Maths 260 Lecture 16

Topics for today
Solutions to some special systems
Linear systems - some properties

Reading for this lecture
BDH Section 2.3, pp 175-178 (1st ed)
185-188 (2nd ed); Section 3.1

Suggested exercises
BDH Section 2.3: 5, 7, 9;
Section 3.1, 5, 7, 9, 24, 27, 29

Reading for next lecture
BDH Section 3.1 (again)

Today’s handouts
Lecture 16 notes
Tutorial 5




Section 2.4 Analytic methods for some special
systems

Some very special systems of DEs decouple,

1.e., the rate of change of one or more of the
dependent variables depends only on its own
value.

Example 1

Example 2

y =2 —y

Sometimes can find analytic solutions to
systems that decouple.



Example 1 again: Wish to find and plot
solutions to:

T =,

y = —2y
Can solve each equation separately. Find
that (z(t),y(t)) = (c1e’, coe ) is a
solution for all choices of ¢; and co.

The values of ¢; and ¢y are determined by
the initial conditions: ¢; = x(0) and
co = y(0).

Plotting solutions: e.g., z(0) =1, y(0) = 1,




Plotting in phase space: “ |
— Sep f;[@mwg ,



Plotting some other solutions
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dx/dt
dy/dt

Compare phase plane plot above with
numerical solutions from Matlab:
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Example 2 again: Wish to find and plot
solutions to:

T = x,
y=2z—y
Solve first equation to get = cjel. Then

substitute this expression for z into second
equation to get

y =2’ —y
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So (z(t),y(t)) = (c1et, c1el +coe V) is a
solution for all choices of ¢; and co.

Plotting solutions in phase space
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Compare phase plane plot above with

numerical solutions from Matlab: In both

X
2X-Y

dx/dt
dy/dt

system could be solved. Found
that some solutions gave straightline solution

)

examples

curves in phase portrait but (from Matlab)

most solution curves not straight lines.



Section 2.5 Linear Systems

Linear systems are an important class of
systems of DEs, partly because some
important models are linear but also because
we can use linear systems to help understand
nonlinear systems.

A linear system is a system of DEs where
the dependent variables only appear to the
first power.
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Mostly interested in systems that can be
written as
dY

= =AY

dt
()
T2

where Y is a vector:
\m )

and A is a matrix of constants:

(&11 a2 ... Gy \
a a oo @
A= | 02 a2 om

Y:

\aml amz azmm)
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Example

dx

—d—Z:Q:E—z
dy
—d—t:—x—z
dz
ZE:ZBHJ
Can write this system as
dY
—Elt—:AY
where
x 2 0 —1
Y=|y ]|, A= —-10-1
z I 10

A is called the coefficient matrix. The
number of dependent variables is called the
dimension of the system.

12



Some properties of linear systems
1. KEquilibrium solutions

Want to find equilibrium solutions of

dY
—— =AY
dt

1e., find Yg such that AYy = 0.

From linear algebra, know that if det(A)
# 0, then the only solution of AY g = 0 is
Y = 0 (called the trivial solution).

Thus, if det(A) # 0, then Y (¢) = 0 is the
only equilibrium solution to

dY
— =AY
dt
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2. Linearity Principle

If Y;(t) and Yo(t) are both solutions to

dY
— =AY
dt

then so is

k1Y 1(t) + k2Yo(t)
for any constants k1 and ko.
The function

k1Y1(t) + k2 Yo(t)

is called a linear combination of Y1 and Y.
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Example 2 again

T =z,
y=2r—-y

Found earlier that

vio-(4). vao- ()

are (straight line) solutions of this system
and that all solutions can be written as

Y (t) = c1e’ =Y + Y
B clet+026_t Rt SR et

i.e., as a linear combination of Y and Y».

Important ideas for today
Solutions for systems that decouple
Straight line solutions

Linear systems - linearity principle
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Maths 260 Lecture 18

Topic for today
Straight-line solutions

Reading for this lecture
BDH Section 3.2

Suggested exercises
BDH Section 3.2, 1, 5, 11, 13, 25

Reading for next lecture
BDH Section 3.3

Today’s handouts
Lecture 18 notes
Assignment 3




Section 2.6 Straight-Line Solutions

Given a system of DEs such as

Y

|

we want to find two linearly independent
solution vectors that could be used to

1 0
construct the general solution.

2

Y _Av, A
dt

=X
2x-y

Note straight-line solutions - these are linearly

Direction field and some solutions
independent solutions. Can we find them?

dx/dt
dy/dt

2



To find a straight-line solution, note that at a
point (x,y) on a straight-line solution, the
vector fleld at that point must point in the
same (or opposite) direction as the vector from
the origin to (z,y).

This means
Av =)v (1)
where v = (z,y) and )\ is a real number.

It A > 0, vector field points in same direction
as v, 1.e., away from the origin.

If A <0, vector field points in opposite
direction to v, i.e., towards the origin.

Equation (1) says that v is an eigenvector of
A with eigenvalue ).



Claim: to get a formula for the straight-line
solutions, write

Y(t) = eMv

where v is an eigenvector of A corresponding
to eigenvalue A.

Then Y (%) is a solution to
dY

— = AY.
dt

—-;> } 0 nt \/ - Q) . /AV\/

@/
0’ f@
> Av o= AV

Also, as t varies, e just increases or decreases

or remains constant (depending on A) and v is
constant so the solution curve for Y (¢) is a
straight line.



