Maths 260 Lecture 23

Topics for today
Linear systems with repeated eigenvalues
Linear systems with zero eigenvalues

Reading for this lecture
BDH Section 3.5

Suggested exercises
BDH Section 3.5; 1, 3, 5, 7, 11, 21

Reading for next lecture
BDH Section 3.7

Today’s handouts
Lecture 21 notes
Tutorial 7 questions

2.8 Special Cases of Linear Systems

Linear systems with repeated eigenvalues

ay 2 0
E‘(o 2>Y

Eigenvalues are 2 and 2. Eigenvectors are:

Example Consider the system

The general solution is:

i.e., every non-zero solution is a straight-line solution.



Phase portrait

dx/dt =2 x
dy/dt=2y

1At SsS A
AV A AV 4
| ) S S
1/ s S s s s

I A A A A R A
AN NN NN

VAV VA A AV AV
/S S S s e
NN N N~ — — — =
NN NN N N e
NN N N N N~
AAN NN N NN NS
AL NN NN N N
A\ NV NN RN
VWL N NN NN

\
\
\
\
b

—_— — - — - / N N N~ o~ — - = —

-0.5F e / NNTN NN N s s
— e s f / NN N NN N N~

1t PP AV | A A NN N N N N
Ay A | VNN N N NN N N

P A, | AU U N VA N N N NN

S PR NN
S0 | | I U U VI N N NI N N

-2+ SA A A | L e e N N |
-2 -15 -1 -0.5 0 0.5 1 1.5 2

This example illustrates a general case: If matrix A has a repeated eigenvalue A with
two linearly independent eigenvectors v, and vs, then Y; = eMv; and Y, = eMvy
are linearly independent straight line solutions. We can construct a general solution
from a linear combination of these two solutions as usual.

Furthermore, if A is a 2 x 2 matrix, then every solution except the equilibrium at the
origin is a straight-line solution. If A > 0, then every non-zero solution tends to oo
as t — oo (so the origin is a source). If A < 0, then every solution tends to the origin
as t — oo (so the origin is a sink).

What happens if we cannot find two linearly independent eigenvectors?

Example Consider the system

dY -5 0
% Ls 5 )Y

Eigenvalues are -5 and -5.
Eigenvectors are:



Phase portrait and some solutions

dx/dt =-5x
dy/dt=8x-5y
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See that system has only one straight line solution. We can’t write the general solution
as a linear combination of solutions of the form e*v because we don’t have enough
such solutions. To find a second solution, we use the following result.

Theorem: Consider the system

aY
— =AY
dt

where A has a repeated eigenvalue A with just one linearly independent eigenvector.
Pick an eigenvector v; corresponding to A. Then

Y; = eMv,y
is a straight-line solution and
Y, = M (tvy + Vo)
is a second, linearly independent solution of the system, where v, is a vector satisfying
(A= A)vy =y

(vq is called a generalised eigenvector). Can use this second solution Y, to construct
the general solution for the previous example.

Example
dyY -5 0
s =)
Found already that Y; = e~ (1) is a solution. Look for v, satisfying

(A — )\I)Vg = Vi



Phase portrait and some solutions

dx/dt =-5x
dy/dt=8x-5y
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We see that all solutions are tangent at the origin to the direction of the straight-line
solution. This is always the case in a 2 x 2 system: when there is a non-zero repeated
eigenvalue with only one corresponding linearly independent eigenvector, all solution
curves in the phase plane are tangent to the straight-line solution.

Important note: There is some freedom when choosing a generalised eigenvector
(e.g., in last example,
1
Vo = 8
Y
is a generalised eigenvector for any choice of y). However, a multiple of a generalised
eigenvector is not usually a generalised eigenvector (e.g., in last example,

1

Ll 8
Y

is not a generalised eigenvector for any choice of k except k& = 1). Different choices
of the generalised eigenvecetor all lead to the same general solution.

4



Example : Sketch the phase portrait for the system

ayY 2 -1
dt_<1 0>Y'



Direction field and some solutions

dx/dt=2x-y
dy/dt = x
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Linear systems with zero eigenvalues

Example Consider the system

% B —12 _42 )Y
Eigenvalues are 5 and 0 with eigenvectors | 9 > and ? respectively. So
Y, =¢" _12 )
and

are linearly independent solutions, and the general solution is:

If ¢; =0, then
2

Y(t) = C2 1

which is constant, so this is an equilibrium solution for all choices of cy. This is a
general result: all points on a line of eigenvectors corresponding to a zero eigenvalue
are equilibrium solutions.

If ¢; # 0 then first term in general solution tends to zero as t — —oo, i.e., solution
tends to the equilibrium

Co



along a line parallel to

as t — —oo. Hence, phase portrait is qualitatively:

From pplane, get:
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Get similar behaviour in other linear systems with a zero eigenvalue, but details of the
general solution and the phase portrait may vary depending on the specific example.



Example : Sketch the phase portrait for the system

A4 0 1
dt_<0 4>Y



