
Maths 260 Lecture 25

Topic for today

Non-linear systems: linearisation near equilibria

Reading for this lecture

BDH Section 5.1

Suggested exercises

BDH Section 5.1; 1, 3, 7, 9, 11

Reading for next lecture

BDH Section 5.2

Today’s handout

Lecture 24 notes

2.10 Nonlinear Systems

Consider the system

dx

dt
= y

dy

dt
= x − x3 −

1

2
y

Equilibrium solutions:

Slope field and some solutions

 dx/dt = y              
 dy/dt = x − x3 − 0.5 y
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We can understand the saddle-like nature of (0, 0) if we approximate the nonlinear
system by a linear system.

For x, y very close to zero, x3 is much smaller than x or y.

So we can ignore x3 term in the nonlinear system, and approximate the behaviour of
the nonlinear system near (0, 0) with the linear system

dx

dt
= y

dy

dt
= x −

1

2
y

i.e.,
dY

dt
= AY =

(

0 1
1 −1

2

)

Y, Y =

(

x

y

)

The eigenvalues of matrix A are 0.78 and −1.28 so the equilibrium at the origin of
linear system is a saddle.

The following pictures show the slope field and solutions for the linear system and
for the nonlinear system near the origin. Note that the linear system is a good
approximation near the origin but is hopeless away from the origin.

Slope field and solutions for linear system

 dx/dt = y        
 dy/dt = x − 0.5 y
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Slope field and solutions for nonlinear system

 dx/dt = y              
 dy/dt = x − 0.5 y − x3  
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This procedure is called linearisation: Near an equilibrium, approximate the non-
linear system by an appropriate linear system. For initial conditions near the equi-
librium, solutions of the nonlinear system stay close to solutions of the approximate
linear system, at least for some interval of time. Thus, the type of equilibrium at
the origin in linearised system gives information about the type of the corresponding
equilibrium in the nonlinear system.

Returning to original example, consider equilibria at (1, 0) and (−1, 0).

To approximate behaviour near (1, 0) by a linear system, we need to first shift the
equilibrium to the origin – because linear systems usually only have an equilibrium
at the origin.

Change the coordinates as follows:

u = x − 1
v = y

so the equilibrium (x, y) = (1, 0) is now at (u, v) = (0, 0). Then the system becomes:

du

dt
=

dv

dt
=

For u and v small, −3u2 and −u3 are very, very small. Ignore these nonlinear terms
and approximate system by:

(

du
dt
dv
dt

)

=

(

0 1
−2 −1

2

)(

u

v

)
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Eigenvalues are − 1

4
± 1

4

√
31i. So origin is a spiral sink in the linear approximation.

The following pictures illustrate the similarity between the phase portrait near the
equilibrium at (1, 0) in the nonlinear system and the phase portrait for the linearised
system.

Phase portrait for linearised system

 dx/dt = y            
 dy/dt = − 2 x − 0.5 y
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Phase portrait near (1, 0) in nonlinear system

 dx/dt = y              
 dy/dt = x − 0.5 y − x3  
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Similar calculations give similar results for the equilibrium at (−1, 0).
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More generally, if the system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

has an equilibrium at (x0, y0), we can construct a linear approximation to the system
for x and y values near (x0, y0) as follows:

First move the equilibrium to the origin. Write u = x−x0, v = y− y0. The nonlinear
equations in the new coordinates are:

du

dt
=

dx

dt
= f(x, y) = f(x0 + u, y0 + v)

dv

dt
=

dy

dt
= g(x, y) = g(x0 + u, y0 + v) (1)

Now we use Taylor expansion to rewrite f and g:

f(x0 + u, y0 + v) = f(x0, y0) +

[

∂f

∂x
(x0, y0)

]

u +

[

∂f

∂y
(x0, y0)

]

v + h.o.t

g(x0 + u, y0 + v) = g(x0, y0) +

[

∂g

∂x
(x0, y0)

]

u +

[

∂g

∂y
(x0, y0)

]

v + h.o.t

If we ignore the higher order terms and note that f(x0, y0) = g(x0, y0) = 0, then we
get an approximate linear system:







du
dt

dv
dt





 =









∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)

∂g

∂x
(x0, y0)

∂g

∂y
(x0, y0)















u

v





 (2)

i.e., the behaviour of solutions to the nonlinear system near the equilibrium (x0, y0)
can be approximated by the behaviour of solutions in the linearised system (2).

The matrix of partial derivatives in (2) is called the Jacobian matrix.
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Example: Consider the system

dx

dt
= x(1 + x2)

dy

dt
= 3y(1 − y − x)

Find the equilibria and determine their types.
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The phase portrait for this system, drawn with pplane, is given below. Note the
source at (0, 0) and the saddle at (0, 1) as predicted by our calculations.

 dx/dt = x (1 + x2)    
 dy/dt = 3 y (1 − x − y)
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