Maths 260 Lecture 23

Topics for today
Linear systems with repeated eigenvalues
Linear systems with zero eigenvalues

Reading for this lecture
BDH Section 3.5

Suggested exercises
BDH Section 3.5; 1, 3, 5, 7, 11, 21

Reading for next lecture
BDH Section 3.7

Today’s handout
Lecture 21 notes
Assignment 4 question sheet




2.8 Special Cases of Linear Systems

Linear systems with repeated
eigenvalues

Example : Consider the system
dY (20
dt (02
(fully decoupled).

Figenvalues are 2 and 2.
Figenvectors:

g:l & . 2—~>r)u — 9



The general solution is:
= G (g) LG ( ‘,’)ez‘L

1.€., every non-zero solution is a straight-line
solution.
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Phase portrait

dx/dt =2 x
dy/di=2y
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This example illustrates a general case:

If matrix A has a repeated eigenvalue \ with
two linearly independent eigenvectors v1 and
Vo, then

Y1 = e)‘tvl
and
YQ = 6)\tV2
are linearly independent straight line solutions.

We can construct a general solution from a
linear combination of these two solutions as
usual.

Furthermore, if A is a 2 x 2 matrix, then every
solution except the equilibrium at the origin is
a straight-line solution.

If A > 0, then every non-zero solution tends to
o0 as t — 00 (so the origin is a source).

If A <0, then every solution tends to the
origin as t — oo (so the origin is a sink).
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What happens if we cannot find two linearly
independent eigenvectors?

Example Consider the system

aY -5 0
dt ( 8 —5] ¥
FEigenvalues are -5 and -5.

Figenvectors:

(——5'—*> @) >.:. — 5
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~-5x
8x-5y

Phase portrait and some solutions
dx/dt =
dy/dt =
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To find a second solution, we use the following
result.

Theorem: Consider the system

dY
“Z =AY
dt

where A has a repeated eigenvalue A with just
one linearly independent eigenvector. Pick an
eigenvector vy corresponding to \.

O)n
Then s ool
Y1 = 6>\tV1 - - \
15 a straight-line solution and S’f‘; (MT
Yo = 6)\t<tV1 + Vv9) « >

18 a second, linearly independent solution of
the system, where vy is a vector satisfying

(A — )\I)VQ =V g e“SDSO)/&
(v is called a generalised eigenvector).
((i 76/ Vi S .
( A- )Jl> Vi =0
—
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Can use this second solution Y9 to construct
the general solution for the previous example.

Example

Y (-5 0
dt | 8 =5

v

Found already that Y| = e~ (OJ IS a

solution.

Look for vy satisfying
(A — A)vs

/L}ﬁ = ~5- >‘ © )
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Direction field and some solutions

dx/dt = -5 x

dy/dt=8x-5y
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We see that all solutions are tangent at the
origin to the direction of the straight-line
solution.

This is always the case in a 2 x 2 system: when
there is a non-zero repeated elgenvalue with
only one corresponding linearly independent
eigenvector, all solution curves in the phase
plane are tangent to the straight-line solution.



Important note: There is some freedom
when choosing a generalised eigenvector.

For example, in previous example

-

18 a generalised eigenvector for any choice of y.

However, a multiple of a generalised
eigenvector is not usually a generalised
elgenvector.

For example, in previous example

)

Is not a generalised eigenvector for any choice
of k except k = 1.

Different choices of the generalised eigenvector
all lead to the same general solution.
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Example : Sketch the phase portrait for the

system
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Direction field and some solutions

axfdt=2x -y
dy/dt = x

W\ O\
VLD
VLA
Vg
Ay
/I
~

&

~

NN~
NN N
N
AN

N\

LR

0.8F . T L

1

o

e}
\\\\\

_1_5_,..:1 .............. \ ........ ............... .................... _

ISR
VY
VA

\ :

4
{7/
|
I
\
\
Luvan

!
N

]
A
3]

'
—

1
oL
3]
o
=]
o
-
-
3]

12




Linear systems with zero eigenvalues

Example : Consider the system
ay (1 =2
dt | -2 4

Eigenvalues are 5 and 0 with elgenvectors

( : ] and [ 2) respectively.

