Maths 260 Lecture 21

Topics for today
Complex Numbers:

e Multiplication of polar forms
e De Moivre’s formula

® Derivatives of complex-valued func-
tions

® FEuler’s formula

e The exponential of a complex num-
ber

Reading for this lecture

The handout on complex numbers

BDH Appendix B

Suggested exercises

Problems at the back of the handout on complex
numbers.

Reading for next lecture

BDH Section 3.4

Today’s handouts

Lecture 21 notes




2.8.2 More on Complex Numbers

Multiplication of polar forms

Let
21 = rq(cos B1+isin 67), zg = ra(cosfo+esin 0>)
be any two complex numbers, then

R1%4Q =
— 7"17“2<COS(91 - 92) + iSiIl(el T 92>>

Hence, multiplying corresponds to

absolute value = product of absolute values

argument = sum of arguments
v &

Picture:




Example Solve 2 =1

z = 1 is obviously a solution. Any others? Let’s

write
z = r(cosf +isind),

where r = |z| > 0. Then
2% = r3(cos 30 + i sin 30)
and therefore
r3(cos 30 + isin30) =1 = 1 (¢os (0)

+CES o>
and | F&IA()
> C f‘:l>
| 360 = 0 = <& =
bu{' DO = 2 = 4 etc as 7Caf o 0/\
i$ fo/\(efr{}

Notice that for other values of n, the solutions
given coincide with the above solutions because
of the periodicity of cos and sin.
= 3-= 2T S= 271./3
302 4 > O=¥F/3
30 = € S 0= 29
do nst 2 rnew )“d/f\'

Jine 2T =@0
jw



2\ &\

Exan(éle: Calculate
o (cosf+isinh)? = (0SCOIO) + 1 S51nB+6)
VK(COSQ +isinf)3 = cos¢ 30) 1 7 Jin(36)
pete ry =1
These are particular cases of de Moivre’s for-

mula:
(cos(6) + ¢sin(h))"™ = cos(nd) + isin(nb),

a very useful formula...

Example: Express cos20,sin20 in terms of
cos @, sin 4.

From the de Moivere’s formula, we have

cos(20) +isin(20) = (Cos® +75in@)((F6 + Jine)

= (05%0@ + 1050 §nB

S0 L .
+ [ SIn® (Of@ *+— Sin’O
= €520 =  Co3'e - SAG
= Sinle = 2 ol SIn®

Polar forms are sometimes useful for solving equa-
- tions.



Plot the solutions:

o= K

=\
\ =\

(9‘ G =-o
o= 4—7'('3

Derivatives of complex valued
functions

Suppose t is real and f(t) is a complex valued

function of t,% t i3 real
"0,V /?&)

| f(t) = u(t) + iv(t) ( 7(&4'\(74'4/‘5>
Then, if u and v are differentiable at ¢, we define
the derivative of f(t) to be

ﬁ_@_{_i@
dt dt dt



Example Find the derivative of f(t) = cos(t)+
i sin(t)

( 4: (o5t +r’j/k‘é))

Properties of f(t):

o fI(t) =if(t),

¢ f(0)=1, 20
St = ft ).~ T Cange)

Compare this to g(t) = e, where a is real:

Properties of g(t):
at
®y (t) =, a €

)

* g<0> — l al ¢ altitt)
egti)glts)=. C e = € = §chr,



Euler’s Formula

The properties of f prompted Euler to make the
definition:

Euler’s Formula: eﬁ = cost + z’sinﬂ

T /

VERY L mpapi ANT
Euler’s Formula and Polar forms

Example: z=1+i. = rcose +rrsime

e Ja , 6= Tq ¢ ¢
1 k4 |
= 2 - J*z(fowwpn%) J2 e

In general, complex number z = a + ib can be
written in polar form as

2= ret?

where 7 = va2 + b2 and 0 = tan~1(b/a).

