Maths 260 Lecture 27

Topic for today
Higher order differential equations

Reading for this lecture
BDH Section 3.6

Today’s handout
Lecture 27 notes




Section 3: Higher Order Differential
FEquations

Example: Modelling a mass/spring system

We wish to model the motion of an object that
is attached to a spring and slides in a straight
line on a table.
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Let y(t) =position of object at time ¢ with
y = 0 corresponding to the spring being
neither stretched nor compressed.

Main idea from physics :
Newton’s second law says

mass X acceleration = sum of forces
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Typical forces on the object that we might
consider are

1. restoring force (spring does not like to be
compressed or stretched);
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2. frictional forces:
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Substituting into Newton’s law, we get,

2
m%t—g =r(y)+ flv)+g(ty)

where

e 7(y) represents the restoring force at
position y

e f(v) gives the frictional forces at velocity
) dy
v=4%

® g (¢,y) models any external forcing

T

® m is the mass of the object attached to the
spring.



A common case assumes

e linear restoring force (i.e., r(y) = —ky for
some constant k > 0),
e linear damping (i.e., f(v) = —bv for some

constant b > 0),

® 10 spatial dependence in the forcing (i.e., g
a function of ¢ but not y)

We can write this case as

dy  bdy k 1

v - _% - _— t

a’t2+mdt+m mQ()
Vv~

da«?l‘l:j



This differential equation is an example of a
higher order differential equation, i.e., a DE
involving derivatives of second or higher order.

Other examples of higher order DESs
1.
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We can usually convert a higher order DE into
an equivalent system of first order DEs. To do
80, define new dependent variables as in the
following examples.
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Saying that a system of DEs is equivalent to a
higher order DE means that if we know &
solution to the system we can find one for the
higher order equation, and vice versa.

Example
The function
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The pair of functions

y1(t), ciiy; - 1(t)J = [sin J;gt, E cos &t]

s a solution to the equivalent system
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To determine the behaviour of solutions of a
higher order DE we can rewrite the DE as the
equivalent first order system.

Then we can study the system using the
numerical methods and qualitative techniques
(e.g., sketching solutions via phase plane
methods) already learnt. We can also use
results like the Existence and Uniqueness
Theorem.

However, in some special cases, 1t 1s convenient
to study the original higher order equation
directly.

For example, convenient analytic techniques
exist for solving linear higher order equations
(see next few lectures).
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§3.2 Linear, Constant Coefficient,
Higher Order DEs

A differential equation of the form

dn dn—l
dit + an_1 J
“n din—1

d
—l—...—l—al-g

=0
dt+aoy

where all a; are constant, and a,, # 0, is called
an nth order, linear, constant coefficient DE.

Example :
J2 1

Could solve this by converting to a system,
then finding eigenvalues and eigenvectors etc.

In this section, find a short cut for solving
equations of this form.
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For previous example, equivalent system Is:
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Expect solutions of the form Y () —_—@
| is y(t) = ceM

First component of such a Y is y(
some constant c.

, for

Hence, guess a solution to the higher order DE
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of the form y = e** where ) is to be

determined.

Substitute this candidate solution into our DE:
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To find a solution to the associated system,
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This is exactly what we would have got by
using eigenvalues and eigenvectors to solve the
system directly.

This ‘guessing’ method is usually shorter than
solving the system directly.
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Summary:

A higher order differential equation can usually
be rewritten as an equivalent system of first
order differential equations. Solutions can then
be investigated using the methods (qualitative,
analytic, numerical) already studied for
systems.

However, in the case of linear, constant
coetficient higher order equations it is usually
possible and quicker to find analytic solutions
directly. The ‘guessing’ method we use will be
formalised in the next lecture.
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Maths 260 Lecture 30

Topic for today
Linear, constant coefficient, higher order DEs

IVPs for higher order DEs
The harmonic oscillator

Reading for this lecture
BDH Section 3.6 again

Suggested exercises
BDH Section 3.6; 1,3,5,7,9.11

Reading for next lecture
BDH Sections 4.1, 4.2

Today’s handout
Lecture 30 notes




More on Linear, Constant Coeflicient,
Higher Order DEs

Consider the differential equation

d
— +...+a1*y*+a0y:()
dtn—1 dt

Let y1(t), y2(t), ..., yn(t) be n linearly
independent solutions of the DE. Then

y(t) = cry1(t) + coyo(t) + . .. + coyn(t)
for arbitrary constants c;, is called the
general solution to the DE. Every solution
to the DE can be written in this form by
picking the ¢; appropriately.



