Maths 260 Lecture 19

Topic for today
Classification of equilibria in linear systems
with real eigenvalues

Reading for this lecture
BDH Section 3.3

Suggested exercises
BDH Section 3.3, 1, 5, 9, 11, 19

Reading for next lecture
The handout on complex numbers

Today’s handouts
Lecture 19 notes,
The handout on complex numbers




Section 2.7 Classification of equilibria
in linear systems with real eigenvalues

This lecture looks at systems of the form

dY
—— =AY
dt ’

where A is a matrix with real eigenvalues only.

All such systems have an equilibrium at the
origin: we are interested in the behaviour of
solutions near the origin, especially when
viewed in phase space.




Example Determine the behaviour of
solutions to the system

Y (2 ¢
71?:[1—3JY'

Figenvalues of coefficient matrix are A = 3, —4
with eigenvectors

respectively.

The general solution is:

at |
— /

Straight-line solutions are:
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1o see behaviour of solutions that are not
straight-line solutions, i.e., solutions with
c1 # 0 and ¢y # 0, note that as t — oo

Y(t) = c1et [?) — 626_4t[ 11] — cre’t [613)

1.e., as t — 00, these solutions behave like the
straight-line solution

clegt[fj.

Similarly, as ¢ — —oo0, these solutions behave
like the straight-line solution

1
e[ 1),




This example illustrates typical behaviour of
solutions to a planar linear system with one
positive real eigenvalue and one negative real
eigenvalue.

A characteristic feature of phase portrait is the
presence of two special lines:

e On one line, solutions tend to origin as
t — 00;

o On other line, solutions tend to origin as
t — —00.

e All other solutions tend to oo as t — +o00o.

T'he equilibrium point at the origin in this type
of system is called a saddle.



Example Determine the behaviour of
solutions to the system

dY —4 —2

dt ( ~1 -3) ¥
Eigenvalues of coefficient matrix are
A = =5, —2 with eigenvectors

2 1
HES &Y
The general solution is:

(= e ve 1)

respectively.

Straight-line solutions are:

. I
"




ot 2t

Ast —o00,e " = 0and e “* — 0, so all
solutions tend to the origin as t — oo.

This is a general result: if all eigenvalues of
matrix A are real and negative, then all
solutions to the system

dY
= — AY
dt

tend to the origin as t — oo.




Direction field and some solutions:

dx/di=~-4x-2y
dy/dt=-x~-3y
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This picture suggests that most solutions are
tangent to the straight line solution

o 1
~1

as t — —oo. We can prove this:

€

Slope of solution curves is

dy dy/dt

dr  dx/dt






so, if co # 0,
. dy
i ['gg) =L

Thus as ¢ — oo, all solutions tend to the
origin and almost all are tangent to the
straight-line solution

(1)
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In general, in a linear system with 2 real
negative eigenvalues, A\; < Ay < 0, all solutions
tend to the origin as t — oo.

Fixcept for those solutions starting on the line
of eigenvectors corresponding to Aq, all
solutions are tangent at (0,0) to the line of
eigenvector corresponding to As.

The equilibrium point in this type of system is
called a sink.
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Example Determine the behaviour of
solutions to the system

dY (4 2]
i Y
dt (1 3 )

Figenvalues of coefficient matrix are )\ — 5,2
with eigenvectors

2 1
HEEY
The general solution is:

(= o (e + 6 l)e

respectively.

Straight-line solutions gEC:
| e
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As t — o0, all non-zero solutions move away
from the origin.

T'his is a general result: if all eigenvalues of A
are real and positive, all non-zero solutions to

the system

dY
— =AY
dt

tend away from the origin as ¢t — oo.
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Direction field and some solutions:

d¥/dt=4x+2y
dy/dt=x+3y
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This picture suggests that most solutions are
tangent to the straight line solution

ot [ 1
S

as t — co. We can prove this either
e by method used in last example, or

e by noting that this example corresponds to
reversing time in the last example. Hence,
phase portrait is the same as in last example
but with direction of arrows reversed.
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This is a general result. If A is a 2 x 2 matrix
with eigenvalues A; and A9, with 0 < Ay < A,
then except for those solutions starting on the
line of the eigenvectors corresponding to A1, all
solutions are tangent at (0,0) to the line of
eigenvectors corresponding to \o.

The equilibrium point in this case is called a
source.
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This classification of equilibria extends to
higher dimensions:

For the system

dY

— =AY

dt ’
Y = 0 is always an equilibrium. Assuming
that all eigenvalues of A are real and distinct,

then:

L. It all eigenvalues of A are positive, Y =0
1S a source.

2. 1f all eigenvalues of A are negative, Y =0
15 a sink.

3. If at least one eigenvalue of A is negative
and at least one eigenvalue is positive,

Y = 0 is a saddle.
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Maths 260 Lecture 20
Topic for today

Complex Numbers

Reading for this lecture

The handout on complex numbers.