Now multiplication and division are easy:

Example: 21 = 2627T/6 29 = $e Z7T/4

cr (/g ""4-) i T (5'/11)
7= 2 e 2 Qo
21/z9= 2 (el ‘/6~ll4_) (v (=)



Also we can easily calculate powers:

Example 1: If z = 3¢/7/5 find z* and 2
(5! 3-3 :TC(Z'/;'>

2:2 = 32 e =
(71'("3'+/rr/y+/;4/r>
>% = 3 &
= 243 Q/ = —-243

Example 2: Find all solutions of =% 2
Z &3 = l+¢c

e ((0;& + /)'1/\(9)

3
2z =2 ) Z =
= WCIG:‘ fe
= (= sJz & =0, 2'71-/3/4’(/3
— I.; 2'1']6 4-7"',;
2. 2 3z e )‘ ?]5' J/e’
! T
l
n .
CTe
Z}:: l+ ¢ = Jz € T TR
& = +, 4 /
o (= $YR =Yz, 7 TClg +47C
/ e/
¢ (Ml ¢ ’> (Tl 1—4’%5

T2 .
2,:{)2@ 2L>€J2_.€// 2. - $5e
3=



The Exponential of a Complex
Number

We know how to calculate e when x is real and
e’ when y is real, so it makes sense to define:

. . % o
Definition: e*™ = %'V = e Ccary +/ Jf,zj>

Example: Calculate /62T - @
Aa3 @) [

— e .*39(’, /{0}(2)*"77:)
= 2 -1 = =2 (—“‘4 e
Example: Show that if A is a complex number
then d 5
AR O,V = X ¢/
d_t<€ )-—)\e y j
L /) _ vt
L (e = 4 (e
dt e dt (
— xt 1y¢
")
A€ e it QXéelbt
= X€ QJ T \’2
= (xwtr‘j}e,xe@'b



Example: Find all solutions of the form y =
e to the differential equation

' (t) + 2y (t) + 10y(t) = 0.
BY

_ Xt
ﬂ = €7, § = e
=) OZ+ 2% ep e =0
( ‘é/ue 7(3/ all ‘6)

o MNiavsro=o (e #a foomt)

Soln sl X = -1+ 3¢C
j_. (~I+3t)€ _ —'6 C Cosdt + ,75(/\3"é>

- A2€A+

+IO€M\ —©

—

Note: We'll see 1ater that the general solution
of such equations can be found by taking a linear
combination of the real and imaginary parts of
the complex exponential solutions. S0 the gend
eral solution of the equation above 18 |

/ Yy = cle—t cos 3t + CQe_t sin 3.

5o\n 4o J 4—2-5 +'°J:O m(eféb IQJ-Q/
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Maths 260 Lecture 22

Topic for today
Linear systems with complex eigenvalues

Reading for this lecture
BDH Section 3.4

Suggested exercises
BDH Section 3.4; 1, 3, 5, 7,9, 11, 23

Reading for next lecture
BDH Section 3.5

Today’s handouts
Lecture 22 notes




2.8.3 Linear systems with complex
eigenvalues

There exist linear systems for which there are
no straight-line solutions.

Example: Consider the system
Y _(1-2
da 21

Y.

Slope field and some solutions

dx/dt =2 x
dy/dt=2y
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What goes wrong?



Calculate the eigenvalues:

det ( ([~} 2 >:°

y [—)

= 2y H + 4 =% ol

JEE

See that elgenvalues are Complex We saw
earher that stralght line solutions result from
real elgenvalues: .~ »o o vn 0

That is, Y (t) = L Ay is a goliition to

— =AY
— £

dt -
H .

if A is an eigenvalue of A with eigenvector v
but the corresponding solution curve will not
be a straight-line if A is not real.



Find (complex) solution vectors for this
example:

@) & A ore el B ply o/ eoch oo
C )¢ = (¢ ,P})
So\\re GK) é_—,—__) D 4 = ¢
v

io= (3)

How do we interpret a complex-valued
solution? We would like a real-valued solution.
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Theorem
Consider the system

dY
— =AY
dt

If Y(t) is a complex-valued solution to the
system, write

o YY) =YR(E) + Y

,are real Valued
solutions to the system and are lmearly
independent.

Proof. ( O,‘_\_( = A‘Y)
,, at

R ’ Y‘QQ)
Then YR( ) and YI( )

= dVe A LAY, £ AV

am—————

ot dt



Apply theorem to previous example. Know

that
7
1
is a solution to
dY 1 =2
ait (2 1 )Y-

Z) — eé( Coy2t +f§/}\2'(~> (:)

1

eJc C cos2t Fo SiA2t
( Cos24& 4+ ( §ia2t
\ /Hence, by theorem, e /- SRR

and ¢ ( cas 2¢ >

are real-valued, linearly independent solutions
and the general solution is

\/‘ - 6(1+2i>t

But

6(1—|—22)t

I

6



We see from the general solution that each
component of Y will oscillate from positive to
negative and that amplitude of each
component will grow exponentially.

