]

ZmHeiZyH 4 1‘

<
T oty 1 e
D
< —Nforanyy,nzN
on
since,
1 —2zH 1 —26N H
e ey Lo L
[ |e 2] = T |27 Ty = on
From equation 39 and the first line of equation 41, we have
1 1

< for any n > N.
‘Lk4+A‘ - ‘ktanf(kH)‘ L6§V+C_ SN

The same proof can be applied for the line segment —6,, — ¢, to —6,, +16,,. We have
proved that |7 (z)| is bounded on all contours C,, n > N where N is chosen to be
large so that the contours are certain distance away from all the poles of 7.

B.3 Expansion of 7 (k)

As we have seen in the previous section, the function n (k) satisfies all the conditions
C1~C4, and if we omit the imaginary part of the denominator of n created by the
damping coefficient 3, we notice that the function 7 has a countably-infinite number
of imaginary poles, two real poles, and four complex poles[1]. Hence, we can expand
the function 7 (k) as a sum over infinite fractional polynomials. Let R (k) be the
residue at k = k, then the polynomial term 29 is

o () - 2

Hence, the expansion of 1 (k) becomes, from the formula 38 and 7 (0) =0,

(k) = Z[§£“2+M]




Note that the summation on the first line is over all poles of 1 (k). We used that
R (k) = R(—k), since n (k) is an even function and

—(k=r)n(k) = (=k+r)n(=k) = (k+r)n (k)

S0,

—llim (k—r)n(k)= klim (k+r)n(k).
At the first glance, this formula seems different from the formula ?7. However, the
term » 2R (k) /k is zero. Indeed, expansion of the function 7 (k) k which satisfies the
conditions C1~C4 and has the same poles as the function 1 (k) and residues R (k) K
at k = k. Hence, n (k) k expanded as,

i - 3[R RO

K

K
2kR (k)

2 Eo2
KEK
where R (k) = kR (k). We used that R (k) = R (—k).

The fact that > 2R (k) /k is zero can also be confirmed by using the contour
integration of the function n (k) /k as in the figure 4.

The function 7 (k) /k is an odd function and has the same poles as the function
n (k) with the residues R (k) /k. Notice that k = 0 is not a singular point of n (k) /k.
Hence, the integration over the real axis is zero and 7 (k) /k — 0 on the semi-arc with
order of R™3 as R — oo. Hence, we have

Z 2R/<L(/£) _o.

KEK™

C MatLab code

C.1 Root finding code

The following code finds the roots of the dispersion equation with 3 = 0, and calcu-
lates the corresponding residues of n (k).

function [kice,residR]=rootnresid(t,hwater,hice,nevsc)

% ROOTSNRESID Complex roots of the dispersion equations and associated
% residues.

% Call as [Kice,Resid]=rootnresid(T,Hwater,Hice,nevsc)

% Kice are the k-numbers for the waves in the ice-covered sea.

% Resid are the associated residues

% Author: Colin Fox
% Modified from COROOTS 2 September 1998

lp,g,w,L,a,b,dwater,dice] = setparam(t,hwater,hice);

% Find the ice-covered-sea travelling root

% Use an approximation as a starting guess (ref 17 Jan 1990)
k1=(b/L)".2;
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% Use the asymptote as a lower bound on the root
if a < 0, kmin=(-a/L)".25; ki=kmin+abs(ki-kmin); else kmin=0; end
% Now bracket the root
if ftice(kl,p) >= 0,
k2= (kmin+k1)/2;
while ftice(k2,p) >= 0, k1=k2; k2=(kmin+k1)/2; end
else
k2=2xKk1;
while ftice(k2,p) < 0, ki1=k2; k2=2xkl; end
end
% and call root finder
ktice=fpzero(’ftice’, [k1;k2],p);

% Find the evanescent roots
keice=zeros(nevsc,1);
dk=pi/hwater;
index=[1:nevsc]l; ks=[(index-.5)*dk; index*dk];
for ind=index,
if (feice(ks(l,ind),p) * feice(ks(2,ind),p)) > O,
keice(ind)=fpzero(’feice’,ks(:,ind)-.5%dk,p);
else
keice(ind)=fpzero(’feice’,ks(:,ind),p);
end
end

