Maths 260 Lecture 13

Topic for today
Introduction to systems of differential
equations

Reading for this lecture
BDH Section 2.1

Suggested exercises
BDH Section 2.1: 1-4, 9. 10

Reading for next lecture
BDH Section 2.2

Today’s handouts
Lecture 13 notes




Chapter 2: Systems of First Order DEs
Section 2.1 Introduction: DEs that
contain more than one dependent variable

are known as systems of DEs.

Examples:

1.
dx

dt
dy
dt

= —2x + 3y

@:_
dt
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dz_ 8+
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= 10(y — @)

dr _
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—&% =z — 1% —y+ pcos(t)
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The purpose of today’s lecture is to
introduce some important ideas for the
study of systems of DEs, but with formal
definitions and other details mostly left to
later lectures.

Mostly interested in systems of first order
DEs. Write these in standard form:

dxq

— = L, X1,29,...,%
ddt fl( 1y 42 n)
)

— = 1, 21,Z9,...,%
At f2< 1y L2 n)
dxn:

— = 1, 21,Z9,...,T
- fn(t, 21, 29 n)

The notation

dx1 : dxg :

— =T, — =2

da Vg T2

1s often used.




Solutions to systems of DEs

A solution to a system of n first order
equations is a set of n functions that satisty

the differential equations.

Example: Determine which of the
following pairs of functions is a solution to

the system
dx
— = —2x+3
Yy
— = —2y.
dt Y

1. z(t) = —3te 2, y(t) = —e~ 2
2. z(t) = 3e~%, y(t)=0;
3. 2(t) =3e 2 te ™2 y(t) = —e 2.



Example: Model of two populations
(predator /prey)
Let R(t) = #prey (“Rabbits”) in 1000’s
Let F'(t) = #predators (“Foxes”) in 1000’s.
A possible model of change in the two
populations is given by
R =04R —0.1RF, (1)
[ = —0.5F +0.1RF (2)

with R > 0, F' > 0.




Physical significance of terms on
RHS

e The term 0.4R in (1) gives unlimited
growth of prey if no predators exist.

e The term —0.5F in (2) gives exponential
decay in predator population if no prey
exist.

e The term —0.1RF in (1) models the
negative effect on prey population of
‘interactions’ between prey and predators
(i.e., predators eat prey and prey
population decreases).

e The term 0.1RF in (2) models the
positive effect on predator population of
interactions between prey and predators
(i.e., predators eat prey and predator
population increases).

(...as long as prey have plenty to eat
themselves!)



Solutions to the predator/prey
system

Some special cases:

1. The pair of constant functions R(¢) = 0,
F(t) = 0 is an equilibrium solution.

2. Rewriting system as:

R = R(0.4—0.1F),

I = F(0.1IR—0.5),
we see that (R(t), F(t)) = (5,4) is an
equilibrium solution.

Physically, this tells us that a prey
population of 5000 and a predator
population of 4000 is perfectly balanced;
neither population increases or decreases

over time.




3. If F(t) =0, then F' = 0 for all time,
regardless of behaviour of x.

However, if F' = 0, then R =0.4R so

R(t) = Rpe* is a solution, i.e., if there are
no predators, the prey population grows
exponentially.

4. Similarly, if R(¢t) = 0, then R = 0 for all
time, regardless of behaviour of I

However, if R = 0, then F' = —0.5F so
F(t) = Fpe "% is a solution, i.e. if there
are no prey, the predator population
decreases exponentially.

Apart from special cases, don’t (yet) have
analytic or qualitative methods to
investigate solutions to this DE. Continue to
study this system using numerical methods
(software on book CD). Details of numerical
methods for systems are in a later lecture.



Representing solutions graphically
Can plot graphs of R and F' as functions of
L.

From the program on the book CD we see:
(i) If R(0) =5, F(0) = 4, get equilibrium
solutions as expected.

(ii) If R(0) =0, F(0) > 0, or R(0) > 0,
F'(0) = 0, get exponentially decreasing or
Increasing solutions as expected.

(iii) All other solutions with R(0) > 0 and
F'(0) > 0 are periodic (same period for R
and F).




