Maths 260 : An overview of the course

A differential equation expresses a relationship between a function and its derivatives (or some functions and their derivatives, in the case of a system of equations). For example, the DE

$$\frac{dx}{dt} = 3x$$

says the unknown function x(t) is equal to three times its derivative.

The aim of this course is to learn ways to determine the properties of the functions that satisfy a given DE (i.e., properties of *solutions* to a DE). Information we seek about solutions may be:

- 1. qualitative information about solutions;
- 2. an explicit formula for a solution;
- 3. a numerical approximation to an explicit formula.

Before seeking a solution or information about a solution, we would like to be sure that a solution to the DE exists. The *Existence and Uniqueness Theorem* gives conditions under which solutions to a DE (or system of DEs) exist. These conditions turn out to be fairly general - solutions exist for a large class of DEs.

Finding Explicit Formulae for Solutions

Although the Existence and Uniqueness Theorem guarantees that solutions exist for many DEs, it is not usually possible to write down a formula for a solution to a DE. Special cases in which it is sometimes possible to find formulae for solutions include:

- 1. Separable or linear DEs with one dependent variable;
- 2. Linear, constant coefficient, autonomous systems of first order DEs;
- 3. Linear, constant coefficient, higher order DEs, either homogeneous or nonhomogeneous. *Laplace transforms* can be used when the nonhomogeneous term is discontinuous.

Qualitative Information

A major technique for getting qualitative information about solutions to autonomous systems is to sketch the phase line or phase plane. This can involve:

1. finding equilibrium solutions;

- 2. classifying equilibrium solutions using linearisation or some other method;
- 3. using the slope field and/or nullclines.

In DEs that depend on a parameter, qualitative behaviour of solutions may change as the parameter varies. A *bifurcation diagram* can be useful for summarising the qualitative changes in the behaviour of solutions that occur as a parameter is varied.

Numerical Methods

Numerical approximations to explicit solutions at particular times can be found using a numerical integration method. We looked briefly at fixed stepsize methods:

- Euler's method
- Improved Euler's method
- 4th order Runge-Kutta method

Numerical methods can also be used to draw approximate phase portraits. We used the software package Matlab for this purpose.

Preparing for the Final Exam

To do well on the exam, you need to:

- understand the lecture material. Make sure you have a complete set of lecture notes and handouts. The textbook has good explanations of most topics and should be read in conjunction with your lecture notes.
- practise doing examples. Good sources of examples are old exams and tests, assignment and tutorial questions, and exercises in the text book.

Relevant material in the textbook is contained in: \S 1.1-1.8, \S 2.1-2.4, \S 3.1-3.8, \S 4.1-4.3, \S 5.1-5.2, \S 6.1-6.3, \S 7.1-7.3.

Where to from here?

If you have enjoyed Maths 260 and want to do more courses in Applied Maths, consider:

Maths 361 and Maths 362 : Advanced Methods in Applied Maths. These are core courses at Stage III. Prerequisite : B- or better in Maths 260 and Maths 253

Also **Maths 363** : Computational Mathematics and Modelling. Prerequisite: Either B+ or better in Maths 260 OR Maths 260 and Maths 270.

Maths 162 : Introduction to Applied and Computational Maths.

Maths 270 : Numerical Computation. Prerequisite : Maths 250 and Maths 162 (or course with equivalent programming content).

For help in selecting courses, see the Mathematics Department Undergraduate Handbook or speak to your lecturers.