% Find the damped-travelling-wave k-number using a fixed point algorithm
zr=exp(i*2*pi/5);
kdold=0; kd=(i*b/L)".2; niter=0; nitermax=100; tiny=1le-15;
while (abs(kd - kdold) >= abs(kd)*tiny) & (niter<=nitermax),
kdold=kd; niter=niter+1;}
kd=((-b/tan(kdold*hwater)-a*xkdold)/L)"~.2;}
while (real(kd)<0) | (imag(kd)<0), kd=kd*zr; end
end
if niter == nitermax, disp(’kd may not be accurate’); end

% Put the roots together
kice = [ktice; conj(-i*kd); i*kd; ixkeice];

% Calculate the residual via polynomial (of etaxk)
k2 = kice."2;

terml = 5xL*k2;

term2 = a./k2;

term3 = (hwater/b)*((L*kice.”5 + a*kice).”2 - b"2)./k2;
residR = -1./(terml + term2 + term3);

Two functions are called by the root finding code. The first sets up the physical
parameters.

function [p,g,w,L,a,b,dwater,dice] = setparam(period,hwater,hice)
% SETPARAM makes the vector parameter p which is passed to the
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% dispersion equations via the root finders. Call as
% [p,g,w,L,a,b,dwater,dice] = setparam(period,Hwater,Hice)

% Some physical constants
dwater=1025; dice=922.5; nu=0.3; g=9.8; e=6%10"9;

% Generate a few constants
2xpi/period;
exhice”3/(12*x(1-nu~2));
dwater*g - dicexhice*w™2;
dwater*w™2;

o e =
I

% Store these in a single vector as a parameter for dispersion equation
% functions
p=1[ghwater wL a b ];

The second is a variant of MatLab’s zero-finding code, modified to accept a pa-
rameter for the function and also to take an initial bracket of the root.

function b = fpzero(FunFcn,x,param,tol,trace)

%FPZERO Zero of a function of one variable and a constant parameter.

% FPZERO(F,X,PARAM) finds a zero of f(x,param). F is a string containing
% the name of a real-valued function of a single real variable and

% constant parameter. If X is a scalar on entering FPZERD then it is used
% as a starting guess. Optionally X can be a 2-element column vector

% in which case the two values are used to initially bracket the root.

% If they do not bracket a root, i.e., if F(X(1)) and F(X(2)) have the

% same sign the interval will be extended until a root is bracketted.

% PARAM is the, possibly vector, parameter to be passed to F.

% The value returned is near a point where F changes sign.

b

% An optional fourth argument sets the relative tolerance for the

% convergence test. The presence of an nonzero optional fifth

% argument triggers a printing trace of the steps.

% fpzero made from Matlab’s fzero by Colin Fox, 16 January 1990.
% Modified by CF 17-Jan-90 to accept initial bracketting of the root

% Initialization
if nargin < 4, trace = 0; tol = eps; end
if nargin == 4, trace = 0; end
if trace, clc, end
% Deal with scalar or vector starting guess
temp=size (x);
if temp(1l) >= 2,
a = x(1); fa = feval(FunFcn,a,param);
if trace, home, init = [a fa], end
b = x(2); fb = feval(FunFcn,b,param);
if trace, home, init = [b fb], end
x = (atb)/2; dx = (b-a)/2;
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else