¥

—2 1

SO

Y :e5t[_12J

-l

are linearly independent solutions, and the
general solution is

Y(t):cle5t( J+CQ[ w

/

/,',\ e 1/

and

ONS 'tl&\ 7'1
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If c1 =0, then

Y(t) = ¢ (fj

which is constant, so this is an equilibrium
solution for all choices of ¢o.

This is a general result: all points on a line of
eigenvectors corresponding to a zero eigenvalue
are equilibrium solutions.

If ¢1 # 0 then first term in general solution
tends to zero as t — —oo0, i.e., solution tends
to the equilibrium
. 2
211

along a line parallel to
1
—2

as t — —oo.
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Hence, phase portrait is qualitatively:

2

From pplane, get a “set of phase lines”:

X-2y
-2X+4y

Get similar behaviour in other linear systems

dx/dt
dy/dt

but details of the

general solution and the phase portrait may
vary depending on the specific example.

)

with a zero eigenvalue
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Example : Sketch the phase portrait for the

system
aY (01
dt (04
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Maths 260 Lecture 24

Topics for today
Bifurcations in linear systems

Reading for this lecture
BDH Section 3.7

Suggested exercises
BDH Section 3.7; 2(b,c), 6(b,c)

Reading for next lecture
BDH Section 5.1

Today’s handouts
Lecture 23 notes




2.9 Putting it all together -
bifurcations in linear systems

Bifurcation: sudden qualitative change in the
dynamics.

In our examples today, the following results
will be useful:

For any matrix A,

J

det(A) = product of eigenvalues

SRR

and

trace(A) = sum of eigenvalues. = D, + A,
b
tr( @ d) = a+d
If Ais a2 X 2 matrix, the signs of det(A) and

trace(A) tell us a lot about the type of the
equilibrium at the origin for the system

dY
— =AY
dt

For example, if A is a 2 x 2 matrix with
det(A) < 0, then the origin is a saddle.
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Example : Consider the one-parameter
family of linear systems

daY (12
dt a0
where a is a parameter.
Determine the type of equilibrium at the origin

for all values of a. Sketch the phase portrait
for representative values of a.
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Eigenvalues of matrix

(13

I 1
} - §i§\/1+8&

so the type of equilibrium at the origin
depends on a.

are

Also,
det(A) = —2a

and
trace(A) = 1.

2.
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We find the following qualitatively distinct
cases, depending on a.

1. If 1+ 8a < 0, eigenvalues of A are complex,

say o £ 10.
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—_ |
a > =
2) 8

2.1t 1+ 8a > 0, eigenvalues of A are real.
Subcases:

(a) If @ > 0, det(A) < 0 so there is one
positive eigenvalue and one negative
cigenvalue. = 5420k peint

(0{{% (&) = -2a>
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(b) If —% <a<0,det(A) > 0, so
eigenvalues are of the same sign (and
real). But trace(A) > 0 so both
eigenvalues are positive. = Jowrce

a = ~"lg e _ >\(
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3. Transitional Aalues of a L Swmc )
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In this case, eigenvalues of A are ~21—
(twice) with just one linearly
independent eigenvector
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0 0

In this case, eigenvalues of A are 0 and 1
with eigenvectors

-l

U - 2 1) _ v,
—1/7 10
respectively.
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Representative phase portraits from pplane are
given below.
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Example : Consider the one-parameter

family of linear systems ~ , A
dY 0 —1
dt ( l a J Y

where a is a parameter.

Determine the type of equilibrium at the origin
for all values of a. Sketch the phase portrait
for representative values of a.

e\‘jcm/aiuq = A= a = ja\z““r*
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From these two examples we see how the
transitional cases arise as a parameter is varied:

1. a centre occurs as a spiral sink changes to a
spiral source, or vice versa;

2. an improper node (i.e., two equal
eigenvalues with only one linearly
independent eigenvector) occurs when a
spiral sink (or source) turns into a real sink
(or source), or vice versa;

3. a linear system with a zero eigenvalue
occurs when a saddle turns into a sink or
source, or vice versa.
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