Maths 260 Lecture 8

Topic for today

The phase line

Reading for this lecture BDH Section 1.6, pp 76-85

Suggested Exercises

BDH Section 1.6: 23, 25, 27, 29

Reading for next lecture BDH Section 1.6, pp 81-88

Today's handouts

Lecture 8 notes

§1.6 The Phase line

Consider the DE

$$\frac{dy}{dt} = f(y).$$

Recall that the slope field corresponding to an autonomous differential equation has a special form - slope marks are parallel along horizontal lines (see Lecture 4).

	dx/dt = x (1 - x)						
2	j	111	111		1 August	· · · · · · · · · · ·	1.1.1.
	- Š	1 1 1	1 1 1	1 1	1 1 1 1	AAAA	1 1 1
1.5 1 × 0.5	1	(<u> </u>	1 1	V V V V	$\Lambda = \Lambda = \Lambda = \Lambda$	111
				··· \		· X · ·X · ·X; · X · ·	· · · · · · · · · · · ·
			\sum	22	<u> </u>		2.2.2
	<u> </u>		222	22			222
	2.	///	///	11	////	1121	//2/
	> -	///	///	//	////	////	///
	11		///	11	1111	1111	
	111			1			
0			<u> </u>				
	1.5	~ ~ ~		~ ~	~ ~ ~ ~	~ ~ ~ ~	2221
-0.5	× ·	$\langle \rangle \rangle$	$\langle \cdot \rangle \rangle$	\sim	\times \times \times \times	XXXX	X X X
	ý	v · · v · · v · ·	X = X = X	· v · v	ACCA CARLA	· · · · · · · · · · · · · · · · · · ·	X · X · X · -
	2	(<u> </u>	1 1	A A ALA	A = A = A = A	111
	N.		1 1 1	1 1	V V V V	A A A A	<u> </u>
	}		$i \cdots i \cdots i$	· + - +	1.1.1.1.1.		1.1.1.1.1.1
	0		2	4	6	8	10

There is clearly some redundancy in slope field information. We can replace the slope field by a phase line, which summarises the information in the slope field.

<u>To draw a phase line for</u> $\frac{dy}{dt} = f(y)$

1. Draw y-line.

- 2. Find equilibrium solutions of the DE and mark them on the line.
- 3. Find intervals of y for which f(y) > 0 (solutions started at such y values will increase as t increases). Draw upward pointing arrows on the line in these intervals.
- 4. Find intervals of y for which f(y) < 0 (solutions started at such y values will decrease as t increases). Draw downward pointing arrows on the line in these intervals.

Examples

1. For the DE

$$\frac{dy}{dt} = (y+2)(1-y)$$

sketch the phase line. Describe the longterm behaviour of solutions.

2. For the DE

$$\frac{dy}{dt} = y^2(y+1)$$

sketch the phase line. Describe the longterm behaviour of solutions.

3. For the DE

$$\frac{dy}{dt} = f(y)$$

where f(y) has the graph shown below, sketch the phase line and describe the longterm behaviour of solutions.

It is possible to sketch solutions to a DE just from the phase line.

Longterm behaviour of solutions

In cases where the Uniqueness Theorem applies, a solution that tends to an equilibrium point does not reach the equilibrium point in finite time. We write

 $y(t) \to y_0$ as $t \to \infty$ (or as $t \to -\infty$).

In contrast, a solution that tends to $+\infty$ or $-\infty$ may reach $\pm\infty$ in finite time or may never reach $\pm\infty$. We cannot tell which case we have from the phase line alone.

Example:

$$\frac{dy}{dt} = 1$$

Example:

$$\frac{dy}{dt} = 1 + y^2$$

These examples show that we cannot write

$$y(t) \to \pm \infty$$
 as $t \to \infty$ (or as $t \to -\infty$)

based on evidence from the phase line alone - we would need more information about the actual solutions before making such a statement. Instead, based on phase lines, we make statements like

 $y(t) \to \infty$ as t increases

or

 $y(t) \to \infty$ as t decreases.

Main ideas for today

For an autonomous differential equation $\frac{dy}{dt} = f(y)$ it can be useful to sketch the phase line. The phase line contains information about equilibrium solutions and whether other solutions are increasing or decreasing, but information about the <u>speed</u> with which solutions are changing is lost.