1. (10 marks)

(a) Find the general solution to the following differential equation

dy
=
a Ty



(b) Find the general solution to the following differential equation

dy
—= = 2y +¢.
dt .
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2. (5 marks)
The following picture shows the slope field for a differential equation.
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(a) On this picture, carefully draw the solution you would obtain if
you used one step of Euler’s method with A = 1 to approximate at
t =1 the solution to the differential equation satisfying the initial
condition z(0) = —1.

(b) On the same picture, carefully draw the solution you would obtain
if you used two steps of Euler’s method with A = 0.5 to approxi-
mate the same solution.

(c) On the same picture draw the exact solution satistying the ini-
tial condition 2(0) = —1. Use this to estimate the errors in the
approximate solutions you obtained in (a) and (b) at ¢ = 1.
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3. (5 marks)
Consider the following initial value problem
dy

pri y + sin(t), y(0) = 1.

(a) Does a unique solution of the IVP exist? Give reasons for your
answer.

(b) Use Improved Euler with stepsize h = 1 to find an approximation
to the solution at ¢ = 1.
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4. (10 marks)

Consider the following differential equation:

dy 2
T SR
(a) Find all equilibrium solutions and determine their types (e.g., sink,

node).

(b) Draw the bifurcation diagram. Identify any values of u for which
a bifurcation exists.
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(blank page for your working)
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5. (10 marks)

Consider the following system of differential equations:

(a) Find a solution to this system of equations. Your answer should
contain two arbitrary constants.

(b) Find the solution that passes through (z,y) = (1,0) at t = 0.
Express your solution in the form (z(t),y(¢)).

(c) The picture below shows the slope field for the system of equations.
On this picture:
1. show all equilibrium solutions;
ii. draw the solution you found in part (b) above;

iii. sketch three other solution curves.

For each solution curve you draw, you should draw an arrow in-
dicating the direction moved as time increases.
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(blank page for your working)
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