
Maths 260 Lecture 19

Topic for today

Classification of equilibria in linear systems with real eigenvalues

Reading for this lecture

BDH Section 3.3

Suggested exercises

BDH Section 3.2, 1, 5, 9, 11, 19

Reading for next lecture

BDH Section 3.4

Today’s handouts

Lecture 19 notes

Section 2.7 Classification of equilibria in linear systems with real

eigenvalues

This lecture looks at systems of the form

dY

dt
= AY,

where A is a matrix with real eigenvalues only. All such systems have an equilibrium
at the origin: we are interested in the behaviour of solutions near the origin, especially
when viewed in phase space.

Example Determine the behaviour of solutions to the system

dY

dt
=

(

2 6
1 −3

)

Y.

Eigenvalues of coefficient matrix are λ = 3,−4 with eigenvectors
(

6
1

)

and

(

1
−1

)

respectively.

The general solution is:

Straight-line solutions are:

To see behaviour of solutions that are not straight-line solutions, i.e., solutions with
c1 "= 0 and c2 "= 0, note that as t → ∞

Y(t) = c1e
3t

(

6
1

)

+ c2e
−4t

(

1
−1

)

→ c1e
3t

(

6
1

)

1



i.e., as t → ∞, these solutions behave like the straight-line solution

c1e
3t

(

6
1

)

.

Similarly, as t → −∞, these solutions behave like the straight-line solution

c2e
−4t

(

1
−1

)

.

Direction field and some solutions

 dx/dt = 2 x + 6 y
 dy/dt = x − 3 y  
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Note that on solution curves for the straight-line solution

Y1(t) = c1e
3t

(

6
1

)

,

the arrows point away from the origin, indicating that Y1(t) → 0 as t → −∞.
Similarly, arrows on solution curves for the straight-line solution

Y2(t) = c2e
−4t

(

1
−1

)

point towards the origin, indicating that Y2(t) → 0 as t → ∞.

This example illustrates typical behaviour of solutions to a planar linear system with
one positive real eigenvalue and one negative real eigenvalue. A characteristic feature
of phase portrait is the presence of two special lines:

• On one line, solutions tend to origin as t → ∞;

• On other line, solutions tend to origin as t → −∞.

• All other solutions tend to ∞ as t → ±∞.

The equilibrium point at the origin in this type of system is called a saddle.
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Example Determine the behaviour of solutions to the system

dY

dt
=

(

−4 −2
−1 −3

)

Y.

Eigenvalues of coefficient matrix are λ = −5,−2 with eigenvectors
(

2
1

)

and

(

1
−1

)

respectively.

The general solution is:

Straight-line solutions are:

As t → ∞, e−5t → 0 and e−2t → 0, so all solutions tend to the origin as t → ∞.

This is a general result: if all eigenvalues of matrix A are real and negative, then all
solutions to the system

dY

dt
= AY

tend to the origin as t → ∞.

Direction field and some solutions:

 dx/dt = − 4 x − 2 y
 dy/dt = − x − 3 y  
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This picture suggests that most solutions are tangent to the straight line solution

e−2t

(

1
−1

)

as t → ∞. We can prove this:
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Slope of solution curves is
dy

dx
=

dy/dt

dx/dt

So, if c2 "= 0,

lim
t→∞

(

dy

dx

)

= −1.

Thus as t → ∞, all solutions tend to the origin and almost all are tangent to the
straight-line solution

e−2t

(

1
−1

)

.

In general, in a system with 2 real negative eigenvalues, λ1 < λ2 < 0, all solutions
tend to the origin as t → ∞. Except for those solutions starting on the line of eigen-
vectors corresponding to λ1, all solutions are tangent at (0, 0) to the line of eigenvector
corresponding to λ2.

The equilibrium point in this type of system is called a sink.
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Example Determine the behaviour of solutions to the system

dY

dt
=

(

4 2
1 3

)

Y.

Eigenvalues of coefficient matrix are λ = 5, 2 with eigenvectors
(

2
1

)

and

(

1
−1

)

respectively.

The general solution is:

Straight-line solutions are:

As t → ∞, all non-zero solutions move away from the origin.

This is a general result: if all eigenvalues of A are real and positive, all non-zero
solutions to the system

dY

dt
= AY

tend away from the origin as t → ∞.

Direction field and some solutions:

 dx/dt = 4 x + 2 y
 dy/dt = x + 3 y  
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This picture suggests that most solutions are tangent to the straight line solution

e2t

(

1
−1

)

as t → −∞. We can prove this either

• by method used in last example, or

• by noting that this example corresponds to reversing time in the last example.
Hence, phase portrait is the same as in last example but with direction of arrows
reversed.

This is a general result. If A is a 2 × 2 matrix with eigenvalues λ1 and λ2, with
0 < λ2 < λ1, then except for those solutions starting on the line of the eigenvectors
corresponding to λ1, all solutions are tangent at (0, 0) to the line of eigenvectors cor-
responding to λ2.

The equilibrium point in this case is called a source.

This classification of equilibria extends to higher dimensions:

For the system
dY

dt
= AY,

Y = 0 is always an equilibrium. Assuming that all eigenvalues of A are real and
distinct, then:

1. If all eigenvalues of A are positive, Y = 0 is a source.

2. If all eigenvalues of A are negative, Y = 0 is a sink.

3. If at least one eigenvalue of A is negative and at least one eigenvalue is positive,
Y = 0 is a saddle.
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