Math 361 2006 In 260 we learned about ordinary differential equa. $\frac{dx}{dt} = -dX , \quad \chi(o) = \chi_o .$ Eg This has solution $X(t) = X_{b}e^{-xt}$ rote: solution is function of time. Could apply to, for instance, rediractive decay, cooling etc. But many things depend on space and time. Example: just about anything you like. A P.D.E. is a diff. eq. Spie 4 depends on space and time. that relates the partial derivatives of u. $\frac{\partial y}{\partial t} = 3 \frac{\partial y}{\partial x^2}$ (Diffusion, or Heat, Eqn) Eq $\frac{24}{2t} = D\frac{24}{2t^2} + u(t-a)(u-a)$ Fitz Hugh Naguro. (Reaction - Diffusion)

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = o \qquad (leque eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = o \qquad (leque eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial x^{2}} \qquad (were eqn) (2)$$

$$\frac{\partial^{2} u}{\partial x^{2}$$

Now apply conservation

$$\frac{d}{dt} \int_{X}^{X + \delta X} u(s, t) ds = \int_{2X}^{2u} (x + \delta x, t) - \int_{2X}^{2u} (x, t) \\
\int_{X}^{X + \delta X} \frac{\partial u}{\partial t} (s, t) ds = \int \left(\frac{2u}{2x} (x + \delta x, t) - \frac{\partial u}{\partial x} (x, t)\right) \\
\times \\
M.N.T. \quad \Delta X \quad \frac{\partial u}{\partial t} (t, t) = \int (t, t) = \int_{X}^{2u} (t, t) \\
Let \quad \Delta X \to 0 \qquad \qquad \frac{2u}{2t} (k, t) = \int_{X}^{2u} (t, t) \\
P.DE.s \quad need initial and boundary conditions.$$
Eq. $u(b, t) = 0$
 $u(t, t) = 1$ or $u(k, t) = helt at fixed term.$
 $u(k, t) = f(s)$ (initial heat distribution).

Note: ODEs need only initial conditions.

Question
How do we solve such equa? Need completely difficult methods
then for ODEs. First, a consolvencept.
Linearity Section 2.2
Linearity Section 2.2
Linearity Section 2.2
Linear operator L is such that
$$L(c_iu_i + u_i) = c_i L(u_i) + L(u_i)$$

 $E_{\mathbf{x}} = \frac{2}{2t} + \frac{2}{2k} + \frac{3}{2k}^2$ are all linear operator.
 $- L(u_i) = \frac{3u}{2k} - \frac{3u}{2k}$ is a knew operator. (What or
 $- L(u_i) = \frac{3u}{2k} - \frac{3u}{2k}$ is a knew operator. (What or
 $L(u_i) = \frac{3u}{2k} - \frac{3u}{2k}$ is a knew operator. (What or
 $L(u_i) = \frac{3u}{2k} - \frac{3u}{2k}$, $f = c(u_i, t) u_i$
 M knew quality is $L(u_i) = f$, for L some $k_{in} q_i$.
 $The some known function of x and t$
 $u_{in} = \frac{2}{2k} - \frac{2^{u}}{2k}$, $f = c(u_i, t) u_i$
 $\Rightarrow L(u_i) = f$ as $\frac{2u}{2k} - \frac{3^{u}}{2k} = 0$ is archiver.
 $E_{in} = \frac{3u}{2k} + u\frac{3u}{2k} - \frac{3^{u}}{2k} = 0$ is archiver.
 $The form now on we dense suppose that L denses RDE .
From now on we dense suppose that L denses a finear operator.$

Note:
$$L(n) = 0$$
 always has a solution $u = 0$
PG: $L(0) = L(u-u) = L(u) - L(u) = 0$
Eq: Give exempter
Superpotein II. $u_1 + u_2$ satisfy $L(u) = 0$, then so does
 $C_1u_1 + C_0u_1$.
i.e. we can add solutions of Lin. hom. Systems is get other solutions.
Note: this dread happen be non-linear equips
We are going to use this many times in this cause.
Separation of Ukrichter. Section 2.3.2
Eq. $\frac{2u}{2t} = k \frac{2u}{2t}$, $0 < x < L$
 t_3 . $\frac{2u}{2t} = k \frac{2u}{2t}$, $0 < x < L$
 $u(l_1+t) = 0$
 $u(l_2+t) = 0$
 $u(l_2+t) = 0$
 $u(l_2, 0) = f(u)$ instead contains
Solution is clear from physical growth $u \to 0$ everywhere, or $t \to 0$

5)

Truck: look for solutions if firm

$$u(k,t) = Q(k) T(t)$$

$$h nucl he a$$

$$h T = h f dig = h constant.$$

$$h nucl he a constant.$$

So $\lambda = \mu^2$ gives only trivial solutions which we reject. What about $\lambda < 0$, $\lambda = -\mu^2 - say$.

