Maths 260 Lecture 7

Topic for today
Existence and uniqueness of solutions

Reading for this lecture
BDH Section 1.5

Suggested Exercises
BDH Section 1.5: 1, 3,5, 7, 15

Reading for next lecture
BDH Section 1.6, pp 74-80

Today’s handout
Lecture 7 notes




§1.5 Existence and Uniqueness of solutions

In the theory and examples we have
studied already we have been making two
major assumptions: that the DEs we study
really have solutions and that such
solutions are unique.

On the whole we are safe in making these
assumptions. Today we shall see why.



Existence Theorem

Consider an initial value problem

dy

;ﬁzf@w,yMﬂ=m-

If f(t,y) is a continuous function of ¢ and
of y at (¢,y) = (¢9, yp), then there is a
constant € > 0, and a function y(¢) defined
for t) @< t < tg+ € such that y(t) solves

Note: The theorem guarantees a solution
exists for a small interval in ¢, but says
nothing about existence for all ¢.
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values of ¢ does the solution exist?

1+y2
The slope field for the DE is:

dt
Does the IVP have

Fxample: Consider the IVP
dy
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Here f(t,y) = 1 + y? is a continuous
Tunction of ¢ and of y for all ¢, v, so the
FExistence Theorem ensures a solution to
the IVP exists for —e < ¢ < €, for some e.

In fact, y(t) = tan(t) is a solution to IVP
and is defined for —5 <t <% but not
for all t.
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Uniqueness Theorem

Consider an initial value problem

d
5 = ty), ylto) =w.

If f(¢,y) and %5 are continuous functions

of ¢ and of y at (¢,y) = (g, yp), then there
1s an € > 0 and a function y(¢) defined for

tp — € <1 <ty esuch that y(t) is the
unique solution to the IVP on this interval.

Note: The Uniqueness Theorem implies
that different solutions can never cross or

meet in (¢, ) plane.
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kixamples where the Existence and Uniqueness
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What is the qualitative behaviour of

solutions to the IVP?

)
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dx/dt = x (x — 4) (2 + (cos(x
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For the IVP 2 Fld,y)

dy 4

—o=esin(y), y(0) =5

use the function dfield from Matlab and
Fuler’s method with various step sizes
to determine the behaviour of the
solution to the DE.
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dx/dt = exp(t) sin(x)
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3. Given the IVP

dy
o=t y(to) = yo

U=

(a) Find a value of ¢y and a value of ¥y so
that the IVP has a unique solution.
Give a reason for your answer.

(b) Find a value of ¢y and a value of vy so
that the IVP has more than one
solution. For your choice of ty and vy
write down two functions that satisfy

the DE.
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Important ideas from today

Consider an initial value problem

dy

2= flt,y), ylty) = .

o= ftw), ylto) =wo

If f is ‘nice’, a solution to the IVP exists,
at least for ¢ near ¢.

Also, if f and 5z are ‘nice’, the solution to
the IVP is unique. This 1mphes that
solution curves won’t cross or touch in

(t,y) space.
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Maths 260 Lecture 8

Topic for today
The phase line

Reading for this lecture
BDH Section 1.6, pp 76-85

Suggested Exercises
BDH Section 1.6: 23, 25, 27, 29

Reading for next lecture
BDH Section 1.6, pp 81-88

Today’s handout
Lecture 8 notes




R
31.6 The Phase line doe) " \ve €
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d o ¥
Consider the DE d—i = f(y). (¢ ‘*“o ‘}‘tof‘(’
Recall that the slope field corresponding to

an autonomous differential equation has a
special form - slope marks are parallel
along horizontal lines.
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There is clearly some redundancy in slope
field information. We can replace the slope
field by a phase line, which summarises the
Information in the slope field.
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dy

To draw a phase line for = f(y)

L.
2.

Draw y-line.

Find equilibrium solutions of the DE
and mark them on the line.

. Find intervals of y for which f(y) > 0

(solutions started at such y values will
increase as t increases). Draw upward
pointing arrows on the line in these
intervals.

. Find intervals of y for which f(y) < 0

(solutions started at such y values will
decrease as t increases). Draw
downward pointing arrows on the line in
these intervals.



