Maths 260 Lecture 25

Topic for today
Non-linear systems: linearisation near
equilibria

Reading for this lecture
BDH Section 5.1

Suggested exercises
BDH Section 5.1; 1, 3, 7, 9, 11

Reading for next lecture
BDH Section 5.2

Today’s handout
Lecture 24 notes




2.10 Nonlinear Systems

Consider the system
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We can understand the saddle-like nature of
(0, 0) if we approximate the nonlinear system
by a linear system.
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For z,y very close to zero, x° is much smaller

than = or .

So we can ignore 2° term in the nonlinear
system, and approximate the behaviour of the
nonlinear system near (0, 0) with the linear
system
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The eigenvalues of matrix A are 0.78 and
—1.28 so the equilibrium at the origin of linear
system 1is a saddle.

The following pictures show the slope field and
solutions for the linear system and for the
nonlinear system near the origin. Note that
the linear system is a good approximation near
the origin but is hopeless away from the origin.

Slope field and solutions for linear
system
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Slope field and solutions for nonlinear

system
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This procedure is called linearisation:

Near an equilibrium, approximate the
nonlinear system by an appropriate linear
system.

For initial conditions near the equilibrium,
solutions of the nonlinear system stay close to
solutions of the approximate linear system, at
least for some interval of time.

Thus, the type of equilibrium at the origin in
linearised system gives information about the
type of the corresponding equilibrium in the
nonlinear system:.



Returning to original example, consider
equilibria at (1,0) and (-1, 0).

To approximate behaviour near (1,0) by a
linear system, we need to first shift the
equilibrium to the origin — because linear
systems usually only have an equilibrium at
the origin.



Change the coordinates as follows:
u=x—1
vV =1
so the equilibrium (z,y) = (1,0) is now at
(u,v) = (0,0).

Then the system becomes:

du _  dx _

dt — dt

dv __ dy

dt — = - x’—=Y =
at l\j

= =2u - dur - -3';_\/

For v and v small, —3u? and —u3 are very,

very small. Ignore these nonlinear terms and
approximate system by:
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Eigenvalues are —211 + 3};\/312'. So origin is a
spiral sink in the linear approximation.
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T'he following pictures illustrate the similarit

between the phase portrait near the

equilibrium at (1,0) in the nonlinear system
and the phase portrait for the linearised

system.
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Phase portrait near (1,0) in nonlinear

system
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Similar calculations give similar results for the

0).
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More generally, if the system

& = )
W = g(z,y)

has an equilibrium at (z, Y0), We can
construct a linear approximation to the system
for  and y values near (g, o) as follows:

First move the equilibrium to the origin.
Write © = x — zg, v = Y — 0.

The nonlinear equations in the new
coordinates are:

it =G = f@,y) = fzo+u,yo+v)

dt = %% = 9(z,y) = g(zo + u,yg + v)
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Now we use Taylor expansion to rewrite f and

g: (enstamt
6f //
[z +u,y0 +v) = flag, yg) + [5;(330, Yo)| u
+ [%(a:o, Yo)| v + h.o.t
r[)g 1
g(xo +u,yo +v) = g(zg, yo) + bﬁ; 0, Y0 J
+ g—g(xo,yo) v+ h.o.t

If we ignore the higher order terms and note

that f(zg,y0) = 9(xg, yp) = 0, then we get an
approximate linear system:
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du)  (Gh(x0,90) GL(x0,50) ) [
— (1)

d
@) | 5o, wo) 52w, y0) | | v

1.e., the behaviour of solutions to the nonlinear
system near the equilibrium (g, y9) can be
approximated by the behaviour of solutions in
the linearised system (1).

The matrix of partial derivatives in (1) is
called the Jacobian matrix.
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Example: Consider the system

%@—7 =2(l+2%) = 7CW&/7)

W=3yl-y—az) =9 0y)

Find the equilibria and determine their types.
,,C(RM) - o =) XL =o
/ /-
g (r9) =0 => 73 C“‘J) =0

0. 70.:7‘) ore
7= /4
o
DX
j/(()lo) - ( o
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The phase portrait for this system, drawn with

pplane, is given below. Note the source at

(0,0) and the saddle at (0,1) as predicted by

our calculations.

x(1+x2)
3y(l-x-~y)

dx/dt
dy/dt
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Maths 260 Lectﬂre 26

Topics for today
More on linearisation in nonlinear systems
Nullclines

Reading for this lecture
BDH Sections 5.1, 5.2
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Suggested exerc

BDH Section 5.2; 1, 5, 7. 9, 11

Reading for next lecture
BDH Section 5.2

Today’s handouts
Lecture 25 notes
Tutorial 8 questions




Classification of equilibria in
nonlinear systems

Consider a nonlinear system with an

equilibrium solution. /\)

1. The equilibrium is a sink if all solutions /
that start close to the equilibrium stay close j
to the equilibrium for all time and tend to
the equilibrium as ¢ increases. / ' MW\

2. The equilibrium is a source if all solutlons &u/ &
that start close to the equilibrium move ,\@
away from the equilibrium as ¢ increases.

