
Maths 260 Lecture 30

Topic for today

Linear, constant coefficient, higher order DEs
IVPs for higher order DEs
The harmonic oscillator

Reading for this lecture

BDH Section 3.6 again

Suggested exercises

BDH Section 3.6; 1,3,5,7,9,11

Reading for next lecture

BDH Sections 4.1, 4.2

Today’s handout

Lecture 29 notes

More on Linear, Constant Coefficient, Higher Order DEs

Consider the differential equation

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . . + a1

dy

dt
+ a0y = 0

Let y1(t), y2(t), . . . , yn(t) be n linearly independent solutions of the DE. Then

y(t) = c1y1(t) + c2y2(t) + . . . + cnyn(t)

for arbitrary constants ci, is called the general solution to the DE. Every solution to the
DE can be written in this form by picking the ci appropriately.

Example: Find the general solution to the differential equation

2
d2y

dt2
+ 5

dy

dt
+ 3y = 0
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Example: Find the general solution to the differential equation

d2y

dt2
+ 4

dy

dt
+ 5y = 0
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Example: Find the general solution to the differential equation

d2y

dt2
+ 4

dy

dt
+ 4y = 0
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General Method: To find the general solution to

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . . + a1

dy

dt
+ a0y = 0

1. Write down the characteristic polynomial:

anλ
n + an−1λ

n−1 + . . . a1λ + a0 = 0

and find n roots λ1, λ2, . . . , λn (some may be repeated or complex). All functions of
the form eλit, where λi is a root of the characteristic polynomial, will be solutions to
the DE.

2. If all roots are distinct, can construct the general solution by taking a linear combina-
tion:

y(t) = c1e
λ1t + c2e

λ2t + . . . + cne
λnt

(converting to real form if necessary).

3. If a root (say λi) is repeated k times, then the functions

eλit, teλit, t2eλit, . . . , tk−1eλit

are linearly independent solutions and we can use a linear combination of these in the
general solution.

Remember that the general solution to an nth order linear, constant coefficient DE contains
n arbitrary constants and n linearly independent solutions.

Example: Find the general solution to

d3y

dt3
+ 3

d2y

dt2
+ 2

dy

dt
= 0

4



Example: Find the general solution to

d3y

dt3
+

dy

dt
= 0

IVPs for Higher Order DEs

Consider a higher order DE such as

d2y

dt2
+ 3

dy

dt
+ 2y = 0

with associated system
dY

dt
=

(

0 1
−2 −3

)

Y

where Y =

(

y

v

)

and v =
dy

dt
. To define an IVP for the system we specify an initial condition

Y(t0) = Y0, i.e., y(t0) = y0 and v(t0) =
dy

dt
(t0) = v0. The equivalent IVP for the original

higher order DE therefore has two initial conditions: y(t0) = y0 and
dy

dt
(t0) = v0.

More generally, an nth order IVP is formed from an nth order DE

an

dny

dtn
+ an−1

dn−1y

dtn−1
+ . . . + a1

dy

dt
+ a0y = 0

together with n initial conditions y(t0) = y0,
dy

dt
(t0) = y1, . . .

dn−1y

dtn−1
(t0) = yn−1.
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Example: Find a solution to the IVP

y′′ − 2y′ + 10y = 0, y(0) = 0, y′(0) = −2

Here (and elsewhere) y′ ≡
dy

dt
, y′′ =

d2y

dt2
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The Harmonic Oscillator

Consider the second order, linear, constant coefficient DE

m
d2x

dt2
+ b

dx

dt
+ kx = 0,

where m, k > 0, b ≥ 0. A physical system modelled by this equation is called a harmonic

oscillator. For instance, the mass/spring system considered in the last lecture is a harmonic
oscillator if we assume linear damping and restoring forces, and no external forcing. We can
now completely classify the different types of solution to this problem.

Note that the equivalent system is

dY

dt
=

(

0 1
− k

m
− b

m

)

Y, Y =

(

x

y

)

The characteristic polynomial is mλ2 + bλ + k = 0 which has roots

λ1 =
−b +

√
b2 − 4mk

2m
,λ2 =

−b −
√

b2 − 4mk

2m

and the general solution is x(t) = c1e
λ1t + c2e

λ2t. There are four different cases, depending
on the size of b, the damping coefficient.

Case 1: b = 0 (no damping)
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Case 2: 0 < b <
√

4km (underdamped)

Case 3: b >
√

4km (overdamped)

8



Case 4: b =
√

4km (critical damping)

Summary:

For the harmonic oscillator, modelled by the DE

m
d2x

dt2
+ b

dx

dt
+ kx = 0

with constants b ≥ 0 and k > 0 :

• if b = 0 all solutions are periodic except the equilibrium at x = 0;

• if b > 0 all solutions tend to zero as t → ∞.
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