We need to solve

$$\frac{d^{2}q}{dx^{2}} = -\mu^{2}q, \quad q(b) = q(b) = 0$$
Solve is $q = A \sin \mu x + B \cos \mu x.$
 $q(b) = 0 \Rightarrow B = 0 \Rightarrow q = A \sin \mu x$
 $q(b) = 0 \Rightarrow A \sin \mu b = 0$
 $\Rightarrow \mu b = 0, \text{ST}, \pm 2\pi \text{ ch.}$
 $\mu b = \pm nT. \qquad \text{eignvalues.}$
 $label{eq:alphabet}$
Crucial hat: Solving the BVP gives solver only for cartain
values of the sequention constructs λ .
For any $n = \sin \left(\frac{nT}{b}\right)$ is a solution for q
Gilles equilibriums
Solving for T. Now we know what λ is $\left(\lambda = -\frac{n^{2}T^{2}}{b^{2}}\right)$, we
can solve for T.
 $\frac{dT}{dt} = k \lambda T = -kn^{2}T^{2}T$
 $\Rightarrow T = e^{-\frac{kn^{2}T^{2}}{b^{2}}}$

Now put them together

$$u(x,t) = Sin(\frac{h\pi x}{L}) e^{-\frac{kn^2 t^2}{L^2}t}$$
 for any $n=0, \pm 1, \pm 2$.

Initial Condition. Due thing we haven't yet done is satisfy
$$u(x, o) = f(x)$$
.

Question. Can we add up all the Uns in a dave way to that
the sum satisfies the initial condition?
So, let
$$u(x_it) = \sum_{n=1}^{\infty} \mathbb{R}_n \mathbb{N}_n \left(\frac{n \pi x}{L} \right) = \sum_{n=1}^{\infty} \mathbb{R}_n \mathbb{N}_n \left(\frac{n \pi x}{L} \right) = \frac{-\mathbb{R}_n^2 \mathbb{T}^n}{\mathbb{R}_n \mathbb{N}_n} t$$

Some constants
At two $u(x_i, 0) = \sum_{n=1}^{\infty} \mathbb{R}_n \frac{\sin(n\pi x)}{(\frac{n}{L})} = \frac{2}{1} f(x)$
 $\sum_{n=1}^{\infty} \mathbb{R}_n \frac{\sin(n\pi x)}{(\frac{n}{L})} = \frac{2}{1} f(x)$
Can we choose the
 $\mathbb{R}_n L \to \mathbb{N}$

Sections 2.3.5 6 2.7.6

Every for some initial conditions. If, say.

$$f(x) = 45$$
; $\frac{3\pi x}{L} \implies B_3 = 4$ all other $B_1 = 0$.

Ŷ

$$\frac{\int_{0}^{L} Sin\left(\frac{n\pi x}{L}\right) Sin\left(\frac{n\pi x}{L}\right)}{\int_{0}^{L} Sin\left(\frac{n\pi x}{L}\right) = \left(\frac{D}{L^{2}}, \frac{D\pi x}{D}\right)$$

Thus
$$f(\lambda) \sin\left(\frac{m\pi\chi}{L}\right) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi\chi}{L}\right) \sin\left(\frac{m\pi\chi}{L}\right)$$

The integrate, loget

$$\frac{L}{2}B_{m} = \int_{D}^{L}f(x)\frac{\sin(m\pi x)}{L}dx \quad \pm J_{0}B_{m} = \cdots$$
Hence
$$f(x) = \sum_{m=1}^{\infty} \frac{z}{L} \int_{0}^{L}f(x)\sin(\frac{m\pi x}{L})dx \quad \sin(\frac{m\pi x}{L})$$

$$4 \quad \text{Sto} \quad u(x,L) = \sum_{n=1}^{\infty} \frac{z}{L} \left[\int_{0}^{L}f(x)\sin(\frac{m\pi x}{L})dx \right] \quad \sin(\frac{m\pi x}{L}) \quad e \quad L^{2}$$

where
$$B_n = \frac{2}{L} \int_{0}^{L} 100 \sin \frac{n\pi x}{L} dx = \frac{200}{n\pi} \left(1 - \cos n\pi \right)$$

= $\int_{0}^{0} \frac{1}{N\pi} \frac{1}{N\pi}$

(lo)