3. The equilibrium is a saddle if there are
curves of solutions that tend towards the
equilibrium as ¢ increases and curves of |
solutions that tend towards the equilibriumn
solution as t decreases. All other solutions |
started near the equilibrium move away
from the equilibrium as t increases and
decreases.




To determine the type of an equilibrium in a
nonlinear system, can sometimes use
linearisation, i.e., use a linear system to
approximate the behaviour of solutions near an
equilibrium in a nonlinear system.

For most systems, knowledge of behaviour of
solutions in the linearised system is sufficient

to determine the behaviour n

e
corresponding equilibrium in the nonlinear
system.
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In particular, for the system ( ,(>

dY 7[ (% 9/ )
7( (Y) = jm )
with an equilibrlum Y (¢ ) Y, construct the
linearised system

W\
YV: (2(6/ 30>
%:*KYO)Y ( )

where J(Y) is the Jacobian matrix of partial
derivatives evaluated at Y.

If in the linearised system the equilibrium at
the origin is a sink, source, or saddle, then

Y = Yy is a sink, source, or saddle
(respectively) in the nonlinear system.



Sink: the real parts of all eigenvalues are
negative.

Source: the real parts of all eigenvalues are
positive.

Saddle: some real parts are positive, others

negative.
Spiral: some eigenvalues are complex with

non-zero real part.
Center: the eigenvalues are purely imaginary.

Note 1: A spiral is always also a saddle,
source or sink.

Note 2: linearisation does not tell us
anything about the behaviour of solutions to a
nonlinear system far from an equilibrium.



Unfortunately, linearisation does not always
work.

In particular, if the Jacobian matrix has a
zero eigenvalue or a purely imaginary
eigenvalue, then we cannot predict the
behaviour in the nonlinear system based on
linearisation alone.

Example:
dCE’ 3 _ <,
a " 7
@y _ _ 2 =
o y+y 9

Equilibria: —~5¢® = o 3 (9,0) , (o,1)
-34,5 =

3xt e
Jacobian: 3’ ( o / )
| (O _)+Zj
a)c Dj



so at (0,0) the Jacobian is:
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At (0,1) Jacobian is:
Sy = (© ©
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However, phase portrait for the nonlinear
system 1is

dx/dt = - x°
dy/dt=-y+ y2

Notice that in this phase portrait, (0,0) looks
like a sink and (0, 1) looks like a saddle. These
results were not predicted by the
corresponding linearised systems.

Linearisation does not work in these cases
because of the zero eigenvalues of the
Jacobians.



Sketching phase portraits for
nonlinear systems

We would like to be able to sketch the
complete phase portrait for a nonlinear system.

Linearisation gives us good information about
the behaviour of solutions near most equilibria.
Can use numerics to fill in the gaps — but it
would be helpful to know in advance which
regions of the phase space to look at
numerically.

In order to do this we can use nullclines.
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Definition: Nullclines

Consider a system

dx
gg = f(xa?ﬁ
y

For this system, the z-nullcline is the set of
points (x,y) where f(z,y) = 0.

The y-nullcline is the set of points (z, y)
where g(z,y) = 0.

On the x-nullcline, %’% = 0 and the vector field
1s vertical, pointing straight up or straight
down.

On the y-nullcline, %% = 0 and the vector field
I1s horizontal, pointing either left or right.

At the intersections of the z- and y-nullclines,

f(z,y) =g(z,y) =0, ie., a point of
intersection between an xz-nullcline and a
y-nullcline is an equilibrium.
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Example:

Use nullclines to sketch the phase portrait for
the system




Nullclines d1V1de the phase plane into regions

where ‘éf and have constant sign.

In example above:
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Combining information about z- and
y-nullclines for this example, we get

CQTU-JI))K;(AM ?d,’,ﬁq ‘JL,\ X ey ol

Cra 5‘5}
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Now the phase plane is divided into four
regions:
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We use the known direction of solution CUIVes
In each region to determine the direction of
solutions on the nullclines.
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Now we can see that:

1. Once solutions get into region B they
cannot get out again. Solutions move down
and right until they get to lower right
corner (i.e., equilibrium at (1, 1)).

2. Similarly, once solutions get into region D
they cannot get out again. Solutions move
up and left until they get to upper left
corner (i.e., equilibrium at (1,1)).

3. Solutions starting in region A or C must
either leave the region by entering B or D
(and then tend to (1,1)) or must tend
directly to (1, 1).
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Hence, the phase portrait for the system must
be, approximately:

This picture suggests that (1, 1) is a sink, (0, 0)
is a source, (2,0) and (0,3/2) are saddles.
Linearisation confirms that this is so.
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The approximate phase portrait obtained

using nullclines looks very like the phase

portrait obtained with pplane.

4
/
/

A AN

/avd

/7
awas

/7
/7
/7
/7

/
/
~

/
/7

/4

17
ARV a4

X(2-x-Yy)
y@-2y-x

dx/dt
dy/dt

19