Example: Find the general solution to the
differential equation
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Example: Find the general solution to the
differential equation
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Example: Find the general solution to the
differential equation

d>y  dy
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General Method:
To find the general solution to

Y
=0
dt—Faoy

d
%+...+a1-—~

1. Write down the characteristic
polynomial:

an\" + an_l)\n—l +...a1A+ag=0

and find n roots A1, Ag, ..., Ay (some may
be repeated or complex).

All functions of the form e, where Aj IS a
root of the characteristic polynomial, will
be solutions to the DE.

2. If all roots are distinct, can construct the
general solution by taking a linear
combination:

y(t) = cle)‘lt + CQ@AQt + ...+ cneA”t
A
I\ %Lconverthg to real form if necessary).
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3. It a root (say X;) is repeated k times, then
the functions

,tze)‘it, . ,tk_le)‘it

are linearly independent solutions and we
can use a linear combination of these in the

general solution.

Remember that the general solution to an nth
order linear, constant coefficient DE contains n
arbitrary constants and n linearly independent
solutions.



Example: Find the general solution to
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Example: Find the general solution to

dy dy
a3 T
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IVPs for Higher Order DEs

Consider a higher order DE such as

d*y  _dy
LA L I
a2 Tog Y

with associated system

NLRYY

dt | =2 =3
] () dy
WhereY:L"Jandv: .
v dit

To define an IVP for the system we specify an
1nitial condition

Y(tp) = Yo = [yo]

v

. dy
e, y(to) = yo and v(ty) = 7 (to) = wo.

The equivalent IVP for the original higher

order DE therefore has two initial conditions:
dy
y(to) = yo and = (to) = o,
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More generally, an nth order IVP is formed
from an nth order DE

dn dn—l
ay o, Y
g den—1

d
-+...4—a1—y

= ()
dt+aoy

together with n conditions

y(to) = wo,
dy
Et—(t(ﬁ = Y1,
dn—ly
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Example: Find a solution to the IVP
v — 2y + 10y = 0 %)
where y(0) = 0, ¢/(0) = —2.

d 2
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The Harmonic Oscillator

Consider the second order, linear, constant
coefficient DE

d’x  dr
b 4 k=0
m 772 -+ 7 + kX ,

where m, k > 0, b > 0.

A physical system modelled by this equation is
called a harmonic oscillator.

For instance, the mass/spring system
considered in the last lecture is a harmonic
oscillator if we assume linear damping and
restoring forces, and no external forcing.

Can now completely classify the different types
of solution to this problem.

Note that the equivalent system is

dY 0 1 T
i | n vyl

m m
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T'he characteristic polynomial is

MA 0N+ k=0 (m, b, k>o)

which has roots

—b+ Vb2 — 4mk —b — Vb2 — Amk
Al = , Ag =

2m 2m

and the general solution is

z(t) = c1eMt + cpet2t

There are four diﬁererit cases, d'epending on
the size of b, the damping coefficient.
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Case 1: b= 0 (no damping)
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Case 2: 0 < b < Vdkm (underdamped)
A, = -k

i
/
p .
¥
A
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Case 3: b > v/4km (overdamped)

A= -5, Jbz"‘ﬁ“)f <« ©

gt

2m 2 rn
A, =~k - JbAmR oo
2 2 =

t =
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Case 4: b = +/4km (critical damping)

Ore rst ), = —b
2.
Aot
j = ( -Q)'JC + Cz .('6
N { Be(‘uv
™ J
y 7
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Summary:

For the harmonic oscillator, modelled by the
DE )

d r dx

hr kx =0

d 72 + 7 + KT =

with constants b > 0 and &k > 0 -

e if b = 0 all solutions are periodic except the
equilibrium at x = 0;

e if b > 0 all solutions tend to zero as # — 00.
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Maths 260 Lecture 31

Topic for today
Nonhomogeneous higher order DFEs

Reading for this lecture
BDH Section 4.1, 4.2

Suggested exercises
BDH Section 4.1; 1, 3, 7, 11,
Section 4.2; 1, 3, 9, 13

Reading for next lecture
BDH Section 4.3

Today’s handout
Lecture 31 notes




Nonhomogeneous higher order linear DEs

An nth order linear DE of the form

dn A" 1
it —— +Qp_1 g
g din—1

d
+...4+ag dgt/—l-aoy = f(?)

