
Maths 260 Lecture 22

Topic for today

Linear systems with complex eigenvalues

Reading for this lecture

BDH Section 3.4

Suggested exercises

BDH Section 3.4; 1, 3, 5, 7, 9, 11, 23

Reading for next lecture

BDH Section 3.5

Today’s handouts

Lecture 20 notes

2.8.3 Linear systems with complex eigenvalues

There exist linear systems for which there are no straight-line solutions.

Example: Consider the system

dY

dt
=

(

1 −2
2 1

)

Y.

Slope field and some solutions

 dx/dt = x − 2 y
 dy/dt = 2 x + y
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What goes wrong?
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Calculate the eigenvalues:

See that eigenvalues are complex. We saw earlier that straight-line solutions result
from real eigenvalues. That is, Y(t) = eλtv is a solution to

dY

dt
= AY

if λ is an eigenvalue of A with eigenvector v but the corresponding solution curve
will not be a straight-line if λ is not real.

Find (complex) solution vectors for this example:

How do we interpret a complex-valued solution? We would like a real-valued solution.
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Theorem

Consider the system
dY

dt
= AY

If Y(t) is a complex-valued solution to the system, write

Y(t) = YR(t) + iYI(t)

Then YR(t) and YI(t) are real-valued solutions to the system and are linearly inde-
pendent.

Proof

Apply theorem to previous example. Know that

e(1+2i)t

(

i

1

)

is a solution to
dY

dt
=

(

1 −2
2 1

)

Y.

But

e(1+2i)t

(

i

1

)

=
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Hence, by theorem,
YR =

and
YI =

are real valued, linearly independent solutions and the general solution is

We see from the general solution that each component of Y will oscillate from positive
to negative and that amplitude of each component will grow exponentially.

Phase portrait

 dx/dt = x − 2 y
 dy/dt = 2 x + y
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Solution with x(0)=1, y(0)=0

Components of solution with x(0) = 1, y(0) = 0
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Note : In this example, we found two linearly independent real-valued solutions by
taking the real and imaginary parts of the complex-valued solution

e(1+2i)t

(

i

1

)

.

What if we instead used the real and imaginary parts of the other complex-valued
solution we found, i.e.,

e(1−2i)t

(

−i

1

)

We see that the other complex-valued solution also gives us two real-valued solu-
tions but these solutions are just multiples of the real-valued solutions already found.
Thus, using the other complex-valued solution gives no new information; we can form
the general solution using the real and imaginary parts of just one of the complex
conjugate pair of solutions.
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In general, the system
dY

dt
= AY

with complex eigenvalues λ1 = α + iβ and λ2 = α − iβ has a solution of the form

Y(t) = e(α+iβ)tY0,

where Y0 is the eigenvector corresponding to eigenvalue λ1 = α + iβ.
Expanding:

Y(t) = e(α+iβ)tY0 = eαt(cos(βt) + i sin(βt))Y0.

So the general solution is a combination of exponential and trigonometrical terms.
The qualitative behavior of solutions depends on α and β.

When A is a 2 × 2 matrix, trig terms alternate between positive and negative with
period 2π

β
, so the solution curves spiral around the origin in the phase plane and:

1. If α > 0, then eαt → ∞ as t → ∞ so solution curves spiral away from the origin.
In this case, the equilibrium at the origin is called a spiral source.
Typical phase portraits:

2. If α < 0, then eαt → 0 as t → ∞ so solution curves spiral into the origin. In
this case, the equilibrium at the origin is called a spiral sink.
Typical phase portraits:

3. If α = 0, then eαt = 1 and solution curves are periodic; solutions return to their
initial conditions in the phase plane and repeat the same curve over and over
again. In this case, the equilibrium at the origin is called a centre.
Typical phase portraits:
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Examples

1. Sketch the phase portrait for the system

dY

dt
=

(

1 −2
2 1

)

Y.

As before, e-values are 1 ± 2i (α = 1, β = 2) so origin is a spiral source. To
determine whether spiral is clockwise or anticlockwise, evaluate vector field at
a point. For example, at (x, y) = (0, 1) on the y-axis, vector field is

A

(

0
1

)

=

which points to left, so spiral is anticlockwise.

Direction field and some solutions

 dx/dt = x − 2 y
 dy/dt = 2 x + y
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Exercise: Show that the general solution to the system, written in terms of
real functions, is

Y (t) = c1e
t

(

− sin(2t)
cos(2t)

)

+ c2e
t

(

cos(2t)
sin(2t)

)
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2. Sketch the phase portrait for the system

dY

dt
=

(

−2 3
−1 0

)

Y.
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Direction field and some solutions

 dx/dt = − 2 x + 3 y
 dy/dt = − x        
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Exercise: Show that the general solution to the system, written in terms of
real functions, is

Y(t) = c1e
−t

(

cos
√

2t +
√

2 sin
√

2t

cos(
√

2t)

)

+ c2e
−t

(

sin
√

2t −
√

2 cos
√

2t

sin
√

2t

)

3. Sketch the phase portrait for the system

dY

dt
=

(

0 −3
1 0

)

Y.
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Direction field and some solutions

 dx/dt = − 3 y
 dy/dt = x    

 
 

 
 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Exercise: Show that the general solution to the system, written in terms of
real functions, is

Y(t) = c1

(

3 cos
√

3t√
3 sin

√
3t

)

+ c2

(

3 sin
√

3t

−
√

3 cos
√

3t

)

4. Find the general solution (expressed in terms of real functions) for the system

dY

dt
=







1 0 0
0 2 −3
1 3 2





Y.

Determine the long term behaviour of solutions.

E-values are 1, 2 + 3i, 2 − 3i with corresponding e-vectors







−10
3
1





 ,







0
1
−i





 ,







0
1
i







respectively.
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(blank page for your working)
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