% p=0.5; % q=6; % omega=2; clf p=input('\ny"+py''+qy=cos wt \n \nEnter value of p '); q=input('Enter value of q '); omega=input('Enter value of omega '); t=linspace(0,40,300); D=p^2-4*q; if D>0 % two real solns alpha=sqrt(D)/2; lambda1=-p/2+alpha; lambda2=-p/2-alpha; yc=exp(lambda1*t)+exp(lambda2*t); elseif D==0 % repeated lambda=-p/2; yc=exp(lambda*t)+40*t.*exp(lambda*t); else % complex beta=-p/2; alpha=sqrt(-D)/2; yc=exp(beta*t).*(cos(alpha*t)+sin(alpha*t)); end subplot(3,1,1),plot(t,yc,'LineWidth',2) params=[' p=',num2str(p),', q=',num2str(q)]; title(['Homogeneous solution',params],'FontSize',20) pause if p==0 & q==omega^2 yp=t.*sin(omega*t)/(2*omega); else A=1/sqrt((q-omega^2)^2+omega^2*p^2); theta=atan(-omega*p/(q-omega^2)); yp=A*cos(omega*t+theta); end subplot(3,1,2),plot(t,yp,'LineWidth',2) params=[' p=',num2str(p),', q=',num2str(q),', omega=',num2str(omega)]; title(['Particular solution',params],'FontSize',20) pause subplot(3,1,3), plot(t,yc+yp,'LineWidth',2) params=[' p=',num2str(p),', q=',num2str(q),', omega=',num2str(omega)]; title(['Solution',params],'FontSize',20)