Can plot solutions in phase space, i.e., for
given t, plot the point (R(t), F'(t)) in
R — F'-space.

As t varies, point will move and sweep out a
curve in R — F space. This curve is the
solution curve in phase space.

From this program we see that

1. equilibrium solutions correspond to a
single point in the phase space, 1.e.,
solution curve is just a single point.

2. periodic solutions correspond to a closed
curve in phase space.

Use arrow to show direction that move
along solution curve as time increases.
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Phase space (here: phase plane) is the
higher dimensional equivalent of phase
line. Solutions drawn in phase space don’t
show explicit values of ¢, just how the
dependent variables change as ¢ changes.

Different solution curves plotted on the
same phase space picture give the phase
portrait of the system. For example,
the phase portrait for the predator/prey
system 1s:
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The aim of this section of Maths 260 1s to
develop qualitative, analytic and
numerical methods for getting
information about systems of differential
equations.
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Maths 260 Lecture 14

Topics for today

Direction fields and solutions
Equilibrium solutions

Using the tool pplane from Matlab

Reading for this lecture
BDH Section 2.2

Suggested exercises

BDH Section 2.2: 1st ed. 1, 3, 13, 17-20,
21-24, 29

2nd ed. 1, 3, 11, 13-16, 19, 27

Reading for next lecture
BDH Section 2.4

Today’s handout
Lecture 14 notes




Section 2.2 Direction Fields
Directions fields are the analogue for systems
of equations of slope fields.

Consider a system of two autonomous DEs:

dx

—C_l—?? — f(ZE, y)

i% — g(CE, y)
Write

z(t)

Yit) = (y(t)>

and
_ ([ fl=z,y)
vi¥)= <g(m,y) )

Then the system written in vector form is

dY

— =V (Y

- (Y)
V(Y) is known as a vector field i.e., it is
a function that assigns a vector to each point

of the (x, y)-plane.



Example

— = 0.5z — 0.4y

Sometimes write
Y = (z,y)

and

V=(f(z,9),9(z,y))




Plotting vector fields:

At point Yo = (20, yg) in the z, y-plane
draw the vector V(Yq) with the base of
vector at Y and with arrow showing
direction of vector.

Example:
do _
i 7
dy
—_— = —
dt
—>
N
by




Problem with plotting vector fields: vectors
can cross, which makes a big mess. For
example, for the system

dr

it 7

dy

dt

= —Z

Vector field with selected vectors:




Avoid these problems by plotting direction
field, i.e., vectors with same direction as in
vector field but scaled to a uniform length.
Arrowheads may or may not be shown.

The following pictures show the direction
fields for some systems.

dy/dt=x~y

x:2y7y:_x dx/dt=3x+y ngx_l_yiyzx_y

2.////,_4_.__._-.\\\\\_ BF - / ///\\\\\\*_._-

1 .

N R A S Lo o .
g ; : I : : :

VAV NN N S~ e — e e

—05k \\\\\\////// ) B N |

R VRN N G S N\ s
. . X . N : . N . /I / /

We can use pplane from Matlab to plot
direction fields. See the lab handout for
details on using pplane.



Sketching solutions to systems:

Consider a system of DEs

aY

L =E(Y), Y= (" ()
dt

A solution is a vector of functions Y (¢) and
corresponds to a curve in phase space,
parameterized by time (i.e., vary ¢ to move

along curve).




The vector
dY

dt =ty
is tangent to curve of Y () at ¢t = y.

Thus, equation (1) says that vectors in
direction field are tangent to solutions of DE.
So to sketch solution curves to DE (1),

1. plot direction field, then

2. starting at some initial point, sketch a
smooth curve that follows vectors in
direction field.



Example: Sketch some representative
solutions for the system

T =y
y = sin(z)
The direction field is given below.

dX/dt = y
dy/dt = sin(x)
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Equilibrium solutions

The point Yy is an equiltbrium point for
the system

dY
—— =V(Y
- = V(Y)

if V(Yy) =0.

If Y is an equilibrium point, then the
constant function Y (¢) = Y is a solution of
the system.