% For scalar x perform the original matlab initial interval making procedure
if x "= 0, dx = x/20;
else, dx = 1/20;

end
a = x - dx; fa = feval(FunFcn,a,param);
if trace, home, init = [a fa], end
b = x + dx; fb = feval(FunFcn,b,param);
if trace, home, init = [b fb], end

end

% Find, or ensure, a change of sign.
while (fa > 0) == (fb > 0)
dx = 2*dx;
a = x - dx;
%[m,n]l=size(a); if (n"=1 | m”=1), keyboard, end
fa = feval(FunFcn,a,param);
if trace, home, sign = [a fa], end
if (fa > 0) = (fb > 0), break, end
b = x + dx; fb = feval(FunFcn,b,param);
if trace, home, sign = [b fb], end
end
fc = fb;
% Main loop, exit from middle of the loop
while fb "= 0
% Insure that b is the best result so far, a is the previous
% value of b, and ¢ is on the opposite of the zero from b.
if (fb > 0) == (fc > 0)
c = a; fc = fa;
d=Db-a; e =d;
end
if abs(fc) < abs(fb)
a=>b; b=c; c=a;
fa = fb; fb = fc; fc = fa;
end
% Convergence test and possible exit
m= 0.5%(c - b);
toler = 2.0*%tol*max(abs(b),1.0);
if (abs(m) <= toler) + (fb == 0.0), break, end
% Choose bisection or interpolation
if (abs(e) < toler) + (abs(fa) <= abs(fb))
% Bisection
d=m; e =m;
else
% Interpolation
s = fb/fa;
if (a == ¢)
% Linear interpolation
p = 2.0*mx*s;
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q=1.0 - s;

else
% Inverse quadratic interpolation
q = fa/fc;
r = fb/fc;
p = s*(2.0xmxq*x(q - r) - (b - a)*(r - 1.0));
qg=(-1.0*%x(r - 1.00*x(s - 1.0);
end;

if p> 0, q = -q; else p = -p; end;
% Is interpolated point acceptable
if (2.0%p < 3.0*m*q - abs(toler*q)) * (p < abs(0.5%exq))
e =d; d = p/q;
else
d=m; € = m;
end;
end % Interpolation
% Next point
a =b;
fa = fb;
if abs(d) > toler, b =b + d;
else if b > ¢, b = b - toler;
else b = b + toler;
end
end
fb = feval(FunFcn,b,param);
if trace, home, step = [b fb], end
end % Main loop

The root finder uses different forms of the dispersion equation depending on
whether the root is pure imaginary or pure real. The first is for the travelling root.

function f=ftice(s,p)

% FTWAT is the dispersion equation for the ice-covered-sea in a
% form convenient for finding the travelling wave k-number

% p is the vector parameter

f=tanh(s*xp(2)) - p(6)/(p(4)*s~5 + p(b)*s);
The second is for the evanescent roots.

function f=feice(s,p)

% FEICE is the dispersion equation for the ice-covered-sea in a
% form convenient for finding the evanescent wave k-numbers

% p is the vector parameter

f=(p(4)*s~5+p(5) *s) *sin(s*p(2)) + p(6)*cos(sxp(2));

C.2 Code for displacement and strain

The following script file calculates the displacement and strain for a given period, ice
thickness, and water depth. The displacement is plotted.
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% Plot the greens function

T=10; % period

hice=1; % ice thickness

hwater=1000; % water depth

nevsc=100; % number of evanescent modes to sum over

[kice,residR]=rootsnresid(T,hwater,hice,nevsc);
r=linspace(1,400,100);

% Calculate surface displacement
dice=i*besselh(0,kice(1)*r)*residR(1)/2;

for ind=2:nevsc+3
dice=dice+i*besselh(0,kice(ind)*r)*residR(ind)/2;
end

plot(r,real(dice),’black--’,r,imag(dice),’black:’,r,abs(dice),’black-")
title([’T=’,int2str(T), hice=’,int2str(hice), ’hwater=’,int2str(hwater)])
xlabel (°Distance from forcing in metres’)

ylabel (’Displacement’)

% Calculate the strain
strain=(i/2) *residR(1)*(besselh(2,kice (1) *r)*kice(1)"2 - ...
kice(1)*besselh(1l,kice(1)*r)./r);

for ind=2:nevsc+3

k = kice(ind);

strain = strain + (i/2)#*residR(ind)*(besselh(2,k*r)*k"2 -
kxbesselh(1l,k*r)./r);

end
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