
Maths 260 Lecture 5

Topic for today
More on Euler’s method
Improved Euler’s method
4th-order Runge-Kutta method

Reading for this lecture
BDH Sections 1.4, 7.1

Suggested Exercises
BDH Section 1.4: 1, 7; Section 7.1: 6

Reading for next lecture
BDH Sections 7.2, 7.3, 7.4

Today’s handout
Lecture 5 notes

Section 1.4 continued: Euler’s method

Recall from last lecture: Main idea of Euler’s method

To approximate the solution to the IVP

dy

dt
= f(t, y), y(t0) = y0

start at (t0, y0) and take small steps, with the direction of each step being the direction
of the slope field at the start of that step. The following picture illustrates the
relationship between the slope field and the numerical solution obtained from Euler’s
method.
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In the next example we can solve the IVP exactly and hence check the accuracy of
Euler’s method for various choices of step size.

Example For the IVP
dy

dt
= yt, y(0) = 1

calculate an approximation to y(0.4) using Euler’s method with (i) h = 0.2, and (ii)
h = 0.1. Calculate the error in each approximation.

Solution:
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h = 0.2
n tn yn f(tn, yn) yn + hf(tn, yn)
0 0.0 1.0 0.0 1.0
1 0.2 1.0 0.2 1.04
2 0.4 1.04

h = 0.1
n tn yn f(tn, yn) yn + hf(tn, yn)
0 0.0 1.0 0.0 1.0
1 0.1 1.0 0.1 1.01
2 0.2 1.01 0.202 1.0302
3 0.3 1.0302 0.30906 1.061106
4 0.4 1.0611

To calculate the error in the approximation, we need to compare with the actual
solution.

Exercise: Show that y(t) = et2/2 solves the IVP.

Using the explicit solution, we get y(0.4) = e(0.16)/2
≈ 1.0833.

Error in the first approximation (with h=0.2) is

Error in the second approximation (with h=0.1) is

Note that the error was approximately halved by halving the step size (but twice as
many steps/calculations were done to obtain this improvement in accuracy). When
using Euler’s method to get an approximate solution to an IVP, picking a smaller step
size will usually give a more accurate approximation - but will involve more work.
We return to this idea in the next lecture.
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Section 1.5 Improving Euler’s Method
Most elementary numerical methods, such as Euler’s Method, can be understood in
terms of approximating derivatives. For small h we have

y (tn+1) − y (tn)

h
≈

dy

dt
= f (t, y)

So
y (tn+1) = y (tn) + hf (tn, y (tn)) + εn

where εn is the error made in the approximation.

Euler’s Method approximates this formula by dropping εn from the equation above
so that the Euler estimate at tn+1 is

y(tn+1) = y(tn) + hf(tn, y(tn))

Geometrically, Euler’s method amounts to following a tangent line, instead of the
(unknown) solution curve, from yn to the value we accept for yn+1. The direction of
each step is determined by the slope at the beginning of the step. Since the slope
of the actual solution curve varies throughout the interval from tn to tn+1, the value
of yn+1 calculated by Euler’s method generally does not agree with the value on the
solution curve. We can obtain a more accurate method by adjusting the direction of
the step according to the slope field seen along an Euler step.

Improved Euler’s method (IE)
To take one step of length h with Improved Euler’s method:

1. Take an ordinary Euler step of length h. Calculate the slope at the end of this
step.

2. Go back to the beginning of the step, take a step of length h with slope being
the average of the slope at the beginning of the step and the slope calculated
in (1).

The formulas for this method are

tn+1 = tn + h

yn+1 = yn +
h

2
(m1 + m2)

where

m1 = f (tn, yn) ,

m2 = f (tn+1, yn + h (f (tn, yn)))
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The following picture illustrates the relationship between the slope field and the
numerical solution obtained with IE method.

Example: Use h = 0.5 in the IE method to calculate an approximation to the solution
of the IVP

dy

dt
= −2ty2, y(0) = 1

at t = 1.0.
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Using numerical from MATLAB, we can see how changing the step size in the IE
method improves the accuracy of the numerical solution.

No. of Steps y (0.5)

1 0.7500000
2 0.7969455
4 0.7999361
8 0.8000543
16 0.8000215

(Compare with actual value: y(0.5) = 0.8). We notice that accuracy is improved
when a smaller step size is used.

4th-order Runge-Kutta method (RK4)
This is the most commonly used fixed-step size numerical method for IVPs. This
method evaluates the slope f(t, y) four times within each step. Starting at (tn, yn)
we calculate (tn+1, yn+1) as follows:

tn+1 = tn + h

m1 = f(tn, yn)

m2 = f(tn +
h

2
, yn +

h

2
m1)

m3 = f(tn +
h

2
, yn +

h

2
m2)

m4 = f(tn + h, yn + hm3)

and now take

yn+1 = yn +
h

6
(m1 + 2m2 + 2m3 + m4)

The following picture illustrates the relationship between the slope field and the
numerical solution obtained with RK4 method.
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Example: Use h = 0.5 and one step of RK4-method to calculate an approximation
to the solution of the IVP

dy

dt
= −2ty2, y(0) = 1
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Once again, changing the stepsize improves the solution.

No. of Steps y (0.5)

1 0.7983793
2 0.7999481
4 0.7999979
8 0.7999999

Important ideas from today
Numerical methods approximate solutions to IVPs.
Euler’s method uses the slope at the beginning of each step.
Better methods adjust the direction of each step according to the slope field seen
along an Euler step.
The error in a numerical approximation generally reduces if the step size is decreased.
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