Summary
Can find a straight-line solution of the system

dY

— =AY

dt
by finding a real eigenvalue, X, of A with
corresponding eigenvector v; a straight-line

solution is then

Y(t) = eMv




Example
Find any straight-line solutions to the system

dY
T AY
dt

1 0
A=l

where

> A -]=o > A5 k}
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Note: In this example the two straight-line
solutions are linearly independent. This is as
expected because:

Result from linear algebra

Let A1 and Ay be two real and distinct
eigenvalues for the matrix A, with
corresponding eigenvectors v and vo. Then
v1 and vo are linearly independent.

Hence, the two straight-line solutions

Y1 (t) = eMtvy and Yo (t) = e*tvy are
linearly independent at ¢t = 0 and thus are
linearly independent solutions.



Grand summary
If A is an m X m matrix with real eigenvalues

Alyoees AL
and corresponding eigenvectors
Vi, .er, Vi,
then
Y = e)‘ltvl, ey Y = eAktvk
are straight-line solutions of the system

dY
— = AY.
dt

Furthermore, if all the \; are distinct and
k = m (i.e., there are m real and distinct

eigenvalues of A), then the set {Y71,..., Y} is
linearly independent and the general solution

to the system is



Examples

1. Find the general solution of the

system
ayY -3 —1
TJ?*AY’ A~[__2 __4).
Describe the longterm behaviour of
solutions.
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Direction field and some solutions

dx/dt=-3x-y
dy/dt=-2x-4y
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2. Find the general solution of the

system
-2 3 0
a;—Y =AY, A=|3 -2 0
' 0 1 -1
Describe the longterm behaviour of
solutions.

¢ fenrabe /  eijen vocts
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Maths 260 Lecture 17

Topics for today
Linear independence of vectors and solutions
The general solution

Reading for this lecture
BDH Section 3.1

Suggested exercises
BDH Section 3.1, 31, 33, 34, 35

Reading for next lecture
BDH Section 3.2

Today’s handouts
Lecture 17 notes




Section 2.5 Linear Systems
(continued)

Linear Independence of Vectors

Two vectors in the plane are linearly
independent if neither vector is a multiple
of the other, i.e., if they do not both lie on
the same line through the origin.

e.g. v1 = (1,1), vg = (2, —1) are linearly

independent.

Uy 5 VY

S

e.g. v1 = (1,1) and v3 = (=2, —2) are
linearly dependent.



Important result: If two vectors (1, y;)

and (z9, y9) are linearly independent vectors
in the plane, then for any other vector

(20, yo) there exists k1, ko such that

() (5)= (30)




Important consequence of this
result:

Consider the DE

dY
=AY
dt

where A 1s a 2 X 2 matrix.

If Y;(t) and Yq(t) are solutions to the
system with Y1(0) and Yo(0) being linearly
independent vectors, then for any initial
condition

Y (0) = (0, 40)
we can find constants k1 and k9 so that
k1Y1(t) + k9Y1(t) is the solution to IVP

dY ,ijO
— =AY, Y(0)=

i.e., every solution can be expressed as a
linear combination of Y (¢) and Ys(t).



Note: If Y{(¢) and Yq(¢) are solutions
with Y1(0) and Y5(0) linearly independent,
then Y1(¢) and Yo(t) are linearly
independent vectors for all ¢.

In this case we say that Y1(¢) and Yy(¢) are
linearly independent solutions.




Summary: For the system

T = ax + by
y = cr + dy

if we can find two linearly independent
solutions we can write down the general
solution and hence solve any IVP arising
from this DE.



These results can be generalised to higher
dimensions: A set of vectors
{Vv1,V2,...,vm} is linearly dependent
if there are constants ¢y, co, ..., ¢y, (not all
zero) such that

ClIVi+cva+- - +cpmvm=0 (1)

If all the ¢; are zero whenever equation (1) is
satisfied, the set of vectors is linearly
independent.




Checking linear independence of
solution
vectors in higher dimensions

(This method works in two dimensions also,
but the earlier method is quicker in this

case. )

If Y1(t), Yo(t), ..., Ym(t) are solutions for

the system

dY
— =AY
dt

where A is an m x m matrix, then the set
of solution vectors {Y1, ..., Ym} is linearly
independent if and only if

W(Y1,...,Yp)(t) =det (Y1 ... Yy) #0
for all ¢.



Example: The vectors

—4 2 2 + 3
-5 |, 0 | e, —-% et
2 —1 —t—1
are all solution vectors to some system
dY
= AY.
dt
Are they linearly independent” .
et ép// \w’? \!




Notes:

1. This test (the Wronskian test) does not
work if the vectors are not all solution
vectors for the same system.

2. It turns out that the Wronskian is either
identically zero (i.e., W (t) = 0 for all ¢)
or W(t) # 0 for any t. Therefore, only
need to calculate the Wronskian at one
value of ¢, say t = 0.

3. We need m solution vectors to do the test.



Main result: If Yi(t), Ya(t),-- Y (t),
are linearly independent solution vectors to

the system

dY
22 _AY
dt

where A is an m X m matrix, then the
general solution to the system 1s

Y (t) = c1Y1(t) + CQY2<t> et cmYm(t)

where ¢, €9,..., Cm ar€ arbitrary constants.
That is, every solution to the system can be
written in this form by appropriate choice of

Cl, 627...7 Cm.
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Example: Show that the vectors
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