Example 1
T =2 +Yy
y=2y+zx

-~ -
] , C— @ = = ’;:’)_(_\
S
— D) - _ )
¥ 2 |
e(:{/jeb[/f\um PQ 4{'10 (\ @;7 /7( CQ)“@)\)



Example 2
r=2x+y
y=y(2-2

C *L“} — =) J - —
ﬁ (\2“}“:) =0

N —oc(2-x) =O

Behaviour of solutions near equilibria can be
observed with pplane. Note that

1. direction of vectors in direction field
changes dramatically near an equilibirum
point, and

2. solutions passing near an equilibrium go

very slowly (because all components of
vector field — 0 near an equilibrium).
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Maths 260 Lecture 15

Topics for today

Numerical methods for systems
Existence and Uniqueness Theorem for
systems

Reading for this lecture
BDH Section 2.4

Suggested exercises
BDH Section 2.4: 7, 8, 9, 10

Reading for next lecture
BDH Section 2.3, pp 175-178 (1st ed)
185-188 (2nd ed); Section 3.1

Today’s handouts
Lecture 15 notes




Section 2.3 Numerical Methods for
Systems

Numerical methods used for first order
equations can be generalised to systems of
first order equations.

Example: Euler’s Method for
systems

Given the IVP

dx

- — t

gt f<7x7y>7
y _

dt - g(t,.fl?,y),

with z(tg) = zg and y(tg) = 3o, then Euler’s
Method calculates the approximate solution
at t1 =ty + h to be

z(tg+ h) = xg+ hf (o, 20, Y0)
y(to+h) = yo + hg (o, 0, Y0)

& &

Can repeat to find approximation after n
steps.



Example: Use Euler’s method with
h = 0.1 to calculate an approximate solution

at t = 0.2 to the IVP

dx i
dt T y?
W_ 2,
dt
= | =0 =
Ol = S J0 ) 1o O

= o |
0N~ jf . A(gfﬁ ﬂ-—)c&)
- 0o - 01 = -0
Y (02 ™ W, = ¢4 ¢ {g-ijg)

\ a9y
ﬁ{gz\) X = Yoo+ O (4,5 =
|

C o (001 =1) =199




Vector Form of Euler’s Method

Let
[(@1(t) )
X(t) x?@)
\ zn(t) /
let
[ filt, 21, 32,
F(t,X) _ f2(t7x1>x27
\fn@,ﬂ?l,ﬂf%
and let




Then the Euler approximation to the
solution of the IVP

dX

;Z_t_ — F(t7 X)7 X<t0> — XO

at to + h is
X(tg+ h) =~ Xy + hF(ty, X0>




[t can be proved that Euler’s method for
systems is first order, i.e., the error in the sth
component of X is

[Ei(h)] = kih

in the limit of small h, where k; 1s a
constant.

Thus, halving step size will approximately
halve the error in the estimated value of each

component in X.

Improved Euler and 4th order Runge-Kutta
methods also generalize to systems and are
order 2 and 4 respectively.



Existence and Uniqueness Theorem
for systems

Consider the IVP

dY

— =F({Y), Y(t) =Y,
If F is continuous and has continuous first
partial derivatives then there is an € > 0 and
a function Y (¢) defined for
tp — € <t <tp+esuch that Y(¢) is a

solution to the IVP.

For ¢ in this interval, the solution is unique.



Interpretation of EU Theorem

If a system of equations is ‘nice’ enough, a
solution to an IVP exists and is unique.

In particular, two different solutions cannot
start at the same ¢ at the same point in
phase space.

For autonomous systems, two different
solutions that start at the same place in
phase space but at different times will
correspond to the same solution curve, 1.e.,
solution curves cannot meet or cross in
phase space.



The phase portrait for the
——2.5+y+x2+ajy

—25+y+xx+xy

dx/dt =y
dy/dt

meet/cross but EU Theorem ensures they do

It looks as though different solution curves
not.

following differential equation is given below.

Example
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No such guarantee exists for solution curves
of non-autonomous systems; solution curves
for non-autonomous systems frequently cross
in phase space.

Important ideas from today

e Numerical methods work for systems of
DEs in a similar way as for single
equations.

e ‘Nice’ [VPs have unique solutions.

e Solution curves for autonomous systems
do not cross or meet in phase space.
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