FExamples

d
1. For the DE zg (y+2)(1—y) = fcy)

sketch the phase line. Describe the
longterm behaviour of solutions.
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d
2. For the DE ZZ% = yQ(y + 1) sketch the

phase line. Describe the longterm
behaviour of solutions.
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d
3. For the DE -d—‘?tJ = f(y) where f(y)
has the graph shown below, sketch the
phase line and describe the longterm

behaviour of solutions.
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It is possible to sketch solutions to a DE
just from the phase line.
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Longterm behaviour of solutions

In cases where the Uniqueness Theorem
applies, a solution that tends to an
equilibrium point does not reach the
equilibrium point in finite time. We write

y(t) — yo as t — oo (or ast — —o0).

In contrast, a solution that tends to +o0 or
—0o0 may reach oo in finite time or may
never reach £o00. We cannot tell which
case we have from the phase line alone.

Example:

dy - _
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These examples show that we cannot write
y(t) — oo as t — oo (or as t — —o0)

based on evidence from the phase line
alone - we would need more information
about the actual solutions before making
such a statement.

Instead, based on phase lines, we make
statements like

y(t) — oo as t increases

or
y(t) — oo as t decreases.
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Main idea for today
For an autonomous differential equation

dy
a—t‘—f(?ﬂ

1t can be useful to sketch the phase line.

The phase line contains information about
equilibrium solutions and whether other
solutions are increasing or decreasing, but
information about the speed with which
solutions are changing is lost.
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Maths 260 Lecture 9
Topics for today
Classification of equilibria
Linearization

Reading for this lecture
BDH Section 1.6, pp 86-91

Suggested Exercises
BDH Section 1.6: 1, 3, 5, 7, 13, 15, 17

Reading for next lecture
BDH Section 1.7

Today’s handouts
Lecture 9 notes

Tutorial 3 question sheet
Assignment 2




Classifying Equilibria
To draw the phase line for a DE

dy

ar S(y)

we need to know the positions of all equilibria,
the intervals of y where f(y) > 0 and the

intervals of y where f(y) < 0.

It f is continuous, the sign of f can only
change at y values where f(y) = 0, i.e., at
equilibria.

Thus, the positions of the equilibria and the
behaviour of solutions near each equilibrium is
all we need to draw the phase line.



Fxample
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We classify equilibria according to the at

behaviour of nearby solutions.

=0

1. An equilibrium y = a is a sink if any
solution with initial condition sufficiently
close to a tends to a as t increases.

2. An equilibrium y = b is a source if any
solution with initial condition sufficiently
close to b tends away from b as ¢ increases
(which means nearby solutions diverge from
b as t increases.)
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3. An equilibrium that is neither a sink nor a
source 18 called a node.
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Example 1.
dy _
3 = 4
{u) .




Example 2.
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Example 3.
Yt
at VY

where f(y) has graph shown.
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Linearization

If yg is an equilibrium solution of %% = f(y)
and is a sink, then the phase line near gy looks
like

which means

o fly) > 0ify <yp

So f(y) is a decreasing function near yy.



If yp is an equilibrium solution of %% = f(y)

and 1s a source, then the phase line near
looks like

which means

e f(y) <0if y <y

So f(y) is a increasing function near yq.
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These examples motivate the following
theorem:

Linearization Theorem

Suppose that y = yg is an equilibrium point of

the DE p
y_
=W
where f(y) and 0f /0y are both continuous.

1. If f/(yg) < 0, then g is a sink.

2.1f f(yo) > 0, then vy is a source.

3If f(yy) =0, orif f/(yg) does not exist,
then we need additional information to
determine the type of yy.

Note: In the last case, the equilibrium may
be a node or a sink or a source.
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Example 1:

For the DE
dy 9
— — 2 2
=yl =2y +2)
find all equilibrium solutions and classify them

using the linearization theorem.
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Eixample 2:
Consider the following population model:

dP P)Y(P
— =0.3P |1 — — 1| =+
i =31~ ) (55~ 1] = 7

Classify the equilibria, draw the phase line and
sketch some solutions for P.

eq. 9t. P = 0, 200 ,5°
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Important ideas from today

Fquilibria are classified as sink, source or node
depending on the behaviour of nearby
solutions.

Linearization - we can sometimes use df /dy to
classify equilibria.
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