Maths 260 Lecture 22

Topic for today
Linear systems with complex eigenvalues

Reading for this lecture
BDH Section 3.4

Suggested exercises
BDH Section 3.4; 1, 3,5, 7, 9, 11, 23

Reading for next lecture
BDH Section 3.5

Today’s handouts
Lecture 20 notes

2.8.3 Linear systems with complex eigenvalues
There exist linear systems for which there are no straight-line solutions.
Example: Consider the system

aY 1 -2
% \l2 1 )Y

Slope field and some solutions

dx/dt=x-2y
dy/dt=2x+y
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What goes wrong?



Calculate the eigenvalues:

See that eigenvalues are complex. We saw earlier that straight-line solutions result

from real eigenvalues. That is, Y (t) = e*v is a solution to
daY
— =AY
dt

if A is an eigenvalue of A with eigenvector v but the corresponding solution curve
will not be a straight-line if X is not real.

Find (complex) solution vectors for this example:

How do we interpret a complex-valued solution? We would like a real-valued solution.



Theorem

Consider the system
ayY
— =AY
dt

If Y(#) is a complex-valued solution to the system, write
Y (t) =Yr(t) +iY1(t)
Then Ygr(t) and Yi(t) are real-valued solutions to the system and are linearly inde-

pendent.

Proof

Apply theorem to previous example. Know that

(+2iy [ 2
()

Y (1 -2
E<2 1 )Y'

is a solution to

But



Hence, by theorem,
Yr =

and
Y =

are real valued, linearly independent solutions and the general solution is

We see from the general solution that each component of Y will oscillate from positive
to negative and that amplitude of each component will grow exponentially.

Phase portrait

dx/dt=x-2y
dy/dt=2x+y
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Components of solution with z(0) = 1,y(0) =0



Note : In this example, we found two linearly independent real-valued solutions by
taking the real and imaginary parts of the complex-valued solution

(20t [ ¢
c ( j ) |

What if we instead used the real and imaginary parts of the other complex-valued

solution we found, i.e.,
(1—2iy¢ [ —1

We see that the other complex-valued solution also gives us two real-valued solu-
tions but these solutions are just multiples of the real-valued solutions already found.
Thus, using the other complex-valued solution gives no new information; we can form
the general solution using the real and imaginary parts of just one of the complex
conjugate pair of solutions.



In general, the system

1A'
— =AY
dt

with complex eigenvalues Ay = a4+ ¢ and A\ = a — i3 has a solution of the form
Y(t) = ety

where Y| is the eigenvector corresponding to eigenvalue \; = o + 3.
Expanding:
Y (t) = @ty = e (cos(Bt) + i sin(Bt)) Y.

So the general solution is a combination of exponential and trigonometrical terms.
The qualitative behavior of solutions depends on « and [3.

When A is a 2 X 2 matrix, trig terms alternate between positive and negative with
period 2%, so the solution curves spiral around the origin in the phase plane and:

1. If @ > 0, then e* — oo as t — oo so solution curves spiral away from the origin.
In this case, the equilibrium at the origin is called a spiral source.
Typical phase portraits:

2. If a < 0, then e® — 0 as t — oo so solution curves spiral into the origin. In
this case, the equilibrium at the origin is called a spiral sink.
Typical phase portraits:

3. If a = 0, then e* = 1 and solution curves are periodic; solutions return to their
initial conditions in the phase plane and repeat the same curve over and over
again. In this case, the equilibrium at the origin is called a centre.

Typical phase portraits:



Examples

1. Sketch the phase portrait for the system

dY 1 -2
da -\ 2 1 Y.

As before, e-values are 1 +2i (« = 1, § = 2) so origin is a spiral source. To
determine whether spiral is clockwise or anticlockwise, evaluate vector field at
a point. For example, at (x,y) = (0,1) on the y-axis, vector field is

which points to left, so spiral is anticlockwise.

Direction field and some solutions

dx/dt=x-2y
dy/dt=2x+y
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Exercise: Show that the general solution to the system, written in terms of
real functions, is



2. Sketch the phase portrait for the system

ayY -2 3
dt_<—1 0>Y'



Direction field and some solutions

dx/dt=-2x+3y
dy/dt = - x
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Exercise: Show that the general solution to the system, written in terms of
real functions, is

Y(t) =c ot [ €08 V2t + /2 sin /2t 4 oot sin v/2t — /2 cos V2t
o cos(v/2t) 2 sin v/2t

3. Sketch the phase portrait for the system

¥ _ (0 -3

dt 10 Y.



Direction field and some solutions

dx/dt=-3y

dy/dt = x
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Exercise: Show that the general solution to the system, written in terms of
real functions, is

3 cos \/gt 3sin \/gt

Y(t) = V3 sin /3t te —v/3cos /3t

Find the general solution (expressed in terms of real functions) for the system

10 0
dd—Y—02—3Y.
L 13 2

Determine the long term behaviour of solutions.

E-values are 1, 2 + 37, 2 — 3¢ with corresponding e-vectors

—10 0 0
3 , 1 1
1 —1 )

respectively.
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(blank page for your working)
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