1s called nonhomogeneous.

The function f(t) is called the forcing function
or nonhomogeneous term.

Example :

2

d“y Y .
mgﬁ+bzl—t—+ky:smt

models the behaviour of a mass/spring system
subject to periodic forcing.



To solve a nonhomogeneous DE, we first solve
the corresponding homogeneous equation and
then combine this solution with a particular
solution to the nonhomogeneous equation.

This result uses:



Extended Linearity Principle:

Given the nonhomogeneous DE
dny A= 1
—— + Gp_1
g dtn—1

consider the corresponding homogeneous
equation:

d
L@ agy = (1

an Y Ty, 4 0
a a P
g T =1 Vg 7909 =

1. It yp, is a solution to the homogeneous DE
and yp is a solution to the nonhomogeneous
DE then@ + Yp Is also a solution to the
nonhomogeneous DE, hos e

ur\hvxﬁ"’“ ‘lt £

2. If yc is the general solution to the
homogeneous DE and Yp 18 a solution to the
nonhomogeneous equation then y = v, + Up
1s the general solution to the
nonhomogeneous DE.



Verification of extended linearity principle for
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Yn SmI:N;Lfe;
jh” + ?Ja/ F9Yyn =o
j,, S'o'é?’;%'ej

jr +pYp’ *‘Zj/? = fct)

3= Jn* Jo
fer 9"+ py *19
= Jv I PO ) LGN

RRANSATES Vg b/Ag ",

,_,7Cc¢)




Example:  Show that y, = —2¢ 3 s g
solution to the equation
2

d d

dt?  dt
Hence find the general solution to this

equ?tion.é | L 2 & e_-z ¢
J? + JP #—YJP:: ~13Q;%+ e

- l6e = 2
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Summary of method of solution for
nonhomogeneous equations

1. Find the general solution to the related
homogeneous equation.

2. Find one solution to the nonhomogeneous
equation.

3. Add answers to (1) and (2) to get the
general solution to the nonhomogeneous
equation.

4. If trying to solve an IVP, use the initial
conditions to determine constants in the
general solution.



Finding a particular solution

We saw (in computer demonstrations) that
when the harmonic oscillator is subjected to
external forcing, solutions frequently mimic the
forcing, at least in the long term.

We use this observation as the basis of a
method for finding particular solutions to
linear, constant coefficient DEs.

Example 1 : Find a solution to the DE

d*y  _dy ¢
3—= 4+ 2y =
dtQ + 7 + 2y =e€

Fnd B K
gn' 4 3‘3‘\("‘ 2w =0
AT+ A+ 2=0
- -2 -1
d= -2, e
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Example 2 : Find a solution to the DE

%+3%+2y2008t

JL\ = C e+ G e "
juw j? = Acost + BSAT
1 = ~Asiat  FBcort

")P“ - —A CUS{' - B Si/\f

jP“ 1 BJ P( .I—QJF
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. A 1+3B =) % A= o

. —=3A 4+ B =0 B = %o
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Example 3 : Find a solution to the DE

d2y dy 5
dt2 + 33‘ +2y=t

We K now p Yu
guess  Yp= Att ABE 4 C
7}’, - 2AL 3

g = 24

Jr' o+ 3y 2y,
= 2A 1+ 3(A24448)+€9
+2 C A+ Bttc)

- 248 + (284 64)% L 2C+3B+2A
) +°
= 2Ak=1 | 2B+6A=0  20C+3p12A= o
A=y B="%) =4 (%-1)
/ - :)_/4_ ‘)

Yp = Yott 2-3kt LTy
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FExample 4 : Find a solution to the DE

a’2y ay W
a2 " p Ty =€

3“&33 JP = AQ-—t

h /
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_ Aot _zepeot L2t gt

= (A—— 3 A+24)e "
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We can formalise the guessing method used in
the examples as:

Method of undetermined coefficients

To find a particular solution to the DE

where f(t) is
(i) a constant, or

(ii) t" for n a positive integer, or

(iii) e for real \ 0, or

(iv) sin bt or cos bt, b constant, or

(v) a finite product of terms like (i)-(iv),
take the following steps:

1. Form the UC set consisting of f and all
linearly independent functions obtained by
repeated differentiation of f.
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