Reading for next lecture

The handout on complex numbers
Today’s handouts

Lecture 20 notes




2.8.1 Complex Numbers

In order to apply analytic techniques to systems
of DEs, we need to know about complex num-
bers and their properties.

Example Consider the system
daY (1 -2
da  \2 1

Slope field and some solutions

Y.

dx/dt=x~-2y
dy/dt=2x+y
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There are no straight-line solutions! Let’s see if
we can find out why.
Calculate the eigenvalues:

0=det (1A —2 = )2 — 2\ +5.
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So the quadratic formula gives:

AN = +2 F f‘{—."'z"ﬁ
2

= |+ JIic

Notes: 2

e We need the square root of a negative num-
ber!

e ['he matrix doesn’t have any eigenvalues that
are real numbers. That’s why there are no
straight-line solutions to the system of DEs.

e However, we can still find eigenvalues that are
complex numbers.

o We can still calculate two eigenvalues pro-
vided we introduce a new number:

i =+/—1

A= e U F IS [ S R
= A

2
= |+ Zz ¢

Example Solve z° + 2z + 5 = 0. )

X = -Eij~g:'::{C

2 O\




Then solutions to above equation are:

We can use 7 to get solutions to any quadratic
equation

a,a:2+bx+c:0

where b2 — 4ac < 0.

X = _L 4 \_)bz—-élac

2. O

1‘4 )91— dac < O

= _
X= -b 4 Jiet |

2 A

2 O




In fact, one can prove: Fundamental Theo-
rem of Algebra:

An nth degree equation anx"+a, 1zl &
a1x + ag = 0 has n solutions.
This means that the polynomial can be factorised:
ant" + ay 12"+ L+ agr + ag

= an(z — z1)(x — x9)(z — 23) ... (z — zp)
where z1, x9, ..., z, are the roots of the equa-

tion. Note that some of these z; may be re-
peated.

Definition A complex number is a number of
the form

z=a-+1b

where a and b are real and 2 = —1

Can think of a complex number as a pair of real
numbers.

Geometric Interpretation - the Argand Dia-
gram.



Direction field and some solutions

dx/dt=2x+6y
dy/dt=x-3y

Note that on solution curves for straight-line
solution

6

1]

the arrows point away from the origin,
indicating that Y{(t) — 0 as t — —cc.

Y (t) = 616375

Similarly, arrows on solution curves for
straight-line solution

1
—1
point towards the origin, indicating that
Yo(t) — 0ast — oo.

Yo(t) = 626—4t




Definitions

e The complex conjugate of a complex num-
ber z =a + b is

Z=a—1b
e |he real part of z is Re z = a.
e The imaginary part of z is Im z = b.

Example: z =2 — 3;

7= 2 =+ 3¢
Rez= =X
Imz: -3 CV\O'é '-?E.\>

Algebra of Complex Numbers

Addition/Subtraction: collect real and imag-
mary terms.

Example: 24+4i)+(3—-2)= 5 1 2¢
Example:(—1 —4i) — (4+3i)= -5 — #¢

Multiplication: Multiply out brackets and
collect real and imaginary terms, remembering
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that 12 = —1.

Example: (2 +4¢)(3 —2i) =2.3 +2(-2¢)

| F4(.3 4—4-((-26)
1 A S = 6 -4c¢ +l2¢ +3
(=1 —44d)(4 + 3i) = = 4 .80
= B3 -1la¢
Division: Multiply top and bottom by complex
conjugate of denominator, then collect real and

Imaginary terms.

2+ 41 2+40 3+2¢
Example: = °
PP 3 a
—= (24—46)(3+2‘:) __:-24-“(.-
(3 —20) (3+2¢) 13
= -2 + 16 -
—1 — 44 3 T 3¢
Example: — =
44 37 .
' . 6 — 13 <
= =1 —4 4-3¢  _ ’

A +3C a-3¢ 25

Polar Form

Another way of describing a given complex num-
ber is to use polar co-ordinates: the distance of
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z from 0 and the angle it makes with the real
axis.

Note: a =rcosf, b =rsin6.

S0 2 =a+1b=r(cosf +isin ).

And so r = Va2 + b? (the modulus of z), de-
noted |z|, C He emjﬂ
and 0 = ta,n_l(b/a) the argument of z), de-

noted arg z.  \= ( bem (0re obant
j ﬁ?u adrant >
Example Convert z = 1 + ¢ into polar form.
Jr .
A Jo cos g + J2 Sialq C

{

f’?/M 7/( —A'/‘/’e C-= TC/‘{—

= Jz
Example Convert z = 3(cos 2 ST 4 isin 327T ) into

rectangular form. .. _ 3

R

Ccoy 3L =0
o 1)

. Sin 3 fy =



