Maths 361

Today’s topics:
Approximation by Fourier series
L? convergence of Fourier series

Questions motivating today’s lecture

(1) We frequently approximate a function by a partial sum of its Fourier series. How good
is such an approximation?

(2) For a function f € PS[—L, L] its real trig Fourier series converges pointwise to f at
points of continuity of f and behaves nicely at discontinuities. What can we say in the case

f ¢ PS|—L,L]?
Section 1.6 Approximation by Fourier series

If V is an inner product space with inner product (f,g) and norm || f|| then the quantity
|f — gl is a measurement of the “distance” between two functions f and g.

Example: For the IPS PSfa,b] with inner product

- [ 1wt e

b
1l = / (f(2)) da

I - gll = \// (2))2 da

(This is sometimes called the L? metric.)

and induced norm

this “distance” is

Theorem (Least-Squares Approximation)

Let {¢,}22, be any complete orthogonal set of functions for the IPS V. Consider f € V
with || f]] < co. Let N be a fized positive integer. Write
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for arbitrary constants d,,, n =1,2,... N, and let
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The choice d,, = ¢/ minimises
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over all possible choices of the constants d,,.
To see this, let E = ||Sy — f].
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So we need to find the minimum of
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Now complete the square for the nth term of this sum:
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This quadratic expression is clearly minimised when
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The minimum value of E? is
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From here on, let
N
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where
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and {¢,}22, is an orthogonal set of functions in an IPS V.
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Claim :

ISEI? < I1£11°
This is called Bessel’s Inequality.

To see this, use the orthogonality:

|fII? — E%.. from the previous page
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Definition : The Fourier representation of f, S]{,, converges in the norm to f if

. f _
Jim [|Sy — £l =0.

Definition : Let V' be an IPS. The set {¢,}°, is complete for convergence in the
norm in V if each f € V has a Fourier representation S]{, converging to f in the norm.

Example : Our default norm

b
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is called the L? or “mean square” norm. So our default IPS, PSla, b] with
b
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is called “PS|a,b] with L? norm”. Another important IPS of functions is
L2[a,b] ={f : [a,b] = R| [|f]| < oo}

where || f]| is the L? norm of f.



Theorem (L2 convergence of Fourier series)
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is complete for convergence in the mean square norm for L2[—L, L].

The set

Summary of convergence results:

(a) If f € PS[—L, L] then the real trig Fourier series of f converges pointwise to f at almost
all x € [—L, L] and behaves nicely at points of discontinuity, and also converges to f in the
mean square sense.

(b) If f € L2|—L, L] then the real trig Fourier series of f converges to f in the mean square
sense and converges pointwise to f at points of continuity of f. We do not have a result
about the behaviour at discontinuities of f.

A consequence of the previous theorem is Parseval’s Theorem

If f € L2[—L, L] and SZ, is the real trig Fourier series of f, then
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Recall from the proof of Bessel’s inequality that

ISEI? = A1 = B = ISP = Sy = FI°

min

But [|Sy — f[|* — 0 as N — oo.