Phase portrait

dx/dt=2x -~y
dy/dt = x
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Note : In this example, we found two
linearly independent real-valued solutions by
taking the real and imaginary parts of the
complex-valued solution

?

)

What if we instead used the real and
imaginary parts of the other complex-valued
solution we found, i.e.,

S(1-2i)t [ “12 ]

o(1420)t

\ _ t o -\
e SN CTR Y= S’f\lf\)( | >

- '€t (cos 2t & SiA2T
N “ O Cog2t = SrA~2t



We see that the other complex-valued solution
also gives us two real-valued solutions but
these solutions are just multiples of the
real-valued solutions already found.

Thus, using the other complex-valued solution
gives no new information; we can form the
general solution using the real and imaginary
parts of just one of the complex conjugate pair
of solutions.



In general, the system

dY
— = AY
dt
with complex eigenvalues
M=a+i
and
A =a — 10

has a solution of the form

where Y| is the eigenvector corresponding to
eigenvalue A\{ = a + 1.

Expanding:
Y (t) = el ety ) = ¢ (cos(Bt)+isin(6t)) Y.
So the general solution is a combination of

exponential and trigonometrical terms. The
qualitative behavior of solutions depends on o

and (3.

10



When A is a 2 X 2 matrix, trig terms alternate

between posi

tive and negative with period %,

so the solution curves spiral around the origin

in the phase

plane.

1. If & > 0, then e® — 0o as t — 00 80
solution curves spiral away from the origin.
In this case, the equilibrium at the origin is
called a spiral source.

Typjc«é,l phase portraits:
S _
(5

N\

2. If « < 0, then e — 0 as t — 00 50
solution curves spiral into the origin. In this
case, the equilibrium at the origin is called a
spiral sink.

Typical phase portraits:

11 J



3.If a = 0, then e = 1 and solution curves
are periodic; solutions return to their initial
conditions in the phase plane and repeat
the same curve over and over again. In this
case, the equilibrium at the origin is called a
centre.
Typical phase portraits:

,WKSC

12



Examples

1. Sketch the phase portrait for the system
dY [1 —2

it 21)Y'

As before, e-values are 1 + 2¢ (a =1,
3 = 2) so origin is a spiral source.

To determine whether spiral is clockwise or
anticlockwise, evaluate vector field at a
point. For example, at (x,y) = (0,1) on the
y-axis, vector field is

S = all)- (00 6
Mr,\r "

which points to\left, so spiral is

anticlockwise. }\

) Kf




Direction field and some solutions

dx/dt =2 x
dy/dt=2y
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the System ertten in terms of real
functions, is - |

Fixercise: Show that the general solution to

o[ —sin(2t)) [ cos(2t)

Y(t) = cre cos(2t) 26 sin(2t)

14



2. Sketch the phase portrait for the system

dY (23
Cﬁ:(-—ld() b
Jet (’-A 53_._ AT422 43 7O
— U =X R |
g _ - -L \)3.(.- 'ﬁ/wﬂ
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Direction field and some solutions

dx/dt=-2x+3y
dy/dt = -

Fixercise: Show that the general solution to
the system, written in terms of real
functions, is~

—t “_COS\/_t—F\/—SlIl\/—t

Y(t) =
{)=cre cos(v/2t) "
ot [sn VB = VoV
- . sin /2t

16



Direction field and some solutions

dx/dt=-3y
dy/dt = x
T
i e s b s
T T e R e T i Seetoe SN N

Eixercise: Show that the general solition to
the system, written in terms of real
functions, is

Y(t)—c 3008\/_75 3sin /3t
e L \/§s.m V3 t —{/gbchos \/gt

18



3. Sketch the phase portrait for the system
1Y _(0-3
dt |1 0
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4.'Find the general solution (expressed in
terqns of real functions) for the system

10 0 |
. ,/
g:OZ——S Y.

¢ 13 2

Determine the lon\% term behaviour of
solutions. /

E-values are 1, 2 + 37, X— 3¢ with
corresponding’e-vectors

o, (—10 0 \G\

oI N B B AN
ya 1) =i |4

~ respectively.
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